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Challenges of Event Simulation for HEP

¢

¢

Event simulation employs a large fraction of the CPU

budget for LHC experiments

)

Billions of events needed for the analysis

High Luminosity LHC challenge

)

Larger number of events and more granular
detector will make the simulation even more
expensive
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End-to-End Simulation

Detector Simulation

Phsics Process Genersor (GET based + Faster simulation is needed
| > Maintaining high accuracy
‘ (within typical data/sim
agreement)
> Not analysis/process
end-to-end conventional speciﬂc
+ End-to-end event simulation

> Generator output as starting
: point
| > Direct production of
high-level analysis objects
Analysis Dataset Reconstruction .
Algorthms (jets, muons, etc.)




Generative Models for Faster Simulation

Draw a realistic picture of Krakéw during October

nts

Normalized cou

¢

¢

Generative Models are well-suited for end-to-end
simulation
> Ability to learn target probability distribution
conditioned on physical information

p(Reco|Gen)

> Fastinference (GPU)
> Constantly evolving
Key requirements for HEP
> Preservation of statistical properties of the
distribution



Normalizing Flows: Key Concepts
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¢+ Thetask is to sample from an unknown pdf ¢ The flow is defined by the push-forward equation
> Invertible transformation (flow) is applied to
Gaussian noise = flz)
> Theinverse transformation is learned in the dz
training process Pa(x) = p2(2) det dr

¢ The flow can be a Neural Network



Discrete Flows

¢  The flow must be easily invertible
> Analytic inverse
> Tractable Jacobian
+ Composition of a finite number of simple transformations
> Affine transforms or splines
> Variables transformed to have a (block) triangular Jacobian
(autoregressive or coupling architectures)
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https://arxiv.org/abs/1912.02762
https://ehoogeboom.github.io/post/en_flows/

Continuous Flows

N
DA

Adapted from https://ehoogeboom.qithub.io/post/en_flows

+ Exact Density Estimation

The flow is defined by a continuous parameter
> Time-dependent flow satisfying the following ordinary
differential equation (ODE)

d
{dtmw — 0 (fi(2)
Jo(z) =z

> The vector field v,is modeled with a neural network
> Integration on path during inference

1
:c:z+/ ve(2) dt
0

> Invertibility maintained at each point along the path

+ Training challenges
> ODE numerical solutions
> v,modelling


https://ehoogeboom.github.io/post/en_flows/

Conditional Flow Matching

+ Probability Density Path (arbitrary)

pi—o(2) = Gaus(z)

Pu(2) pi=1(z) = Target pdf

) u,is the associated vector field
+ Conditional Flow Matching
>  Probability path per-example x
> Regression of u, with the neural
network v,

Lorm = Bt g(a).po 210y |06 (2) — ue(2|2) )

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

e Prior sample z(S)

Taken from
https://github.com/atong01/conditional-flow-matching

+ (Gaussian Probability Path

)

More regular trajectories and
much easier to train

pi(z|z) = Gaus(z;t2, 1 — (1 — Oumin)?)

ug(z|x) =

x— (1 —omin)z
1-— (1 — Umin)t



https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://github.com/atong01/conditional-flow-matching

Dataset Description

c-tagging
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Tagger correlations by flavour
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b-tagging

Generator-level input (6 variables)

c-tagging

¢ Jet dataset
PYTHIA8 generator (tthar, Z+jets, WW, QCD multijet)
Jet clustering using Fastjet

Simple (but realistic) detector response
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Model Comparison and Metrics

+ Comparison of different architectures
> Training on 500k jets
> Validation on 650k
¢ Metrics
> Distances on 1-dimensional
distributions (Kolmogorov-Smirnoy,
Wasserstein)
> “Multi-dimensional” distances
(Covariance Matching, Frechet
Gaussian distance)
> Classifier Two Sample test (Gradient
Boosting)
> Areabetween b-tagger ROC curves
(ABC)

Heatmap of Models and Metrics
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Model Comparison and Metrics

