¢

1S

RNTuple Implementation in julia

CHEP 2024 @ Krakow, Poland

Jerry Ling (Harvard University / ATLAS)
Tamas Gal (Erlangen Centre for Astroparticle Physics)

What is Julia?

% Luckily, Graeme has given the plenary talk introducing Julia in the context of
HEP:
Julia in HEP

21 Oct 2024, 11:00
® 30m
Q Large Hall

Speaker

2 Graeme A Stewart (CERN)

What is RNTuple?

% However, the RNTuple plenary talk is still in the future:

ROOT RNTuple and EOS:
O

23 Oct 2024, 11:00
® 30m
Q Large Hall

Speakers

2 Andreas Joachim Peters (CERN)
2 Jakob Blomer (CERN)

Structure of this talk

7/

% What’s special about RNTuple (short version)

7/

% Implementation highlights in UnROOT. |l

7/

% Current status and exciting future

Contributors 13

Languages

https://github.com/JuliaHEP/UnROOT.jl

What is RNTuple

% In short, RNTuple is the next-gen evolution of TTree.
% TTree and RNTuple both live inside .root files, but don’t share much in their

design or implementation.

.root file

~2000- ~2025-future

Both are table-like objects in .root files

What is RNTuple

% One drawback of TTree is the lack of “specification” — which created a messy

compatibility landscape:

What is RNTuple

% In RNTuple, we can expect much more uniform compatibility thanks to

specification-oriented design:

Some C++ specific
RN Tuple things still exist...

3rd Partc/
Read & Write

What is RNTuple

% ltis helpful to draw contrasts between TTree and RNTuple in order to explain

why RNTuple’s design is more “principled”

RA/'Tu(ale

3rd part(/
Read & Write

User sees:

colt col2

Qoluwm’s
n-th chunk

[

L]

In TTree, every column the
user sees correspond to one

group of storage units.

If ‘col’ is complex: squeeze
heterogeneous data into the
same storage unit -> bad

compression.

7/

User sees:

'Tv./pe_ schema:

Reldt Belda Beld

_______________ ::/_"""I,'-T\‘""—"\y“;::\;"_""_

VN Beldd felds

coll colz cold :

1 | | y \y

: : ! ch‘(col5
R S A S

[| L

| 1 []

| |

% RNTuple’s design is more similar to Apache Parquet/Arrow(Feather):

In RNTuple, every column user
sees can be composition of

fields/columns.

This allows better compression
efficiency and uniform schema

composition rule.

10

7/

% RNTuple’s design is more similar to Apache Parquet/Arrow(Feather):

&
M T .
I Reldl felda Feld3 I
| T A i v—:*::A-I- ------- I The most challenging part is
: o VN Beldd HKelds .
IType schemai i col2 col3 X ! ' how to parse (for reading) or
I 1 | ! \:/ \y I L
| | o cold ¢°|'5 ; construct (for writing) the type
- -_'__-__'__-__'__-__'_5:_'_:_:"_:_‘:__-_:__-_5:__-_:__—\;::_:: .= schema.
S‘torage, v ! é l -
0
L 2 =
| [
| || L
_ 1]
| |

11

% What’s special about RNTuple (short version)
% Implementation highlights in UnROQOT.||

% Current status and exciting future

https://github.com/JuliaHEP/UnROOT.jl

Implementation highlights

We highlight some Julia features that helped implememting read & write:

1. Multiple dispatch for implementing type-space manipulations

2. Type system for providing flexible interface downstream

13

1 - Type-space manipulation

7/

% RNTuple types build up complex types via composition of a handful of basic
types:

Boasic types in schema

i

User-Facing

Vector

.) : n Complex data
:_com(ao&t\of_% structure

Struct

=

1 - Type-space manipulation

For both read & write, we implement for each “basic type” and let the dispatch

system handle the composition.

7/

% Read: assemble basic types to build complex type user sees

7/

% Write: break down complex type into basic types of RNTuple

VectorField{0O, T}
offset_col::0
content_col::T

StructField{N, T}
content_cols::T

isvoid(::Type{StructField{N,T}}) {N,T}
isvoid(T)

isvoid(::Type{VectorField{N,T}}) {N,T} = isvoid(T)

parse field(field id, field IECOIdS, column IECOIdS, parse_field(field_id, field_records, column_records, alias_columns

= 5 % element_ids = findall(field_records) field
offset_col = _search_col_type(field_id, column_records, a Fiald parant Fieldlidi==)fiaid id

2. Flexible interface via Julia type system

RNTuples are just tables, and each column, no matter how complex, can be seen

as a vector. As an I/O package, we try not to get in the way of the users:

7/

% Read: shouldn’t force special data structure onto users

NS

% Write: shouldn’t require users to prepare their input into a narrow set of types

