

GENERATIVE MACHINE LEARNING FOR FAST SILICON DETECTOR SIMULATION

CHEP 2024, Track 5 - Simulation and analysis tools October 21, 2024

Co-funded by the European Union

Tadej Novak Jožef Stefan Institute

THE NEED FOR MONTE CARLO SIMULATION

- A large part of the LHC physics programme relies on accurate Monte Carlo simulation of collision events.

 - every single particle needs to be simulated detailed (full) detector response simulation most intensive
- Producing simulated samples \rightarrow majority of experiments' CPU requirements
 - CMS used 85% CPU for Monte Carlo production during 2009-2016
 - half spent detector simulation

• Current methods do not scale with HL-LHC data rates and more aggressive R&D is needed.

7

- Large efforts to speed-up simulation fast simulation.
 - Detector response to a particle is parameterised. •
- Fast simulation for particle physics successfully applied at calorimeter level.
 - Generative neural networks also used.
 - Order of magnitude speed-up achieved.
- ATLAS tracking detectors fast simulation not production-ready yet.
 - Machine learning target of this project.

TADEJ NOVAK · TRANSFORMERS FOR SILICON DETECTOR SIMULATION · CHEP 2024

OPEN DATA DETECTOR

- A generic, HL-LHC style tracking detector.
- Each sensor split into multiple readout channels.
 - Can be described as a 2D surface.
- Goal to be reasonably close to a real-world detector.
 - Loosely modelled after the ATLAS ITk (58700 sensors, ~5 billion electronic channels).
- Ensures the ability to generalise R&D projects for silicon tracking detectors.

Source: The Open Data Detector Tracking System

- Transformers commonly used with sequential data (most commonly LLMs), see 1706.03762.
- Using decoder-only architecture.
 - Input/output data are the same.
 - Target to predict the next element of the sequence.
 - The well known example are the GPT family of models.
- Specialised on discrete sequences which are tokenised (sequential integers).
 - Can be anything e.g. words, detector modules, ...
- For this application all continuous data is discretised (rounded to two decimal points) and each feature is tokenised separately.

Source: Cameron R. Wolfe

ntion	

DATA REPRESENTATION OF SILICON DETECTORS SIMULATION

- - particle ID + geometry ID
 - particle momentum (after the hit)
 - hit position on the sensitive detector (local)
- Each hit is an element of a sequence, each particle has its own sequence.
- Local coordinates taken to constrain hits on the sensitive parts and prevent them happening in the vacuum.

TADEJ NOVAK · TRANSFORMERS FOR SILICON DETECTOR SIMULATION · CHEP 2024

• A sequence of detector hits.

• With additional start and end "virtual hit" to describe input and output state with the same data structure.

• 7 features per hit:

TRAINING & INFERENCE SETUP

- Sample details:
 - single muons, 70 < p_T < 90 GeV, 0.
 - 320000 events
 - training : validation : test = 2 : 1 :
 - augmented with random number 1 and 10000
- Training performed on the Vega H 4x NVIDIA GeForce A100 40GB GPU
 - model size: 30.4 M parameters
 - duration: ~6 days
- Learning rate variation using cosir with warm restarts with a period c and fixed amplitude.
- Inference: most probable next seq
 - ~8 s / 10k particles on a single A1

	input dime
05 < 1/ < 0.25	layers
1 rs between	heads
	feedforward
	activatio
	dropou
PCUSINg	
•	_ • • _
	Training Para
	Training Para epochs
	Training Para epochs optimiz
ne annealing	Training Para epochs optimiz learning i
ne annealing of one epoch	Training Para epochs optimiz learning i weight de
ne annealing of one epoch	Training Para epochs optimiz learning i weight de gradient cli
ne annealing of one epoch quence element	Training Para epochs optimiz learning i weight de gradient cli batch si

Model Parameter	Val
input dimension	25
layers	
heads	L
feedforward dim.	10
activation	GE
dropout	0

Training Parameter	Va
epochs	150
optimizer	Ada
learning rate	0.0
weight decay	0.
gradient clipping	5
batch size	24

October 21, 2024

RESULTS: SIMULATION (1)

ADEJ NOVAK · TRANSFORMERS FOR SILICON DETECTOR SIMULATION · CHEP 2024

RESULTS: SIMULATION (2)

- Global coordinates show good agreement describing complex detector structure.
- Larger deviations in tails of the *z*-coordinate due to lower statistics.

TADEJ NOVAK · TRANSFORMERS FOR SILICON DETECTOR SIMULATION · CHEP 2024

October 21, 2024 9

- Each event gets assigned a random integer between 1 and 10000, both at training and inference.
- Coordinates smeared around the true value — generative nature of the model is achieved.

October 21, 2024 10

RESULTS: TRACKING

- Evaluating performance using the ACTS (A Common Tracking Software) framework.
 - Default test setup for the Open Data Detector.
- Seeding efficiency only ~82 % compared to 99 % for full simulation.
 - Rounding has no significant effect on the reference sample.
 - Hit displacement from the estimated helix is too large.
 - Threshold defined by the maximum allowed multiplescattering effect.

RESULTS: TRACKING

- Evaluating performance using the ACTS (A Common Tracking Software) framework.
 - Default test setup for the Open Data Detector.
- Seeding efficiency only ~82 % compared to 99 % for full simulation.
 - Rounding has no significant effect on the reference sample.
 - Hit displacement from the estimated helix is too large.
 - Threshold defined by the maximum allowed multiplescattering effect.

• Transformers can describe a sequence of physics data very well. • But the results are too random at the moment, needs optimisation. Training relatively long, but inference is fast.

- Future plans:
 - Optimise the current setup for better tracking performance.
 - Try to describe continuous features with floating point numbers.
 - Try proper generative sampling of a transformer.

TADEJ NOVAK · TRANSFORMERS FOR SILICON DETECTOR SIMULATION · CHEP 2024

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101081355.

The operation (SMASH project) is co-funded by the Republic of Slovenia and the European Union from the European Regional Development Fund.

Co-funded by the European Union

TADEJ NOVAK · TRANSFORMERS FOR SILICON DETECTOR SIMULATION · CHEP 2024

October 21, 2024 14

STRUCTURE OF THE ITK

Pixel detectors

- 2D silicon detectors
- 5 barrel, 9 endcap layers
- 9164 modules
- up to 614400 readout channels per module

TADEJ NOVAK · TRANSFORMERS FOR SILICON DETECTOR SIMULATION · CHEP 2024

Source: <u>ATL-PHYS-PUB-2021-024</u>

Strip detectors

- 1D silicon detectors
 - double-modules with 90° rotation to gain 2D detection
- 4 barrel, 6 endcap layers
- 49536 modules
- up to 1536 readout channels per module

