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Machine Learning Inference

● Evaluation (Inference) of Machine Learning models is becoming more and 
more relevant 
● Efficient inference of ML models is critical for production workflows
● Seamless incorporation of inference into existing systems (e.g., reconstruction, 

simulation, or analysis software) is needed
● Requires support for model evaluation directly within C++ code, not only Python
● Thread management is crucial for utilising models in multi-threaded 

environments
● Often models need to be evaluated at the event level (single-batch processing)
● Important optimising both speed and memory efficiency
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Tensorflow and PyTorch
● Tensorflow and PyTorch provide inference capabilities

● limited to their model formats
● using in a C++ environment can be challenging

■ not trivial to use Tensorflow C++ API
■ require some heavy dependence 

● can be difficult to control threads (Tensorflow)
● often not optimised to desired use cases (e.g. single event evaluation)

● Torch C++ library (LibTorch) is more convenient
● easier to install
● support might not be there for all existing extensions (e.g. pytorch geometric or 

pytorch cluster, which are used for GNN models)
■ some issues encountered in converting models from ONNX to Torch format
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ONNX and ONNXRuntime
● A standard for describing and sharing deep learning models exists:

● ONNX (“Open Neural Network Exchange”)
● cannot describe all possible deep learning models (e.g. GNN) fully

● ONNXRuntime: an efficient inference engine based on ONNX 
● Open source, developed by Microsoft
● Can work in both C++ and Python 
● Supporting both CPU and GPU 

■ NVidia GPUs via TensorRT and AMD using ROCm 

● Has been successfully integrated in the HEP software:
■  ATLAS and CMS integrated it into their software frameworks:

● Convenient C++ API
● Easy control of threads
● It is based on ONNX input format for trained models

■ conversions exist from Tensorflow and PyTorch 
■ not all models can be converted to ONNX format
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SOFIE

● Input: trained ML model file
■ ONNX: Common standard for ML models
■ Tensorflow/Keras and PyTorch models  

(with reduced support than ONNX)
■ Support message passing GNNs from 

DeepMind’s Graph Nets
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● Output: generated C++ code 
■ Easily invokable directly from C++ (plug-and-use)
■ Minimal dependency (on BLAS only)
■ Can be compiled at run time using ROOT Cling 

JIT and can be used in Python. 

or 

SOFIE : System for Optimised Fast Inference code Emit
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Code Generation
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namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
     // read weight data file
   …………………..
}
std::vector<float> infer(float* tensor_input1){
………………….
//———— Gemm
    BLAS::sgemm_(&op_0_transB, &op_0_transA, &op_0_n, &op_0_m, &op_0_k, &op_0_alpha, 
tensor_0weight, &op_0_ldb, tensor_input1, &op_0_lda, &op_0_beta, tensor_21, &op_0_n);

//------ RELU
   for (int id = 0; id < 50 ; id++){
      tensor_22[id] = ((tensor_21[id] > 0 )? tensor_21[id] : 0);
   }
…………………..
//———— Gemm
   BLAS::sgemm_(&op_18_transB, &op_18_transA, &op_18_n, &op_18_m, &op_18_k, 
&op_18_alpha, tensor_18weight, &op_18_ldb, tensor_38, &op_18_lda, &op_18_beta, 
tensor_39, &op_18_n);

// return output
   std::vector<float> ret (tensor_39, tensor_39 + 10);
   return ret;
}
};
} 
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● SOFIE generated code can be easily used in C++ 

Using the Generated code: in C++
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See full Example tutorial code

#include “Model.hxx”
// create session class
TMVA_SOFIE_Model::Session ses(“model_weights.dat”);
//—- event loop
for (ievt = 0; ievt < N; ievt++) {
   // evaluate model: input is a C float array
   float * input = event[ievt].GetData();
   auto result = ses.infer(input);
   …..
}

1. include generated Model 
header file

2. Create session class 
(read weight data file)

3. Evaluate the model 
calling Session::infer 
function

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html
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▶ Code can be compiled using ROOT Cling and used in Python

import ROOT

# compile generate SOFIE code using ROOT interpreter

ROOT.gInterpreter.Declare(‘#include “Model.hxx”’)

# create session class

s = ROOT.TMVA_SOFIE_Model.Session(‘model_weights.dat’)

#—- event loop

…….