16

2. Flexible interface via Julia type system

Read: since each column is just an abstract vector, and the whole RNTuple is a

table, user is free to use any container they want:

Query style
1 using Query, DataFrames
For-loop style § o e
1 @threads for event in myTree Tom event ln Ty ree begiln
2 hist = Hist1D(Float64; bins = 70:5:110) TG s engEn(exent ot pt)
3 best_mass = Inf 5 @Where_NJets > 6
4 Z_m = 91.2 #GeV 6 @let Njets40 = sum(evt.Jet_pt .> 40)
5 for i in idxs j in (i+1):last(idxs) 7 @select {Njets, Njets40, event.MET_pt}
6 Lv_i = le;’) tlvs[i] ' 8 @collect DataFrame
. -, - 9 end
7 PID_i = lep_pids[i]

User can write for-loop or use their
favourite table-compatible ecosystem

2. Flexible interface via Julia type system

Write: anything table-like (with columns <:AbstractVector) can be ingested for

free:

[f1,21, [2,3,4]];

[Eli> 2 2]

VectorOfVectors([1:2, 2:4]);

about (x)
2-element VectorOfVectors{Int64, Vector{Int64}, Vector{Int64}, Vector{Tuple{}}}
Memory footprint: 24B directly (referencing 272B in total)
data: :Vector{Int64} 8B [l e 22e
elem_ptr::Vector{Int64} 8B [1, 3, 6]
kernel size::Vector{Tuple{}} 8B EQ) 5 O

18

2. Flexible interface via Julia type system

Write: after writing, they will all result in the same normalized column

UnROOT.write_rntuple(open("./test.root", "w'"), newtable;)

LazyTree("./test.root", "myntuple'")
X

19

% What’s special about RNTuple (short version)
% Implementation highlights in UnROQT. ||

% Current status and an exciting future

https://github.com/JuliaHEP/UnROOT.jl

Current status

I\, RNTuple v1.0.0.0 is yet to be released

Read Write
Primitive types
Vector
Struct vt
Union st

What does this mean concretely?

21

Current status

Read: you can read basically* anything. (except byte blobs/legacy ROOT streamer)

Symbol("AntiKt4TruthwzJetsAux:") Struct
|- :m = Vector

:offset
L :content = L

Vector

o

:phi Vector

P

Leaf{UnROOT.Index6 ,J,: (col 1,37)
Vector

Example from ATLAS PHYSLITE format

22

Current status

Write: covers end-user analysis (private ntuple) usages such as CMS nanoAQOD.

Concretely: all numerical primitive types, and Bool, String etc. As well as Vector

of any of the primitive type (and doubly vector too etc.)

tl = LazyTree("./test/samples/NanoAODv5_sample.root", "Events');

UnROOT.write_rntuple(open('"./nanoAOD_rnt.root", '"w"), t1;)
LazyTree("./nanoAOD_rnt.root", "myntuple");

isequal(DataFrame(tl), DataFrame(t2))

Converting NanoAOD from TTree to
RNTuple in Julia; API subject to change

23

Exciting future

% Before RNTuple, UnROOT.|l has been successfully used for end-user analysis
> Soon first published ATLAS paper

s (=

ATLAS RAW AOD

DAOD private ntuple

non-ROOT

/

il

1o

24

Exciting future

% Before RNTuple, UnROOT.|l has been successfully used for end-user analysis
> Soon first published ATLAS paper
s With RNTuple, one can seamlessly implement many data pipeline steps in

Python/Julia =
g —
e ROOT—>> =Python‘?—>%7julia?—%%,

ATLAS RAW AOD DAOD /Sklm DAOD

<your ecosystem>

~

[l

25

Summary

% Pre-RNTuple, UnROOQT.jl has only been useful for end-user analysis
s With RNTuple, much greater universal data compatibility between libraries

% Ready for experimental integration in larger data pipelines when stable

RNTuple releases.

26

Backup

27

RNTuple is still evolving:

% Before delve into writing, note that RNTuple is still having breaking changes

from time to time.

% A handful of breaking changes (adding/removing fields from data structure,
adding new checksum, changing positive and negative values etc.)

% Expected to freeze around CHEP 2024 (in one month)

Takeaway: do not prematurely optimize our implementation.

28

https://github.com/JuliaHEP/UnROOT.jl/pull/347

RNTuple writing strategy:

% Writing is very different from reading, in fact, almost no code can be reused.

% Information flow during reading:
‘o'v./te,s in o Bile

==L DAL
|

1. read schema 3. read storage units

)

=N

S i i 0

2. read metadata

29

RNTuple writing strategy:

s For writing, you need to alternate between committing storage units to disk

and update referential metadata:

‘ot/te_s n o Ble

J— S _

!

