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Message-Passing Graph Neural Network (MPGNN)
Classical Machine Learning
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1. Message Passing

2. Node Aggregation

4. Graph Aggregation

1. Message Passing: Compute the information for 
each particle pair through some parametrized 
transformation.


2. Node Aggregation: Aggregate the transformed 
information for each particle. Typically element-
wise summation  permutation-invariant


3. Repeat step 1 & 2 for several times (optional).


4. Graph Aggregation: Aggregate the information of 
all particles.

⟺

3. Repeat steps 1 & 2
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• Deep Sets Theorem (arXiv 1703.06114) : A function (model)  is permutation-invariant over a 

set  (particles) if and only if  for some suitable transformations  and .


• The Message-Passing Graph Neural Network (MPGNN) obeys the Deep Sets Theorem, and is 
usually written as: 


f

X f(X) = g ∑
xi∈X

h(xi) g h

x(k)
i = γ(k) x(k−1)

i , ⨁
j∈𝒩(i)

ϕ(k)(x(k−1)
i , x(k−1)

j , eij)

Deep Sets Theorem and MPGNN
Classical Machine Learning
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Aggregation function

(MEAN, SUM, MAX, etc.)
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Quantum Machine Learning
Variational Quantum Circuit
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QCGNN
Quantum Complete Graph Neural Network
Suppose we have  particles with features . We 
prepare a quantum circuit with  qubits where


•  is the number of qubits in the index register ( ) 

•  is the number of qubits in the network register ( ) 

The initial quantum state is initialized as  

 

If , then we can simply use Hadamard gates. Otherwise, one 
should use some Uniform State Oracle (USO) to prepare the state.

N {xi | 0 ≤ i ≤ N − 1}
nI + nQ

nI = ⌈log2 N⌉ IR

nQ NR

|ψ0⟩ =
1

N

N−1

∑
i=0

| i⟩ |0⟩⊗nQ

N = 2nI
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Uniform State Oracle
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QCGNN
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The QCGNN quantum circuit of a 3-particle jet, with  and .nI = 2 nQ = 4

Quantum Circuit

|ψ⟩ =
1

N

N−1

∑
i=0

|xi,θ⟩
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Measurement
QCGNN The quantum state before measurement is 


Consider a Hermitian matrix  with dimension  full of ones, i.e.,


 . 


Denote the observables on NR as P, then 


|ψ⟩ =
1

N

N−1

∑
i=0

|xi, θ⟩

J 2nI × 2nI

J =
1 . . . 1. .. .. .
1 . . . 1

= (I + X)⊗nI

⟨ψ |J ⊗ P |ψ⟩ =
1
N ∑

i<N
∑
j<N

⟨xi; θ |P |xj; θ⟩
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Similar to MPGNN, with 
automatic aggregation.
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QCGNN
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Gate and Computational Complexity

 gates

and circuit depth
O(log2 N)

Additional  ancilla 

qubits and Toffoli gates

O(log2 N)

 Pauli-string

observables

O(N)

When  is large and the parametrized gates are deep comparing to encoding gates, QCGNN 
only needs  computations, while classical MPGNN requires  computations!

N
O(N) O(N2)

Assuming Deep VQC
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Jet Dataset
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• Top-Taggers (arXiv 1902.09914) 

• Top v.s. Gluon / Light Quarks 


• Jet 


• Pythia / Delphes (ATLAS)


• FastJet with 

pT ∈ [550,650]GeV

R = 0.8

• JetNet (arXiv 2106.11535) 

• Multi-class 


• Jet 


• MadGraph / Pythia


• FastJet with 

{g, q, t, W, Z}

pT ∼ 1TeV

R = 0.8

zi ≡
pTi

pTjet

Only the 30 highest  particles are providedpT
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Training Results
AUC and Accuracy
• Each training process was conducted with 5 different random seeds and 30 epochs. 


• Each class has 25K training samples, 2.5K validation samples, and 2.5K testing samples.


• The number of particles of jets lies between 4~16  At most  qubits for IR is needed.


