

R&D Adoption and Progress in **Full Simulation of the CMS experiment**

S. Banerjee ⁽¹⁾, F. Cossutti ⁽²⁾, V. Ivantchenko ⁽³⁾, N. Krammer ⁽⁴⁾, M.S. Muzaffar⁽⁵⁾, K. Pedro⁽⁶⁾, L. Pezzotti⁽⁷⁾, P. Srimanobhas⁽⁸⁾ on behalf of the CMS Collaboration

27th Conference on Computing in High Energy and Nuclear Physics Kraków, Poland Oct 21, 2024

> ⁽²⁾ Universita e INFN Trieste (3) JINR (5) CERN ⁽⁷⁾ Universita e INFN, Bologna

⁽¹⁾ University of Wisconsin Madison ⁽⁴⁾ Institut fuer Hochenergiephysik, Österreichischen Akademie der Wissenschaften ⁽⁶⁾ Fermi National Accelerator Laboratory ⁽⁸⁾ Department of Physics, Faculty of Science, Chulalongkorn University

References

- D.J. Lange et al. (CMS), Upgrades for the CMS simulation, J. Phys.: Conf. Ser. 608, 012056 (2015)
- M. Hildreth et al. (CMS), CMS Full Simulation for Run-2, J. Phys.: Conf. Ser. 664, 072022 (2015)
- M. Hildreth et al. (CMS), Upgrades for the CMS simulation, J. Phys.: Conf. Series 898, 042040 (2017)
- (2019)
- C. Vuosalo et al. (CMS), CMS Experience with Adoption of the Community supported DD4hep Toolkit, EPJ Web of Conferences 245, 02032 (2020)
- K. Pedro (CMS), Integration and Performance of New Technologies in the CMS Simulation, EPJ Web of Conferences 245, 02020 (2020)
- 10.7.p01 using Data from the CMS Experiment, EPJ Web of Conferences 251, 03010 (2021)
- V. Ivanchenko et al. (CMS), CMS Full Simulation for Run 3, EPJ Web of Conferences 251, 03016 (2021)
- Web of Conferences 251, 03030 (2021)
- (2024)

• V. Ivanchenko and S. Banerjee (CMS), Upgrade of CMS Full Simulation for Run 2, EPJ Web of Conferences 214, 02012

• K. Pedro (CMS), *Current and Future Performance of the CMS Simulation*, EPJ Web of Conf. 214, 02036 (2019)

• V. Ivanchenko et al. (Geant4), *Geant4 electromagnetic physics progress*, EPJ Web of Conferences 245, 02009 (2020)

• V. Ivanchenko and S. Banerjee (CMS), Validation of Physics Models of Geant4 Versions 10.4.p03, 10.6.p02 and • S. R. Johnson et al., Novel features and GPU performance analysis for EM particle transport in the Celeritas code, EPJ

• P. Srimanobhas et al. (CMS), Full Simulation of CMS for Run-3 and Phase-2, EPJ Web of Conferences 295, 03017

MIP Timing Detector

https://cds.cern.ch/record/2296612 Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Tracker

https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Geometry description for Run-3 and Phase-2

	Materials	Solids	Logical Vol	Physical Vol.	Touchables	R	egior
Run3	489	3905	4229	21779	2317018		30
Phase-2	686	15808	16007	68608	13134654		26
					Rur	n3 Phas	se 2
lote:	Kun3MaterialsSolidsRun34893905Phase-268615808te:Solids15808Counts are similar for the DDD and the DD4hep versionsSolids• Run 3: DD4hepPhase 2: DDD + DD4hep• Phase 2: DDD + DD4hepThe increase in the number of touchable is primarily due to the description of the HGCal			Sta	ndard	Refle	cted
 Counts are similar for the DDD and the DD4hep versions Rup 3: DD4hep 			Box	1208k	1325k	434k	429
			Tube	95.5k	58.0k	1391	755
 Phase 2: DDD 	+ DD4hep		Trapezoid	240k	158k	150k	141
• The increase in	the number of to	ouchable is	Cone	1862	1862	0	0
primarily due to the description of the HGCal		Polycone	426	206	0	0	
			Polyhedra	1449	1572	0	0
			ExtrudedPolygo	on 0 1	L0845k	0	0
			Torus	12	8 0	0	0
			UnionSolid	175	< 614	0	0
			SubtractionSol	id 8325	173k	468	594
			IntersectionSol	id 0	360	0	0

