
EDM4hep.jl: Analyzing EDM4hep files with Julia

Pere Mato, CERN (pere.mato@cern.ch)

EDM4hep[1] aims to establish a standard event data model for the store and
exchange of event data in future HEP experiments, thereby fostering
collaboration across various experiments and analysis frameworks. The Julia
package EDM4hep.jl can generate Julia-friendly structures for the EDM4hep
data model and reading event data files in ROOT format (either TTree or
RNTuple) that are written by C++ programs, utilising the UnROOT.jl package [2].

Abstract

• The Julia package EDM4hep.jl[4] is registered in the Julia general registry and ready for use!

• Demonstrated how data analysis can be streamlined using high-level objects, offering a
more intuitive and structured approach compared to flat n-tuples, all within a single,
consistent and fast programming language.

Conclusions

Provided a simple interface for reading data files:
• EDM4hep files can be local or remote (e.g. root://eospublic.cern.ch/...)
• Single or multiple files
• Sequential and multi-threaded access

Reading Interface

• Sequential performance is pretty good compared to FCCAnalyses framework
(Python+C++) with the higgs/mH-recoil/mumu example
• ~21000 events/s compared with ~9500 events/s

• MT scalability is not great
• Performance peak is reached with 8 cores (probably due to the garbage

collector adding serial execution)

Results

EDM4Hep is based on the PODIO edm-toolkit [3]. It uses yaml-files to define
Event Data Model (EDM) data structures covering the simulation, digitalization,
reconstruction and analysis domains.

A set of Python/Jinja scripts generate C++ code
in three layers:
• POD layer - the actual data in array of structs
• Object layer - add relations and vector members
• User layer - thin handles and collections

For Julia, a single layer is generated with
immutable ‘user-friendly’ structures

The default I/O backend is ROOT (TTree/RNtuple)

Introduction

"""
struct MCParticle

Description: The Monte Carlo particle - based on the lcio::MCParticle.
"""
struct MCParticle <: POD

index::ObjectID{MCParticle} # ObjectID of itself
#---Data Members
PDG::Int32 # PDG code of the particle
generatorStatus::Int32 # status of the particle as defined by the ...
simulatorStatus::Int32 # status of the particle from the simulation ...
charge::Float32 # particle charge
time::Float32 # creation time of the particle in [ns] wrt. ...
mass::Float64 # mass of the particle in [GeV]
vertex::Vector3d # production vertex of the particle in [mm].
endpoint::Vector3d # endpoint of the particle in [mm]
momentum::Vector3f # particle 3-momentum at the production vertex..
momentumAtEndpoint::Vector3f # particle 3-momentum at the endpoint in [GeV]
spin::Vector3f # spin (helicity) vector of the particle.
colorFlow::Vector2i # color flow as defined by the generator

#---OneToManyRelations
parents::Relation{MCParticle,1} # The parents of this particle.
daughters::Relation{MCParticle,2} # The daughters this particle.

end

Reading EDM4hep files is done using the UnROOT.jl package. It supports
(transparently) TTree and RNTuple formats and several versions of PODIO.

Data files consist exclusively of ‘collections-of-datatypes’ (e.g.
ReconstructedParticles, Vertices, etc.) identified by a ’collection-name’

The goal is to obtain a StructArray{DataType} of each collection for each event.
SoA storage model in memory. Very efficient for columnar operations.

The exercise consists in mapping the schema in the ROOT file to the actual Julia
datatype (using the Julia introspection and/or generated code)

Reading EDM4hep ROOT files

p1 = MCParticle(PDG=2212, mass=0.938, momentum=(0.0, 0.0, 7000.0), generatorStatus=3)
p2 = MCParticle(PDG=2212, mass=0.938, momentum=(0.0, 0.0, -7000.0), generatorStatus=3)

p3 = MCParticle(PDG=1, mass=0.0, momentum=(0.750, -1.569, 32.191), generatorStatus=3)
p3, p1 = add_parent(p3, p1)
...

julia> mcps = <get all MCParticle collection>

julia> typeof(mcps[1]) # get the first element
MCParticle

julia> length(mcps.charge) # mcps.charge is a Vector{}
211

julia> mcps[1:2].momentum # slicing
2-element StructArray(…) with eltype Vector3f:
(0.5000167,0.0,50.0)
(0.5000167,0.0,-50.0)

julia> sum(mcps[1:2].momentum) # columnar operations
(1.0000334,0.0,0.0)