# evaluate the model , input can be a numpy array 

# of type float32 

  result = s.infer(input)  

✦With the RSofieReader class, it is possible to generate/compile/evaluate a 
model in a single step directly from the input ONNX file

✦ see RSofieReader tutorial

Using the Generated code: in Python

8

See full Example 
tutorial code

Compile at run-time  
SOFIE generated code  
using Cling

https://root.cern/doc/master/classTMVA_1_1Experimental_1_1RSofieReader.html
https://root.cern/doc/v630/TMVA__SOFIE__RSofieReader_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html
https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html
https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html


CHEP 2024 L. Moneta  EP-SFT

▶ Have a generic functor class adapting SOFIE model evaluation signature to RDF::Define: 
 SofieFunctor<N,Session>
▶ supporting multi-thread evaluation, using the RDF slots (using RDF::DefineSlot)

ROOT::RDataFrame df("tree", “inputDataFile.root”);
auto h1 = df.DefineSlot("DNN_Value", 
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv", “m_jlv","m_bb","m_wbb","m_wwbb"}).  
Histo1D(“DNN_Value”);
h1->Draw();

SOFIE Integration with RDataFrame
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See example tutorial code in C++ or Python
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https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html
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ONNX Supported Operators
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Operators implemented in ROOT CPU GPU

Perceptron: Gemm ✓ ✓

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu, Swish ✓ ✓

Convolution and Deconvolution  (1D, 2D and 3D) ✓ ✓

Pooling: MaxPool, AveragePool, GlobalAverage ✓ ✓

Recurrent: RNN, GRU, LSTM ✓ ✓

 Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity ✓ ✓

 Layer Binary operators: Add, Sum, Mul, Div ✓ ✓
Other Layer operators: Reshape, Flatten,  Transpose, Squeeze, 
Unsqueeze, Slice, Concat, Reduce, ✓ ✓

 BatchNormalization, LayerNormalization ✓ ✓

Operators for GNN/Transformers: TopK, Gather, Range, Tile, If  ✓

Custom operator ✓

• current CPU  
support available  
in ROOT 

• GPU/SYCL is 
implemented in a 
separate dev branch 
(see ROOT PR)

New developments

https://github.com/root-project/root/pull/13550/
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▶ Extended SOFIE functionality to produce GPU code using SYCL
// generate SYCL code internally
model.GenerateGPU();  
// write output header and data weight file
model.OutputGeneratedGPU(); 

GPU Extension of SOFIE
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model.hxx 
namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
   if (filename.empty()) filename = 
"Linear_event.dat";
   std::ifstream f;
   f.open(filename);
   // read weight data file
   …………………..
}
std::vector<float> infer(float* 
tensor_input1){

with SYCL code

#include “Model.hxx”

// create session class

TMVA_SOFIE_Model::Session 
ses(“model_weights.dat”);

//—- event loop

for (ievt = 0; ievt < N; ievt++) {

   // evaluate model: input is a C float array

   float * input = event[ievt].GetData();

   auto result = ses.infer(input);

Inference code needs to be linked 
against oneAPI MKL libraries and 
compiled using SYCL compiler

▶ Minimise overhead of data transfers between 
host and device

▶ Manage buffers efficiently, declaring them at 
the beginning

▶ Use libraries for GPU Offloading: GPU BLAS 
from Intel one API and PortBLAS for other GPUs

▶ Fuse operators when possible in a single kernel
▶ Replace conditional check with relational 

functions
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Benchmark Results
● Benchmark ML model evaluation and its memory consumption