Ν

Geometry description for Run-3 and Phase-2: Overlap

	DDD				DD4hep			
	1.0	0.1	0.01	0.0	1.0	0.1	0.01	0.0
Run3	0	0	84	566	0	0	4	47
Phase 2	0	0	36	344	0	0	0	34

- The 36 overlaps in the DDD version of the Phase 2 geometry for a tolerance of 0.01 mm are all in ECAL barrel: precision lost in rotation of modules
- The additional overlaps in the Run 3 geometry are due to the description of the endcap pre-shower detector
- Most of the overlaps for tolerance of 0 mm come from the description of the return yoke
- Our plan to remove all overlap in DD4hep case

Geant4 versions with CMSSW

CMSSW_14_2 (Currently)

Test of G4HepEM (FTFP_BERT_EMH)

CMSSW_14_0 (pp) / CMSSW_14_1 (HI) for Run 3 2024

- ► Geant4 11.1.2 / 11.2.2
- CMSSW_13_0 for Run 3 2023

 Gamma general process Link Time Optimization (LTO) build • CMSSW_12_4 for Run 3 2022

DD4hep geometry description

• CMS Full simulation for Run 2

Updated geometries for each year Multithread mode in production since 2017 Configuration for physics: - Russian roulette method

Migration of Geant4 under CMSSW

- Software validation and performance
- different energies. Test of G4HepEM.

- luminosity runs
- GeV/c
- Run-3 2022 with Geant4 10.7.2

 2006 test beam with CMS calorimeter prototypes: beams of different types and Eur. Phys. J. C (2009) 60: 359–373

• 2016 low pile-up run: Utilizing zero bias or minimum bias triggers from low

J. Phys.: Conf. Ser. 898 042005

• 2018 HGCAL test beam: Prototype of HGCAL with charged pion beam if 20-300 JINST 18 (2023) 08, P08014

• **Data-MC comparison:** Validation campaigns organized centrally, participation from detector performance and physics object groups. Run-2 Ultra-Legacy with Geant4 10.4.3

MC Validation of Geant4

Campaigns

		G4
Campaign Name	Categories	Status Created Date
13 2 0 pre3 G4VECGEOM 2023	Reconstruction HLT PAGs	Open a year
13 2 0 pre3 G4VECGEOM Phase2 D98	Reconstruction PAGs	Open a year
13 0 0 pre3 Phase2 D88 G4VECGEOM	Reconstruction PAGs	Open 2 years
13 0 0 pre3 Phase2 D88 LTOG4VECGEOM	Reconstruction PAGs	Open 2 years
13 0 0 pre3 2023 LTOG4VECGEOM	HIN Reconstruction PAGs	HLT Open 2 years
13 0 0 pre3 2023 G4VECGEOM	HIN Reconstruction PAGs	HLT Open 2 years

To validate Geant4, PPD (Physics Performance and Dataset) group calls a wide validation to DPGs, POGs and PAGs. The MC vs MC is done with the same release of CMSSW, but different versions of Geant4.

Performance monitoring

Ru

Reminder: CMS FullSim includes several techniques to make it fast

n-2 simulation performance					
Configuration	Relative CPU usage				
Comguration	MinBias	TTbar			
No optimizations	1.00	1.00			
Static library	0.95	0.93			
Production cuts	0.93	0.97			
Tracking cut	0.69	0.88			
Time cut	0.95	0.97			
Shower library	0.60	0.74			
Russian roulette	0.75	0.71			
FTFP_BERT_EMM	0.87	0.83			
All optimizations	0.21	0.29			

MC sampling techniques: **Russian Roulette**

Physics list

- Updated since 2017
- Change from QGSP_FTFP_BERT_EML to FTFP_BERT_EMM
- EMM details multiple scattering model for sampling calorimeters and the simplified one for other detectors

J. Phys.: Conf. Ser. 608, 012056 (2015)

- Significant portion of CMS simulation time spent tracking low-energy particles, particularly in electromagnetic and hadronic calorimeters
- Simulation modified to track only a small fraction of gamma and neutron particles below energy thresholds
- Thresholds and sampling fractions were tuned to ensure final physics output remains unaffected

UpMV-

CK1

Beam

Dump VLE

T22

CK2

- scattering
- Disabled Rayleigh scattering
- This library substitutes EM physics for γ , e⁺,e⁻.
- Test with CPU. With AdePT, GPU can be used.

Applied cuts on secondary electrons in photoelectric process and Compton

In this report, we try G4HepEm library through FTFP_BERT_EMH in CMSSW.

