Normalizing Flows for Physics Data Analyses
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Introduction Performance Evaluation

= | HC produces big data = MC and analysis need to follow = Comparison of ML generated and MC simulated distributions

= Can generative models be used to support physics modeling? = Best model was selected for the final analysis

= Problem: do not know the true generating data distribution = Performance was measured using statistical distances and classifier two

* Objective: approximate pgata(x) to enable infinite sampling sample testing

= Learn true pyata(x) from & € RP using approximate prmoger.o(€) & pdata() S — S I
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Higgs Benchmark Dataset
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= Publicly available dataset with 11M events and 28 variables

= Binary classification problem: signal (BSM) vs. background (¢t)
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= Use as test for LHC final event simulation with normalizing flows Y el s et
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: Physics Analysis

= A simplified analysis was performed, involving preselection (baseline cuts)

= 21 low-level and 7/ high-level variables , ,
and a NN-based classifer final selection

= Data preprocessing (feature scaling) is a crucial step in training
= Task: train ML model to generate new background events
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Normalizing Flows (Invertible Neural Networks)
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= WO pleces: 400
1. base distribution p,(u), typically N'(u|O, )

300
2. differentiable transformation = T'(u) with an inverse u = T~ ()

= Construct a flow by composing together many transformations 7: 200

T'=Tygo...01; and T_1:T1_1O°"OT];1
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* Transformations 71" are (invertible) neural networks with parameters ¢ T .
. ~ 1.0k
= Generative process: o "k :
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xr="T(u)~ p.(x) with sampling u ~ p,(u) assifer outout
= Density evaluation using change of variables formula:
—1 .« . . . . .
pu(®) = pu(T~H(x)) | det Il () = Upper limits on the signhal strength . for the likelihood fit to the classifier
) ¢ ox score distribution as a function of ML-generated events were calculated
54 ' Signal lfrac'tiop: 500 °I/o, sys. error: 10.QO %. . 5 | Sigpa] ffa'ctlion: 5.00 °/Io
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* Forward direction: z, = Ti.(z_1) fork =1,..., K with zg = u (infer) E : g
" Inverse direction: z,_; =T, '(z;) for k= K,...,1 with zx = « (train) B E
0.5 =
706

04

\ | YN \ S| 08 o
‘. 7 ‘e ! N e Nu. generated NuL generated
Base distribution Zr. ~ Dy, (Zk) Target distribution
Zo ~ Pz (Z0) = pu(u) ZK ~ Doy (Zk) = Px(X) Summary

= Similar to autoencoder: forward mode < decoder, backward mode < . o .. .
= Generative modeling is a promising new tool for physics data analyses

encoder , o ,
= Loss function has two terms (log-likelihood + log-determinant): = Needs careful performance evaluation and validation for physics use cases
N
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L(6) = NZ log py (T (xn; @); ) + log |detJp-i(x,; )] References
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= Use gradient descent to get the best parameters:
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