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FAIR Universe 

https://fair-universe.lbl.gov/

Collaborators: U. Berkeley, U. Washington, Chalearn, IJCLab-Orsay, UC Irvine, UCSD, Universiteit Leiden

Project Aims:

• An Open, Large-Compute-Scale AI Ecosystem for sharing datasets, training large models, and 
hosting challenges and benchmarks

• Progressive challenge series on measuring and minimizing the effects of systematic uncertainties 
in HEP (particle physics and cosmology)

Broad team Involvement in major AI and HEP challenges like HiggsML, TrackML, LHC Olympics, Fast 
Calorimeter Simulation Challenge, and wider (e.g NeurIPS competition, MLPerf HPC)

ØFair Universe HiggsML Uncertainty Challenge : NeurIPS competition 🥳
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https://fair-universe.lbl.gov/
https://www.kaggle.com/c/higgs-boson
https://cs.lbl.gov/news-media/news/2022/new-fair-universe-project-aims-to-build-supercomputer-scale-ai-benchmarks-for-hep-and-beyond/
https://lhco2020.github.io/homepage/
https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/
https://neurips.cc/Conferences/2022/CompetitionTrack
https://mlcommons.org/en/news/mlperf-hpc-v1/


Enter the HiggsML Uncertainty Challenge! (NeurIPS)

• Competition page: https://www.codabench.org/competitions/2977/

• NeurIPS Session: https://neurips.cc/virtual/2024/calendar

• Main Deadline: March 14, 2025

• Early Submission Deadline (for NeurIPS presentations): November 11, 2024
• Early Submissions will be evaluated based on performance and novelty. The selected participants with 

leading results will be invited to present in NeurIPS 2024 FAIR Universe competition workshop
(Saturday December 14th morning). 

• Documentations: https://fair-universe.lbl.gov/docs/

• White paper: this serves as a full breakdown of the competition in detail [Arxiv:2410.02867]

• Please apply to the competition with your institute's email address. 
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https://www.codabench.org/competitions/2977/
https://neurips.cc/virtual/2024/calendar
https://fair-universe.lbl.gov/docs/
https://arxiv.org/abs/2410.02867


Measuring and minimizing the effects of 
systematic uncertainties in HEP
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Bias and Uncertainty in Fundamental SciencesSciPost Physics Codebases Submission
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Figure 1: Schematic of the structure of a pp ! tt event, as modelled by PYTHIA. To
keep the layout relatively clean, a few minor simplifications have been made: 1) shower
branchings and final-state hadrons are slightly less numerous than in real PYTHIA events,
2) recoil effects are not depicted accurately, 3) weak decays of light-flavour hadrons are
not included (thus, e.g. a K0

S meson would be depicted as stable in this figure), and 4)
incoming momenta are depicted as crossed (p! �p). The latter means that the beam
remnants and the pre- and post-branching incoming lines for ISR branchings should be
interpreted with “reversed” momentum, directed outwards towards the periphery of the
figure; this avoids beam remnants and outgoing ISR emissions having to criss-cross the
central part of the diagram.
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Discrepancies between simulation and real data can introduce biases, 
impacting the accuracy of fundamental measurements in HEP.



Bias and Uncertainty in Fundamental Sciences

• Machine learning models in HEP are typically trained using simulations, which include certain 
assumptions and systematic uncertainties (called “epistemic” uncertainties, labeled as “Z”).

• However, when these models are applied to real-world data, the conditions (detector states) may differ, 
leading to an unknown Z value.

• Common Approach: First, train the model on standard simulation data (Z = 1). Then, estimate 
uncertainties by comparing results from simulations with different Z values. Shift Z slightly and examine 
how it affects the results or use a full profile likelihood to evaluate the impact.
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FAIR Universe: HiggsML Uncertainty Challenge

• Focus on novel approaches to address model uncertainty, including decorrelation, adversarial 
training, and uncertainty-aware techniques.

• Example techniques: “Pivot” by Louppe et al. (arXiv:1611.01046), Ghosh et al. 
(PhysRevD.104.056026), Inferno (arXiv:1806.04743), and others.