: header , footer
I

" |

/ ™

1. write schema . write metadata stub

3. commit data to disk
q, upda‘te reference
30

RNTuple writing strategy:

% Often, data are too big to write in one go, so relocation of the metadata

blocks are needed:

'.-.at/te_s n a file
(}: o)
: header | : IS : footer :
\‘ Re——— - J L L]. II] BRI . o e m = - /l
3. commit data to disk /\
4. wore doata to disk

5. relocate & update
metadata
31

Development plan:

Breakdown the development into three phases, with incrementing level of

completeness and automation:

1. Proof-of-concept: use as much hard-coded byte blobs as needed (#343 in

June)

2. Minimally viable for end-user: common types for analysis, large table etc.
(#349, #356)

3. “Advanced” features: All types, efficient appending, streaming etc.

32

https://github.com/JuliaHEP/UnROOT.jl/issues/336
https://github.com/JuliaHEP/UnROOT.jl/pull/343
https://github.com/JuliaHEP/UnROOT.jl/pull/349
https://github.com/JuliaHEP/UnROOT.jl/pull/356

RNTuple writing: #0

% Although RNTuple has specification, not everything in a .root file is. So the

Oth step is to open a hex editor and understand every single byte:

. <HEN

HEIREE

% X

oo oo

3

<
L)
=
L3
9
<
S
L3
)
<
=
L)
)
<
=
L3
<
L)
oy
b3
9
<
Y
L)

o000 B0 000

RNTuple writing: #1

% After understanding every single byte, create stubs for things.
% For file metadata parts without specification, reuse byte blobs.
% For the parts that have specification, write Julia objects and I/O to re-create

them.

% Using a dynamic language helped immensely during this iterative

development.

34

RNTuple writing: #2

% Using Observables.jl-like structure to keep a record on metadata object,

when they get updated, flush updated bytes to disk.

!:t/te_s in a Ble

Y M 2 Tl B TR s T B F‘ N
.' AL |
| header 1 e, : footer |
\ i | | l
N~ . L | (L | Bl _ BRI /

= \

3. commit data to disk

4. more data to disk
5. re_loca‘te_ L upda‘te

metadata
35

Existing UnROOT.|l features:

% Tables.jl-compatible representation of TTrees / RNTuples

julia> mytree LazyTree(f, "Events", ["Electron_dxy", "nMuon", r"Muon_(pt|eta)$"])
Row | Electron_dxy nMuon Muon_pt Muon_eta
| SubArray{Float3 UInt32 SubArray{Float3 SubArray{Float3
1 0.00037: 0 [] []
2 [1£9°9, 15531 [6.53, 0.229]
0 [] []
[-0.00157] 0 [] []

[] (]

[-1.13, 1.98]

0.00617] 0 [] []

|

|

|

|

| [] 0 (] []
| T") :’ N

|

|

|

992 rows omitted

36

https://github.com/JuliaHEP/UnROOT.jl

Existing UnROOT.|l features:

% Transparently thread-safe

evt events @threads evt events
evt.Elec_4vector e evt.Elec_4vector

e.pt > lQ.O e.pt > 10.0
push! (hist_elec_eta, e.eta) atomic_push! (hist_elec_eta, e.eta)

37

https://github.com/JuliaHEP/UnROOT.jl

RNTuple and reading it from Julia

% RNTuple is the upcoming, brand new format for storing data beginning 2025.

% The design is similar to some industry formats emerged in the last decade:

RNTuple Parquet Arrow /Feather

field column field
column - array
cluster row group row group

page list column chunk record batch
page page buffer

Terminology translation between columnar formats

RNTuple reading: type schema

% Through extensive use of multiple-dispatch, manipulation in type-space is
more modular and less error-prone when containers nest each other.
% For example, consider a column with eltype “vector of structs”.

< This involve two different containers:

> \ector

> Struct

39

RNTuple reading: type schema

% The “vector” by itself is encoded using “content and offset” approach:

- - - - - —— -

User sees: ary = [[12 1’-1] [1, [17, 19, 21]1]

What's actually stored:

content = [12, 14, 17, 19, 21]
offset = [0, 2, 2, 5]

ary[0] = content[0:2] = [12, 14]

“Content and offset” for jagged vector, similar to
ArraysOfArrays.jl

RNTuple reading: type schema

% The “struct” by itself is encoded using “struct of arrays” approach:

user: vec_lv[1l] - LV{pt: 130, eta: 0.4, phi: 2.1, mass: 500}

‘ vec_lv /l\

! pt: '[130 '180 1u0]J
| |

‘eta:[04|12 oeﬂ
I

[phl:[21 1.3, 02])
[}

I |
Elass.: [500; 200, 130]]

| E——

Struct of arrays encoding, similar to StructArrays.jl

RNTuple reading: type schema

% The power of the design and our strategy is that they can compose freely:

offset

6 vec_1lvs y

pt content

eta content

— phi content

- mass content

Schema of a column with eltype “vector of structs”

