
RNTuple Implementation in Julia
CHEP 2024 @ Kraków, Poland

Jerry Ling (Harvard University / ATLAS)
Tamás Gál (Erlangen Centre for Astroparticle Physics)



What is Julia?

❖ Luckily, Graeme has given the plenary talk introducing Julia in the context of 

HEP:

2



What is RNTuple?

❖ However, the RNTuple plenary talk is still in the future:

3



Structure of this talk

❖ What’s special about RNTuple (short version)

❖ Implementation highlights in UnROOT.jl

❖ Current status and exciting future

4

https://github.com/JuliaHEP/UnROOT.jl


What is RNTuple

❖ In short, RNTuple is the next-gen evolution of TTree.

❖ TTree and RNTuple both live inside .root files, but don’t share much in their 

design or implementation.

5Both are table-like objects in .root files



What is RNTuple

❖ One drawback of TTree is the lack of “specification” – which created a messy 

compatibility landscape:

6



What is RNTuple

❖ In RNTuple, we can expect much more uniform compatibility thanks to 

specification-oriented design:

7

Some C++ specific 
things still exist…



What is RNTuple

❖ It is helpful to draw contrasts between TTree and RNTuple in order to explain 

why RNTuple’s design is more “principled”

8



9

In TTree, every column the 

user sees correspond to one 

group of storage units.

If `col` is complex: squeeze 

heterogeneous data into the 

same storage unit -> bad 

compression.



❖ RNTuple’s design is more similar to Apache Parquet/Arrow(Feather):

10

In RNTuple, every column user 

sees can be composition of 

fields/columns.

This allows better compression 

efficiency and uniform schema 

composition rule.



❖ RNTuple’s design is more similar to Apache Parquet/Arrow(Feather):

11

The most challenging part is 

how to parse (for reading) or 

construct (for writing) the type 

schema.



❖ What’s special about RNTuple (short version) ✅
❖ Implementation highlights in UnROOT.jl

❖ Current status and exciting future

12

https://github.com/JuliaHEP/UnROOT.jl


Implementation highlights

We highlight some Julia features that helped implememting read & write:

1. Multiple dispatch for implementing type-space manipulations

2. Type system for providing flexible interface downstream 

13



1 - Type-space manipulation

❖ RNTuple types build up complex types via composition of a handful of basic 

types:

14



1 - Type-space manipulation

For both read & write, we implement for each “basic type” and let the dispatch 

system handle the composition.

❖ Read: assemble basic types to build complex type user sees

❖ Write: break down complex type into basic types of RNTuple

15



2. Flexible interface via Julia type system

RNTuples are just tables, and each column, no matter how complex, can be seen 

as a vector. As an I/O package, we try not to get in the way of the users:

❖ Read: shouldn’t force special data structure onto users

❖ Write: shouldn’t require users to prepare their input into a narrow set of types

16



2. Flexible interface via Julia type system

Read: since each column is just an abstract vector, and the whole RNTuple is a 

table, user is free to use any container they want:

17

User can write for-loop or use their 
favourite table-compatible ecosystem



2. Flexible interface via Julia type system

Write: anything table-like (with columns <:AbstractVector) can be ingested for 

free:

18



2. Flexible interface via Julia type system

Write: after writing, they will all result in the same normalized column

19



❖ What’s special about RNTuple (short version) ✅
❖ Implementation highlights in UnROOT.jl ✅
❖ Current status and an exciting future

20

https://github.com/JuliaHEP/UnROOT.jl


Current status

21

Read Write

Primitive types ✅ ✅
Vector ✅ ✅
Struct ✅ 🚧
Union ✅ 🚧

⚠ RNTuple v1.0.0.0 is yet to be released

What does this mean concretely?



Read: you can read basically* anything. (except byte blobs/legacy ROOT streamer)

Current status

22Example from ATLAS PHYSLITE format



Write: covers end-user analysis (private ntuple) usages such as CMS nanoAOD.

Concretely: all numerical primitive types, and Bool, String etc. As well as Vector 

of any of the primitive type (and doubly vector too etc.)