Discrete Flows
Y Affine +
Autoregressive/Coupling
> Different layer activation

functions Continuous
Continuous Flows
> Different Flow Matching
strategies
> ResNet/MLP
CFM architectures perform best on Discrete

every metric

Heatmap of Models and Metrics
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Simulation Speed

¢

¢

Simulation rate depends on the architectures
> Discrete Affine-Coupling is the fastest
Continuous ResNet Target achieves up to
100 kHz
> Depending on the ODE solver
> Increasing the number of parameters
(x10) slows down the rate up to a
factor 4
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Applications

¢

¢

Increasing the size of a simulated dataset

)

Oversampling

)

Producing more GEN events and using
the flow-based response (one-to-one)
Using the same GEN event to produce
more SIM events (one-to-many)

GEN ——— SIM SIM
GEN ——— SIM SIM
GEN
. . GEN —~ SIM SIM
Possible because of the stochasticity of

the flow-based simulation

Useful if the GEN time becomes a
bottleneck

Events sharing the same GEN are
correlated



Statistical Treatment for Oversampling

[ Single event
[ Oversampled

¢+ Oversampling
> 1 GENeventis associated with a distribution of SIM events
> Final histogram is the weighted sum of sub-histograms

+ Final uncertainty is larger than just filling the histogram

Final Histogram Event 1 Event 2 Event 3

Normal ’ T = ( + W + (
[ L
2o - N F+ N Tj N F




Results on Pseudo-Analysis

+ Test on pseudo-analysis
> Reconstruction of W boson in tthar
production
> Statistical Uncertainty reduction for
low-resolution variables (e.g. W mass)
> No significant biases with equal
number of events
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Conclusions

N Tested multlple models on Millions of events per day on a HPC Node Ratio to Conventional sim

. Generator Gen time Fold | Conventional Object sampling speed [kHz] | Object sampling speed [kHz]

benchmarkjet dataset s/event  size | (20s/event) 1 5 10 50 100 1 5 10 50 100

" . Existing 0 1 0.138 173 864 1728 864.0 17280 | 125 625 1250 6250 12500

> Conditional Flow Matching Simple 0.02 1 0.138 154 532 768 1192 1280 | 111 385 556 863 927

10 0.138 17.1 81.3 153.6 5317 768.0 | 123 588 1111 3847 5556

has the best performances Average 1 1 0.132 24 27 27 28 28] 18 20 21 21 21

Fstimat imulation r 10 0.138 106 209 238 268 27.2| 77 152 173 195 198

) stimated simulation rate Accurate 20 1 0.069 014 014 014 014 014| 2 2 2 2 2

10-1000 |arger than the and slow 10 0.126 128 14 14 14 14] 10 11 11 11 11
conventional simulation

CMS simulation Preliminary

g T
2wk
. . 105 %7 ———— EWK jj+ll FlashSim é
+ Approach used in CMS FlashSim 10 b E
> Itscales to higher dataset dimension, A :
multiple objects and real detector response 10 & =
> Good results in simplified analysis (Andrea 101: o P
Rizzi's Monday Plenary Talk) g 1P
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Contacts

For more information, feel free to reach out filippo.cattafesta@cern.ch

Further details
https://iopscience.iop.org/article/10.1088/2632-2153/ad563c

Project repository:
https://aithub.com/francesco-vaselli/FlowSim



mailto:filippo.cattafesta@cern.ch
https://iopscience.iop.org/article/10.1088/2632-2153/ad563c
https://github.com/francesco-vaselli/FlowSim
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Discrete Affine Autoregressive SiLU
Training
Validation

—— Smoothed Training

—— Smoothed Validation

pa(x) = p.(f(x)) det
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Oversampling: Statistical Treatment

¢

¢

Non-oversampled case
> w statistical weight associated with the MC event
) Forthe i-th bin of an histogram, the probability of being in this bin and the associated uncertainty are

2
> jebin Wi __ \ 2gebin ]
.