• Challenge: Scaling methods to handle multiple values of systematic uncertainties (Z), which increases 
training complexity and cost.

• Key gaps: Current benchmarks rely on single systematic uncertainties and limited datasets
(based on HiggsML 2014), which restrict scaling and broader adoption.

• New dataset for the challenge: Extension of the original HiggsML dataset.

• Improvements: Larger dataset (from 800k to ~300M events), faster simulation, parameterized 
systematics (nuisance parameters).

• Task: Provide a confidence interval on signal strength in a pseudo-experiment with a given signal.
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https://arxiv.org/abs/1611.01046
https://link.aps.org/doi/10.1103/PhysRevD.104.056026
https://arxiv.org/abs/1806.04743
http://opendata.cern.ch/record/328


Dataset Overview

• Simulated Dataset (280 million events): Representative of high-energy proton collision data from the 
ATLAS experiment at the Large Hadron Collider (LHC).

• Pythia 8.2 and Delphes 3.5.0 for simulation, and data organized in a tabular format with 28 features per 
event.

• Includes a biasing script introducing systematic uncertainties (Nuisance Parameters) for realistic 
challenges.
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Public
• Train/Val: 𝟏𝟎𝟎 × LHC@ 10 *b−1

• Pseudo: 𝟔𝟎 × LHC@ 10 *b−1

Private
• Pseudo: 𝟔𝟎 × LHC@ 10 *b−1



Systematics Parameterization: Nuisance Parameters

• New systematic parameterization method [white paper, github]

• 6 systematic uncertainties!

• Object-level uncertainties:
• Tau Energy Scale (and correlated MET) [0.9, 1.1, 𝜎 = 0.01]

• Jet Energy Scale (and correlated MET impact) [0.9, 1.1, 𝜎 = 0.01]

• Additional randomized Soft MET [0, 5, 𝜎 = 1.0]

• Event category normalization:
• Overall Background norm [0.99, 1.01, 𝜎 = 0.001]

• 𝑉𝑉 background norm [0, 2, 𝜎 = 0.25]

• 𝑡 ̅𝑡 background norm [0.8, 1.2, 𝜎 = 0.02]
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We operate within the framework of ‘known unknowns,’ while addressing ‘unknown unknowns’ 
remains a more complex challenge beyond this scope.

https://arxiv.org/pdf/2410.02867
https://github.com/FAIR-Universe/HEP-Challenge/blob/master/ingestion_program/systematics.py


Example of one NP: Tau Energy Scale Impact

• Histogram between nominal (TES 
= 1) and shifted (TES = 0.9)

• TES = 0.9 is an exaggeration, in 
practice it is sampled 
with 𝓰(𝟏, 𝟎. 𝟎𝟏) and with 
boundary [𝟎. 𝟗, 𝟏. 𝟏]
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Evaluation Metrics

• Pseudo-experiments
• dataset representative of what would be measured from 10fb#$~800 billion LHC 𝑝𝑝 collisions 

for a given value of 𝜇 and of the Nuisance Parameters
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Evaluation Metrics

• Interval width (𝝎) averaged over N test sets

• Coverage (𝒄): fraction of time 𝝁 is contained

• Combined using a coverage function 𝒇(𝒄):
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• N dependance for equivalent ideal coverage

• Penalizes undercoverage more

• Final score (s) designed to avoid large values or gaming: − ln( 𝜔 + 𝜖 𝑓(𝑐)) (𝜖 = 10#%)

• More details in White paper

https://arxiv.org/pdf/2410.02867


Large-compute-scale AI Ecosystem for 
hosting challenges and benchmarks
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NERSC: Mission HPC for the Dept. of Energy Office of Science

• Large compute systems
• Perlmutter: ~7k A100 GPUs, Also high-capacity 

/ fast filesystems, 1 Tbit/s WAN and flexible 
services

• SPIN: Rancher/K8s platform for user-defined 
services

• Broad science user base
• > 10,000 users

• > 1,000 projects

• Across all DoE Science e.g. HEP; NP; Climate; 
Fusion Chemistry; Materials; Genomics; etc …
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Condabench/FAIR Universe Platform

