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What is Julia?

❖ Luckily, Graeme has given the plenary talk introducing Julia in the context of 

HEP:
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What is RNTuple?

❖ However, the RNTuple plenary talk is still in the future:
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Structure of this talk

❖ What’s special about RNTuple (short version)

❖ Implementation highlights in UnROOT.jl

❖ Current status and exciting future
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https://github.com/JuliaHEP/UnROOT.jl


What is RNTuple

❖ In short, RNTuple is the next-gen evolution of TTree.

❖ TTree and RNTuple both live inside .root files, but don’t share much in their 

design or implementation.

5Both are table-like objects in .root files



What is RNTuple

❖ One drawback of TTree is the lack of “specification” – which created a messy 

compatibility landscape:
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What is RNTuple

❖ In RNTuple, we can expect much more uniform compatibility thanks to 

specification-oriented design:
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Some C++ specific 
things still exist…



What is RNTuple

❖ It is helpful to draw contrasts between TTree and RNTuple in order to explain 

why RNTuple’s design is more “principled”
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In TTree, every column the 

user sees correspond to one 

group of storage units.

If `col` is complex: squeeze 

heterogeneous data into the 

same storage unit -> bad 

compression.



❖ RNTuple’s design is more similar to Apache Parquet/Arrow(Feather):
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In RNTuple, every column user 

sees can be composition of 

fields/columns.

This allows better compression 

efficiency and uniform schema 

composition rule.



❖ RNTuple’s design is more similar to Apache Parquet/Arrow(Feather):
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The most challenging part is 

how to parse (for reading) or 

construct (for writing) the type 

schema.



❖ What’s special about RNTuple (short version) ✅
❖ Implementation highlights in UnROOT.jl

❖ Current status and exciting future
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https://github.com/JuliaHEP/UnROOT.jl


Implementation highlights

We highlight some Julia features that helped implememting read & write:

1. Multiple dispatch for implementing type-space manipulations

2. Type system for providing flexible interface downstream 
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1 - Type-space manipulation

❖ RNTuple types build up complex types via composition of a handful of basic 

types:
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1 - Type-space manipulation

For both read & write, we implement for each “basic type” and let the dispatch 

system handle the composition.

❖ Read: assemble basic types to build complex type user sees

❖ Write: break down complex type into basic types of RNTuple
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2. Flexible interface via Julia type system

RNTuples are just tables, and each column, no matter how complex, can be seen 

as a vector. As an I/O package, we try not to get in the way of the users:

❖ Read: shouldn’t force special data structure onto users

❖ Write: shouldn’t require users to prepare their input into a narrow set of types
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2. Flexible interface via Julia type system

Read: since each column is just an abstract vector, and the whole RNTuple is a 

table, user is free to use any container they want:
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User can write for-loop or use their 
favourite table-compatible ecosystem



2. Flexible interface via Julia type system

Write: anything table-like (with columns <:AbstractVector) can be ingested for 

free:
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2. Flexible interface via Julia type system

Write: after writing, they will all result in the same normalized column

19



❖ What’s special about RNTuple (short version) ✅
❖ Implementation highlights in UnROOT.jl ✅
❖ Current status and an exciting future
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https://github.com/JuliaHEP/UnROOT.jl


Current status
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Read Write

Primitive types ✅ ✅
Vector ✅ ✅
Struct ✅ 🚧
Union ✅ 🚧

⚠ RNTuple v1.0.0.0 is yet to be released

What does this mean concretely?



Read: you can read basically* anything. (except byte blobs/legacy ROOT streamer)

Current status

22Example from ATLAS PHYSLITE format



Write: covers end-user analysis (private ntuple) usages such as CMS nanoAOD.

Concretely: all numerical primitive types, and Bool, String etc. As well as Vector 

of any of the primitive type (and doubly vector too etc.)

