The ATLAS Tile Calorimeter Software Tools for Data

Quality Monitoring

ATLAS EXPERIMENT

Daniel Suchý (Comenius University) on behalf of the ATLAS collaboration

All plugins User email not detected Sign out

ATLAS Preliminary

484155: MonoCIS HG

484321: MonoCIS_HG

Save DQV Status

1. ATLAS Tile Calorimeter

The ATLAS Experiment [1] at CERN's Large Hadron Collider is a versatile detector designed for measuring particle momentum, energy, and identification. Its core component, the Tile Calorimeter (TileCal) [2] plays a crucial role in hadronic calorimetry, contributing to:

- Jet energy measurements
- Tau lepton decays
- Missing transverse energy
- Muon identification and trigger inputs

TileCal consists of three main sections: a **long barrel** ($|\eta| < 1$) and two **extended barrels** (0.8 < $|\eta| < 1.7$). The readout is divided into four readout partitions: **LBA**, **LBC**, **EBA**, and **EBC**, with a total of 4x64 modules. This **sampling calorimeter** utilizes plastic scintillator tiles as the active medium and steel as the absorber. Signals from the scintillator tiles are transmitted through optical fibers to photomultiplier tubes (PMTs), where they are converted into electrical signals. Key features of TileCal include:

- There are 5182 readout cells and 9852 channels, each cell is read out by two PMTs (except the special ones).
- Signal amplification through two amplifiers with a gain ratio of 1:64.
- **Digitization** via 10-bit Analog-to-Digital Converters (ADC) at a sampling rate of 40 MHz over 7-sample windows.
- Electronics for each module are controlled by **Data Management Unit (DMU)** chips, with up to 16 DMUs per module.

Tile barrel Tile extended barrel LAr hadronic end-cap (HEC) LAr electromagnetic end-cap (EMEC) Dur as abes

Run: 484321

MonoCIS HG

□ Undefined □ Green ☑ Yellow ☑ Orange ☑ Red ☑ Black (Show all | Reset)

Histogram: r484472_MonoClS_EBA01_dsp_amp.pn

Show also expected results

DQM status

2. Data quality monitoring

The signal from each channel in the TileCal is first converted from ADC counts to electric charge (pC), and then to energy (GeV). This conversion is calibrated through test beam campaigns, while continuous monitoring is necessary to adjust for factors like scintillator aging and voltage or electronics stability. TileCal employs several calibration systems:

- Cesium Source Calibration: Emits gamma rays to calibrate the analog parts of the readout and monitors changes in the electromagnetic scale over time.
- Laser Calibration System: Measures the response of PMTs.
- Charge Injection System (CIS): Injects a known charge to test the electronics' conversion between pC and ADC counts, and it performs scans to assess both linearity and stability.
- Electronic Noise Measurement: Is evaluated by analyzing runs with no signal.

Raw data from calibration runs are processed using Athena [3] software, producing histograms for further testing. Two types of tests are conducted: one to check data consistency from DMU chips and another to monitor signal quality from individual channels. Each channel or DMU is assigned a **Data Quality Monitor (DQM) status**, which can be:

- **Green**: All results are within the expected range.
- Yellow: Minor issues, usually affecting one channel.
- Orange: More serious issues, affecting two or more channels.
- Red: Serious problems, affecting multiple channels or the entire module.
- Undefined: No / low statistics to evaluate.

The module's overall status is determined by the worst test result. Although this process is automated, **Data Quality Validators (DQVs)** manually review and submit the final reports, which are then used by **Data Quality Leaders** (**DQLs**) for further discussion and evaluation.

5. Analysis of problematic modules

Create E-log

Test name

EBA01 | Validator's previous comment:

Edit Comment | Save Comment

DSP Amp HG

ore

Black

EBA01

EBA04

EBA05

EBA08

EBA09

<u>EBA11</u>

EBA14

EBA23

EBA24

EBA33

EBA36

EBA37

EBA50 EBA55

EBC01

EBC07

EBC14

EBC15

EBC19

EBC21

The analysis starts by selecting the specific run. During this process, the DQV can efficiently filter identified issues in individual modules based on their severity. These filtered results are presented through the existing DQ History plugin, which is integrated as an iframe within the calibration runs analysis plugin.

The DQ History plugin provides detailed information about the current status of the module, including:

- DQM status
- Name of the problematic test
- Occurrence history of DQM statuses in previous runs
- Relevant plots illustrating the issue

The DQV can also see previously logged comments on the module's issues and its status. They can add new comments about the current status of the module and update the DQV status as needed.

When comment or status updates are saved, they are stored in the testing database, with the name of the DQV associated with each entry, ensuring transparency in the editing process.

The plugin facilitates seamless navigation between modules with a single click, loading all necessary data. This simplifies the analysis process, allowing the DQV to efficiently continue the validation work across modules.

IEW] ch0 HG: DSP Amp (7.6). ch1 HG: DSP Amp (7.8). ch2 HG: DSP Amp (7.6). ch3 HG: DSP Amp (7.6).

ch4 HG: DSP Amp (7.6). ch5 HG: DSP Amp (7.5). ch6 HG: DSP Amp (7.6). ch7 HG: DSP Amp (7.5). ch8 HG

SP Amp (7.7). ch9 HG: DSP Amp (7.7). ch10 HG: DSP Amp (7.6). ch11 HG: DSP Amp (7.6). ch12 HG: DSP

Upon completion of the analysis, the final output is an E-log that consolidates the details of individual modules and their associated issues. This E-log is made accessible to the DQLs providing a comprehensive summary that enables them to efficiently present and compare the current problems with those observed in previous calibration runs. This offers a concise and structured format for further reporting and decision-making.

3. Tile-in-One

The **Tile-in-One (TiO)** [4,5] platform provides a unified space for all TileCal-related web applications.

It is structured around a central server that manages user authentication and acts as a proxy for individual web applications, known as plugins. These plugins operate on their own virtual machines, typically utilizing a shared template with Python-based tools like uWSGI and Bottle. Such setup enables direct access to data files through CERN's ROOT framework.

4. Analysis of calibration runs

The analysis of calibration runs is conducted by **DQVs**, who require access to relevant information to diagnose issues identified by automatic tests. The **calibration runs analysis** plugin is designed to streamline the validation process currently managed through the **TileCal Web Interface for Shifters** [6], reducing the time required and simplifying the overall workflow.

The main interface of this plugin closely resembles the existing **DQ History** plugin main page. The **DQVs** can select which run to analyze and filter runs by type or run number. Key features include:

- Run Type: Indicates the calibration method used to generate the data.
- Date: Specifies when the run was conducted.
- Overview section: Presents a proportional breakdown of the statuses for all modules, displaying the percentage of each status (e.g., green, yellow) in relation to the total number of modules. This is similar to the automatically generated DQM, but these statuses are specifically defined by DQVs and referred to as DQV statuses.
- **Shifter**: This column shows the name of the DQV whenever they save a DQV status or comment on a module.

6. References

[1] ATLAS Collaboration. In: JINST 3 (2008), S08003.

[2] ATLAS Collaboration, Eur. Phys. J. C 78, 987 (2018), 1806.02129

[3] The ATLAS Experiment's main offline software repository, https://gitlab.cern.ch/atlas/athena

[4] Tile-in-One,

https://tio.cern.ch/documentation/index.md
[5] EPJ Web of Conferences 245, 01010 (2020)
https://doi.org/10.1051/epjconf/202024501010
[6] TileCal Web interface for shifters,
https://pcata007.cern.ch/tcws/dashboard/
current/showRunList.php

CHEP 2024, 21.-25. October Krakow, Poland