• Codabench - open-source platform for AI benchmarks and challenges
• Originally (CodaLab) Microsoft/Stanford now a Paris-Saclay/LISN led community
• > 500 challenges since 2013
• Allows code submission as well as results e.g., for evaluation timing or reproducibility
• Also, data-centric AI “inverted competitions”
• Organizers can define scoring functions
• Queues for evaluation can run on diverse compute resources
• Platform itself can be deployed on different compute resources
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Based on https://www.codabench.org/

“Fair Universe” brings Codabench to HPC at NERSC!

https://www.lisn.upsaclay.fr/?lang=en
https://www.codabench.org/


FAIR Universe Platform: Codabench/NERSC Integration
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from specific users

https://github.com/NERSC/podman-hpc
https://docs.nersc.gov/services/sfapi/


FAIR Universe Platform: Codabench/NERSC Integration

• Benchmark submissions pulled to workers running on Perlmutter:
• Use podman(-hpc) container runtime: secure and scalable

• Enable parallelism/scale for

• Intensive methods - use multiple A100 GPUs for training or evaluation

• Many participants - through running many parallel workers

• Many evaluations - e.g for Uncertainty Quantification

• Workers submitted as needed by microservice on SPIN service platform

• NERSC’s “SF API” for job submission

• Monitor/filter submissions

• Also deploy instances of Codabench platform itself within SPIN

• Customization and future OIDC integration with NERSC authorization
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https://github.com/NERSC/podman-hpc
https://docs.nersc.gov/services/sfapi/


Enter the HiggsML Uncertainty Challenge!

• Competition page: https://www.codabench.org/competitions/2977/

• Current Phase ends: March 14, 2025 @ 0:00 GMT+0

• Documentations: https://fair-universe.lbl.gov/docs/

• White paper: this serves as a full breakdown of the competition in detail [Arxiv:2410.02867]

• Please apply to the competition with your institute's email address. 
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Total pool of 4000 USD
🥇 First Place: $2000
🥈 Second Place: $1500
🥉 Third Place: $500

https://www.codabench.org/competitions/2977/
https://fair-universe.lbl.gov/docs/
https://arxiv.org/abs/2410.02867


Competition Flow

• More details in Tutorial Slides
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https://fair-universe.lbl.gov/tutorials/Higgs_Uncertainty_Challenge-Codabench_Tutorial.pdf


Summary

• We’ve built a flexible platform for hosting challenges and benchmarks, extending Codabench, and 
powered by HPC at NERSC.

• Launching a series of challenges focused on uncertainty-aware methods for High-Energy Physics (HEP).

• A NeurIPS competition running from September 2024 to March 2025

• Enter the HiggsML Uncertainty Challenge now: https://www.codabench.org/competitions/2977/

• We welcome feedback on the challenge to keep it engaging and beneficial for advanced methods.

• Get involved and stay updated:

• Help and feedback: Join the #higgsml-uncertainty-challenge channel on the Fair Universe Slack workspace.

• Ongoing updates: Subscribe to the Fair-Universe-Announcements Google Group.

• Questions or collaborations: Contact fair-universe@lbl.gov.
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https://www.codabench.org/competitions/2977/
https://www.codabench.org/competitions/2977/


Backup
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NERSC-AI Ecosystem

• Deploy optimized hardware and software (working with vendors)
• Improve performance, e.g through benchmarking (MLPerf HPC)

• Apply cutting edge AI for science: e.g., “NESAP” program with postdocs

• Empower through e.g., over 20 DL@Scale tutorials, 1000s of total participants: (SC23)

• Many AI for science highlights not covered here.
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FourCastNet- Pathak et al. 2022 
Collab with Nvidia, Caltech

• First DL model with skill of numerical 
weather prediction (NWP)

• Train up to 1000s of GPUs
• Forecasts 1000s times faster than NWP

OmniLearn
H1 Collaboration (Mikuni et. al.):

jet physics analyses by enhancing accuracy, 
precision, and speed across multiple tasks 
using a unified machine learning model.

https://mlcommons.org/en/training-hpc-10/
https://github.com/NERSC/sc23-dl-tutorial
https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2404.16091