Current status
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Converting NanoAOD from TTree to 

RNTuple in Julia; API subject to change



Exciting future

❖ Before RNTuple, UnROOT.jl has been successfully used for end-user analysis

➢ Soon first published ATLAS paper
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Exciting future

❖ Before RNTuple, UnROOT.jl has been successfully used for end-user analysis

➢ Soon first published ATLAS paper

❖ With RNTuple, one can seamlessly implement many data pipeline steps in 

Python/Julia
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Summary

❖ Pre-RNTuple, UnROOT.jl has only been useful for end-user analysis

❖ With RNTuple, much greater universal data compatibility between libraries

❖ Ready for experimental integration in larger data pipelines when stable 

RNTuple releases.
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Backup
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RNTuple is still evolving:

❖ Before delve into writing, note that RNTuple is still having breaking changes 

from time to time.

❖ A handful of breaking changes (adding/removing fields from data structure, 

adding new checksum, changing positive and negative values etc.)

❖ Expected to freeze around CHEP 2024 (in one month)

Takeaway: do not prematurely optimize our implementation.
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https://github.com/JuliaHEP/UnROOT.jl/pull/347


RNTuple writing strategy:

❖ Writing is very different from reading, in fact, almost no code can be reused.

❖ Information flow during reading:
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RNTuple writing strategy:

❖ For writing, you need to alternate between committing storage units to disk 

and update referential metadata:
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RNTuple writing strategy:

❖ Often, data are too big to write in one go, so relocation of the metadata 

blocks are needed:
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Development plan:

Breakdown the development into three phases, with incrementing level of 

completeness and automation:

1. Proof-of-concept: use as much hard-coded byte blobs as needed (#343 in 

June) ✅
2. Minimally viable for end-user: common types for analysis, large table etc. 

(#349, #356) ✅
3. “Advanced” features: All types, efficient appending, streaming etc.
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https://github.com/JuliaHEP/UnROOT.jl/issues/336
https://github.com/JuliaHEP/UnROOT.jl/pull/343
https://github.com/JuliaHEP/UnROOT.jl/pull/349
https://github.com/JuliaHEP/UnROOT.jl/pull/356


RNTuple writing: #0

❖ Although RNTuple has specification, not everything in a .root file is. So the 

0th step is to open a hex editor and understand every single byte:
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RNTuple writing: #1

❖ After understanding every single byte, create stubs for things.

❖ For file metadata parts without specification, reuse byte blobs.

❖ For the parts that have specification, write Julia objects and I/O to re-create 

them.

❖ Using a dynamic language helped immensely during this iterative 

development.
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RNTuple writing: #2

❖ Using Observables.jl-like structure to keep a record on metadata object, 

when they get updated, flush updated bytes to disk.
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Existing UnROOT.jl features:

❖ Tables.jl-compatible representation of TTrees / RNTuples
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https://github.com/JuliaHEP/UnROOT.jl


Existing UnROOT.jl features:

❖ Transparently thread-safe
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https://github.com/JuliaHEP/UnROOT.jl


RNTuple and reading it from Julia

❖ RNTuple is the upcoming, brand new format for storing data beginning 2025.

❖ The design is similar to some industry formats emerged in the last decade:

38Terminology translation between columnar formats



RNTuple reading: type schema

❖ Through extensive use of multiple-dispatch, manipulation in type-space is 

more modular and less error-prone when containers nest each other.

❖ For example, consider a column with eltype “vector of structs”.

❖ This involve two different containers:

➢ Vector

➢ Struct
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RNTuple reading: type schema

❖ The “vector” by itself is encoded using “content and offset” approach:
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“Content and offset” for jagged vector, similar to 
ArraysOfArrays.jl



RNTuple reading: type schema

❖ The “struct” by itself is encoded using “struct of arrays” approach:
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Struct of arrays encoding, similar to StructArrays.jl



RNTuple reading: type schema

❖ The power of the design and our strategy is that they can compose freely:
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Schema of a column with eltype “vector of structs”