Current status

23
Converting NanoAOD from TTree to 

RNTuple in Julia; API subject to change



Exciting future

❖ Before RNTuple, UnROOT.jl has been successfully used for end-user analysis

➢ Soon first published ATLAS paper

24



Exciting future

❖ Before RNTuple, UnROOT.jl has been successfully used for end-user analysis

➢ Soon first published ATLAS paper

❖ With RNTuple, one can seamlessly implement many data pipeline steps in 

Python/Julia

25



Summary

❖ Pre-RNTuple, UnROOT.jl has only been useful for end-user analysis

❖ With RNTuple, much greater universal data compatibility between libraries

❖ Ready for experimental integration in larger data pipelines when stable 

RNTuple releases.

26



Backup

27



RNTuple is still evolving:

❖ Before delve into writing, note that RNTuple is still having breaking changes 

from time to time.

❖ A handful of breaking changes (adding/removing fields from data structure, 

adding new checksum, changing positive and negative values etc.)

❖ Expected to freeze around CHEP 2024 (in one month)

Takeaway: do not prematurely optimize our implementation.

28

https://github.com/JuliaHEP/UnROOT.jl/pull/347


RNTuple writing strategy:

❖ Writing is very different from reading, in fact, almost no code can be reused.

❖ Information flow during reading:

29



RNTuple writing strategy:

❖ For writing, you need to alternate between committing storage units to disk 

and update referential metadata:

30



RNTuple writing strategy:

❖ Often, data are too big to write in one go, so relocation of the metadata 

blocks are needed:

31



Development plan:

Breakdown the development into three phases, with incrementing level of 

completeness and automation:

1. Proof-of-concept: use as much hard-coded byte blobs as needed (#343 in 

June) ✅
2. Minimally viable for end-user: common types for analysis, large table etc. 

(#349, #356) ✅
3. “Advanced” features: All types, efficient appending, streaming etc.

32

https://github.com/JuliaHEP/UnROOT.jl/issues/336
https://github.com/JuliaHEP/UnROOT.jl/pull/343
https://github.com/JuliaHEP/UnROOT.jl/pull/349
https://github.com/JuliaHEP/UnROOT.jl/pull/356


RNTuple writing: #0

❖ Although RNTuple has specification, not everything in a .root file is. So the 

0th step is to open a hex editor and understand every single byte:

33



RNTuple writing: #1

❖ After understanding every single byte, create stubs for things.

❖ For file metadata parts without specification, reuse byte blobs.

❖ For the parts that have specification, write Julia objects and I/O to re-create 

them.

❖ Using a dynamic language helped immensely during this iterative 

development.

34



RNTuple writing: #2

❖ Using Observables.jl-like structure to keep a record on metadata object, 

when they get updated, flush updated bytes to disk.

35



Existing UnROOT.jl features:

❖ Tables.jl-compatible representation of TTrees / RNTuples

36

https://github.com/JuliaHEP/UnROOT.jl


Existing UnROOT.jl features:

❖ Transparently thread-safe

37

https://github.com/JuliaHEP/UnROOT.jl


RNTuple and reading it from Julia

❖ RNTuple is the upcoming, brand new format for storing data beginning 2025.

❖ The design is similar to some industry formats emerged in the last decade:

38Terminology translation between columnar formats



RNTuple reading: type schema

❖ Through extensive use of multiple-dispatch, manipulation in type-space is 

more modular and less error-prone when containers nest each other.

❖ For example, consider a column with eltype “vector of structs”.

❖ This involve two different containers:

➢ Vector

➢ Struct

39



RNTuple reading: type schema

❖ The “vector” by itself is encoded using “content and offset” approach:

40

“Content and offset” for jagged vector, similar to 
ArraysOfArrays.jl



RNTuple reading: type schema

❖ The “struct” by itself is encoded using “struct of arrays” approach:

41

Struct of arrays encoding, similar to StructArrays.jl



RNTuple reading: type schema

❖ The power of the design and our strategy is that they can compose freely:

42

Schema of a column with eltype “vector of structs”