• The performance of the state-of-the-art classical models is also presented.

⟹ nI = 4
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1

Model
Top Dataset (2 classes) JetNet Dataset (5 classes)

# params AUC Accuracy # params AUC Accuracy
Particle Transformer 2.2M 0.946±0.005 0.868±0.009 2.2M 0.889±0.002 0.656±0.006
Particle Net 177K 0.953±0.003 0.885±0.006 178K 0.896±0.003 0.669±0.004
Particle Flow Network 72.3K 0.954±0.004 0.885±0.005 72.7K 0.900±0.003 0.675±0.005
MPGNN - nM = 64 13K 0.961±0.003 0.896±0.003 13.3K 0.903±0.002 0.683±0.007
MPGNN - nM = 6 255 0.924±0.006 0.866±0.006 323 0.865±0.004 0.615±0.010
MPGNN - nM = 3 126 0.922±0.005 0.864±0.006 194 0.757±0.110 0.475±0.141
QCGNN - nQ = 6 201 0.932±0.004 0.868±0.005 269 0.822±0.003 0.543±0.006
QCGNN - nQ = 3 99 0.919±0.006 0.864±0.005 167 0.796±0.009 0.505±0.014

State-of-the-art 
classical models

Classical models for 
benchmarking

QCGNN with 
 and  

(On simulators)
nQ = 3 nQ = 6
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IBMQ Results
Noise Extrapolation
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• The training of QCGNN is done with simulators.


• The pre-trained QCGNN is tested on ibm_brussels.
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Summary
In the task of jet discrimination, a set, or equivalently a complete graph serves as a natural 
representation. MPGNN provides a natural way to design permutation-invariant model.


Motivated by the MPGNN, we propose a VQC based model QCGNN. If the parametrized 

gates are deep enough, the cost of QCGNN only scales as , while classical MPGNN 

requires . 

QCGNN has also been tested on IBMQ real quantum devices. However, due to noise in the 
quantum circuits, information transmission was unsuccessful.


As the quantum computers becoming more robust in the future, the potential for quantum 
advantage of the QCGNN can be studied.

O(N)
O(N2)
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Backup Slides
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Dataset
Top Tagging (arXiv 1902.09914)
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Dataset
JetNet (arXiv 2106.11535)
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Particle Flow Network
arXiv 1810.05165
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Motivated by the Deep Set Theorem



October 19-25, 2024 CHEP Conference

Uniform State Oracle
arXiv 2306.11747
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Quantum circuit for generating a 
13-basis uniform state: 

|ψ⟩ =
1

13

12

∑
i=0

| i⟩
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VQC Ansatz
PennyLane
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qml.StronglyEntanglingLayersqml.BasicEntanglerLayers
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Model Setup
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Noise
Simulated with PennyLane
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qml.DepolarizingChannel qml.GeneralizedAmplitudeDamping
Data Encoding

VQC

Data Encoding

VQC

Noise

Noise

Noise

Noise
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IBMQ Results
Runtime of Quantum Gates

• The gate runtime experiment is conducted with two different IBMQ backends for 10 times.


•  and  are the time for encoding and parametrized gates respectively.TENC TPARAM

22

1

IBMQ Backend N TENC TPARAM

ibm nazca
2 2.567 0.209
4 5.352 0.197
8 10.551 0.219

ibm strasbourg
2 2.595 0.217
4 5.416 0.197
8 11.085 0.211

Scales as O(N)

Constant time O(1)
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Parameter Shift Rule
arXiv 1905.13311

• Consider a VQC output , where  is some Hermitian operator of 
observable and  with some Hermitian operator .


• If  has two unique eigenvalues  and , the gradient can be calculated by


f(θ) = ⟨ψ |U†
G(θ)AUG(θ) |ψ⟩ A

UG(θ) = e−iaθG G

G e0 e1

d
dx

f(x) = r [f(θ +
π
4r

) − f(θ −
π
4r

)] with r =
a
2

(e1 − e0)
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Barren Plateau
arXiv 2309.09342
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