Pi =

Zk: esample Wk Zk esample Wk

Oversampled case
> Afoldis the set of RECO events sharing the same GEN

fold
2_jebin 2ulcfoldebin Wil 2 jebin Xlcfoldebin Wit/ _ 2 jebin WiP;
N Zk€sample Wi, Zk€sample Wi, Zkesample Wi,

fol
\/Zjebm wjpjo d)

Zk:€sample Wi,

i:
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Dataset Details

Generator level variables

Description

Pr, 1, ¢7 mass
jet flavour
number of x in jet

Kinematic properties of the generated jet
Distinguishing b, ¢ jets from light quarks or gluon jets
Counting the number of muons within the jet radius

Basic reconstructed variables

Description

pr, 1, ¢7 mass
b-tagging discriminator
number of constituents

Kinematic properties of the reconstructed jet
Score in [0,1] mimicking a tagging algorithm
Counting the number of reconstructed jet constituents

Extended dataset variables

Description (in addition to basic variables)

Neutral Hadron Fraction (nhf)

Charged Hadron Fraction (chf)

Neutral Electromagnetic Fraction (nef)
Charged Electromagnetic Fraction (cef)
Quark-Gluon discriminator (qgd)

Jet Identification (jetld)

Number of Charged Particles (ncharged)
Number of Neutral Particles (nneutral)
c-tagging discriminator

Number of Secondary Vertices (nSV)

fraction of jet energy carried by Neutral Hadrons

fraction of jet energy carried by Charged Hadrons

fraction of jet energy carried by photons and 7° mesons
fraction of jet energy carried by electrons

Discriminator score mimicking a quark/gluon tagging algorithm
Discriminator score mimicking a jet Identification algorithm
Number of reconstructed charged particles

Number of reconstructed neutral particles

Score of c-tagging algorithm, correlated with b-tagging

Poisson distributed number of Secondary Vertices in jets
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Metrics 1

e The 1-d Wasserstein score (WS) [36] and the two-sample Kolmogorov-Smirnov
distance (KS) for comparing 1-d distributions between the target and the samples
produced by the model. A WS is assigned to each variable.

The Fréchet distance as a global measure. It is the distance between Multivariate
Gaussian distributions fitted to the features of interest, which [36] calls the Fréchet
Gaussian Distance (FGD). It is generally called the Fréchet Inception Distance
(FID) in image generation tasks:

d2(:1:, y) = |1z — NyHQ + Tr(Z, + 5y — Q(E:vzy)l/2)- (8)

Covariance matching: another global metric used to measure how well an algorithm
is modelling the correlations between the various target features. Given the
covariance matrices of the two samples, target and model, we compute the Frobenius
Norm of the difference between the two:

[1CoV(Xiarget) — Cov(Xumoaa) lr = | D D ey — el (9)

i=1 j=1

Correlations in the model samples are also visually evaluated through the use of
dedicated plots.

22



Metrics 2

e As b and c-tagging are such important tasks in the study of jets, we compute the
recetver operating characteristic (ROC) curves for both scores. To quantify the
performance of a model, we compute the difference in log-scale between the ROC
coming from the model and that from the target distribution. Log-scale is used
because the true positive rate (TPR) and false positive rate (FPR) span different
orders of magnitude. We call this evaluation metric the Area Between the Curves
(ABC).

e Finally, we implement a classifier two-sample test (c2st): we train a classifier to
distinguish between training samples and samples coming from our models, giving
as additional input the gen information. The output is the percentage P.og of
samples which were incorrectly classified. For the optimal model, it has a maximum
value of 0.5. We thus report our results as 0.5 — P.o: in this way the best model
has the lowest ¢2st value. We use a scikit-learn [37] HistGradientBoostingClassifier
with default parameters as our classifier.



Training Dataset Dependence
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+ Training dataset size variations o5t
> Validation on TM of generated jets 0af I
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Results

+ Excellent results LLJ
> No significant biases in 1D distributions '

> Good correlations (2D distributions)
> Output correctly influenced by the conditioning
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Results (ttbar)
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Results (Other Processes)
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+ Validation on different processes
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