О

Test of G4HepEm Physics

Mean energy response is measured as the ratio of the total energy in the calorimeter to the beam momentum as a function of beam momentum for different beam types.

Test of G4HepEm Physics

Mean energy response is measured as the ratio of the total energy in the calorimeter to the beam momentum as a function of beam momentum for different beam types.

Summary on test beam 2006

Chi ² /d.o.f. analysis	negative pions	positive pions	negative kaons	positive kaons	protons	anti-pro
G4 11.1.1 FTFP_BERT_EMM	0.22	1.29	20.6	15.7	0.52	3.30
G4 11.2.2 FTFP_BERT_EMM	0.21	1.36	20.0	15.6	0.62	3.75
G4 11.2.2 FTFP_BERT_EMH	0.55	2.36	22.4	18.5	0.72	2.64
 The predictions from FTFP_B and G4 11.2.2 are in good ag with predictions from FTFP_ The level of agreement is good while it is not good for kaons 	BERT_EMM fro greement, and BERT_EMH. od for pions a and some dia	om G4 11.1.1 I consistent nd protons, sagreement is	6 CMS 6 $pp \sqrt{s} = 1$ 5 $p = 0.82$ 5 $\delta_{\pi} = -0.02$ 6 $\delta_{K} = 0.02$ 9 $\delta_{K} = 0.02$ 9 $\delta_{R} = 0.00$ 9 $\delta_{R} = 0.00$	3 TeV $\eta = 0.35$ GeV/c $p_T = 0.775$ G $\chi^2/ndf = 1.0$ 5 10^2 10^1	ieV/c Data 2 Κ Ν	

- seen for anti-protons.
- Proton-proton collisions at high energy produces mostly pion. We can expect agreement between Data-MC.

 $\alpha_{\pi} = 0.995$ $\alpha_{K} = 0.964$ $\alpha_{p} = 0.973$ Coun 10 2 10⁻² 10⁻³ 10⁻⁴ 5 10 20 2 0 ²⁰ Phys. Rev. D **96**, 112003 10 2 5 ε [MeV/cm] 14

CMS HGCAL

CMS HGCAL is a sampling calorimeter comprising an electromagnetic section (CE-E) followed by a hadronic section (CE-H), which are longitudinally segmented into 50 layers.

Both endcaps Silicon		<u>Scint</u>	llators					
Area ~620m ²		~37	′0m²					
#Modules ~27000		~4	000					
Channel size 0.5 - 1 cm	n²	4-30) cm ²			Δ		
#Channels ~6 M		~2	40k					
Op. temp30 ° C		-30	°C					
								*
	Per e	endcap	CE-E	(CE-H ((Si)		C
esilve al	Abs	orber	Pb, CuW,	Cu	Sta	ainles	ss st	eel,
Pas aterne	De	epth	27.7 X)		1	0.0	λ
III.	La	yers	26		7			
	We	eight		~23	30 t / e	endca	ар	

Validation of HGCAL prototype with charged pion beams

- Protons accelerated to 400 GeV/c by the SPS collide with a 500 mm Beryllium target.
- Secondary beams (muons, electrons, pions) are produced and directed to the HGCAL prototype 600 m downstream.
- The particles selected in the momenta range of 20 300 GeV/c have a momentum spread of 0.2 - 2.0 %.

JINST 18 (2023) 08, P08014

HGCAL **Electromagnetic** Section

HGCAL Hadronic Section

CALICE AHCAL

Validation of HGCAL prototype with charged pion beams

New test inside Geant-val validation database

Pion energy resolution as the function of beam energy. Note that, the statistical errors are on level of marker size and are not shown.

> Positron energy deposition in units of MIP as a function of number of layer in EM section of HGCal. Note that, the statistical errors are on level of marker size and are not shown.

Summary

- CMSSW is under intensive development toward Phase-2
- Finalization of geometry description
- Optimization of physics configuration
- R&D on usage of accelerators

CMS choice to use latest Geant4 version for Phase-2

- Accuracy and code quality are under permanent monitoring
- Test beam data 2006 and 2018, also detector data 2016 are used

• **R&D** program is ongoing

- G4HepEm library may be considered
- Looking forward on AdePT and Celeritas projects

Talks & Poster on CMS Simulation at CHEP 2024

- Plenary] CMS FlashSim: end-to-end simulation with ML (link)
- Parallel] Simulating the CMS High Granularity Calorimeter with ML (link)
- [Poster] Refining FastSim with Machine Learning (link)