Objects are ‘materialised’ when requested (usually on the stack) to be able to call
user object methods accepting these type as arguments (multiple-dispatch)

using EDM4hep
using EDM4hep.RootIO

reader = RootIO.Reader(“ttbar_edm4hep_digi.root”)
events = RootIO.get(reader, "events")

evt = events[1];

hits = RootIO.get(reader, evt, "InnerTrackerBarrelCollection")
mcps = RootIO.get(reader, evt, "MCParticle")

for hit in hits
println("Hit $(hit.index) is related to MCParticle $(hit.mcparticle.index)
with name $(hit.mcparticle.name)")

end

#---Loop over events---
for (n,e) in enumerate(events)

ps = RootIO.get(reader, e, "MCParticle")
println("Event #$(n) has $(length(ps)) MCParticles with a charge sum of

$(sum(ps.charge))")
end

Hit #1 is related to MCParticle #65 with name pi+
Hit #2 is related to MCParticle #65 with name pi+
Hit #3 is related to MCParticle #65 with name pi+
Hit #4 is related to MCParticle #65 with name pi+
Hit #5 is related to MCParticle #66 with name pi-
Hit #6 is related to MCParticle #66 with name pi-
Hit #7 is related to MCParticle #66 with name pi-
Hit #8 is related to MCParticle #49 with name pi+
Hit #9 is related to MCParticle #49 with name pi+
...

~ 1500 times faster than Python interface

Developed mini-framework to ensure thread safety
• The user defines a data structure and an analysis function
• Each thread works on a subset of events using its own copy of the output data
• At the end, the results are ‘summed’ automatically

Multi-threaded Analysis

function myanalysis!(data::MyData, reader, events)
for evt in events

data.pevts += 1 # count process events
μIDs = RootIO.get(reader, evt, "Muon_objIdx")# get the ids of muons
length(μIDs) < 2 && continue # skip if less than 2

recps = RootIO.get(reader, evt, "ReconstructedParticles")
muons = recps[μIDs] # use the ids to subset

sel_muons = filter(x -> pₜ(x) > 10GeV, muons) # select the Pt of muons
zed_leptonic = resonanceBuilder(91GeV, sel_muons)
zed_leptonic_recoil = recoilBuilder(240GeV, zed_leptonic)
if length(zed_leptonic) == 1 # filter exactly one Z

Zcand_m = zed_leptonic[1].mass
Zcand_recoil_m = zed_leptonic_recoil[1].mass
Zcand_q = zed_leptonic[1].charge
if 80GeV <= Zcand_m <= 100GeV # select on mass Z

push!(data.df, (Zcand_m, Zcand_recoil_m, Zcand_q))
data.sevts += 1 # count selected events

end
end

end
return data

end

events = RootIO.get(reader, “events")
mydata = MyData()
do_analysis!(mydata, myanalysis!, reader, events; mt=true)
mydata holds the summed results of the data analysis

mutable struct MyData <: AbstractAnalysisData
df::DataFrame
pevts::Int64
sevts::Int64
MyData() = new(DataFrame(...), 0, 0)

end

If not all the attributes are needed, the user can define customized getters
with a subset of attributes to optimize reading

get_μIDs = RootIO.create_getter(reader, "Muon_objIdx")
get_recps = RootIO.create_getter(reader, "ReconstructedParticles";

selection=[:energy,:momentum,:charge,:mass])

function myanalysis!(data::MyData, reader, events)
for evt in events

μIDs = get_μIDs(evt)
length(μIDs) < 2 && continue # skip if less than 2

recps = get_recps(evt)
muons = recps[μIDs] # use the ids to subset the reco particles

...
end

end

julia -e ‘import Pkg; Pkg.add(“EDM4hep”)’

[1] EDM4hep - https://github.com/key4hep/EDM4hep
[2] UnROOT.jl - https://github.com/JuliaHEP/UnROOT.jl
[3] PODIO - https://github.com/AIDASoft/podio
[4] EDM4hep.jl - https://github.com/peremato/EDM4hep.jl

https://github.com/key4hep/EDM4hep
https://github.com/JuliaHEP/UnROOT.jl
https://github.com/AIDASoft/podio
https://github.com/peremato/EDM4hep.jl