● using CPU from a standard Linux desktop
● AMD Ryzen 24 threads 4.4 GHz

● all tests run in single-thread mode
● SOFIE linked using 2 different BLAS implementations:

● Openblas 
● Intel MKL (from Intel oneapi)

● ONNXRuntime used CPU version 1.19.2
● LibTorch used CPU version 2.3.1
● GPU benchmark using SOFIE dev branch with SYCL on NVidia Desktop GPU (RTX 4090)

● see more in IWOCL paper
12

https://dl.acm.org/doi/pdf/10.1145/3648115.3648123
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Linear Model Benchmark

● Test of a simple linear model: Gemm Layer
■ scaling as a function of batch size

13

➡ SOFIE (with MKL) 
faster for single event 
evaluation
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Linear Model Benchmark (2)
● Test of a simple Linear model

■ scaling as a function of size (number of input x output of Gemm)
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Memory usage 

● SOFIE performs better at small sizes
● Better performances with MKL implementation of BLAS

● Memory usage as foreseen for SOFIE and LibTorch
● Less memory in SOFIE for small models
● ONNXRuntime uses 2x more. 

CPU Time/event
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Benchmark of FastSim Model

● The decoder of a VAE: model used in Par04 example in Geant4
➡ Benchmark CPU time

15

➡ SOFIE faster for single event
➡ optimised by using vdt::exp when evaluating Sigmoid function
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● VAE model used in Par04 example in Geant4
➡ Benchmark memory usage

➡ SOFIE has less memory overhead for small models
➡ increase memory usage for larger complexity

Benchmark of FastSim Model (2)
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Benchmark: Convolutional models
● CPU performance for convolution models

● 2D and 3D model and a Resnet model
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➡ Better performances in LibTorch and ONNXRuntime
➡ using probably more optimised convolutional kernels

14 layers 
(100x100)

5 layers 
(32x32x32)

10 layers 
(224x224)



CHEP 2024 L. Moneta  EP-SFT 18

➡Extensive usage of memory in SOFIE for ConvNets:
➡  no intra-layer optimisations 

● Memory usage in convolution models
● 2D and 3D model and a Resnet model

Benchmark: Convolutional models (2)

14 layers 
(100x100)

5 layers 
(32x32x32)

20 layers 
(224x224)
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Benchmark on GPU vs CPU (ResNet)
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✦ Using SYCL GPU 
implementation for Reset 

✦ 20 conv. layers with input 
images of sizes 224x224) 

✦ Varying Batch size

see IWOCL paper

https://dl.acm.org/doi/pdf/10.1145/3648115.3648123
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Performances for an ATLAS GNN 
● One of the GNN1 model used for jet tagging
● Measure time and memory vs the number of input tracks

● input 14 features/track

20
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➡ Similar performances for smaller inputs
➡ better scaling in ONNXRuntime
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Performances for CMS GNN
● Particle Net GNN used in CMS for jet flavour tagging
● measure time and memory usage vs the number of input tracks

● input: 20 features/track

21

Memory vs number of input tracks

CPU Time vs number of input tracks
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➡ Similar trend as in ATLAS GNN
➡ room for memory and CPU  

optimisation in SOFIE
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GNN from GraphNets in SOFIE
● Added SOFIE support for direct parsing of GNN models

● no need to use the ONNX format, direct parsing from the saved Python model

● Initiated with a network developed by LHCb  
(model for full event interpretation (arXiv:2304.08610)

● Message Passing GNN built and trained using the DeepMind’s Graph Nets library
● Important to have an efficient implementation with minimal dependencies
● Support for a dynamic number of nodes/edges
● User can customise architecture to combine different GNN blocks

22

RModel_GNN

https://arxiv.org/abs/2304.08610
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Benchmark of GraphNets GNN

● Test inference performance of a toy architecture from LHCb
● scaling number of nodes and edges

23

CPU Usage Memory Usage

▶ 10 faster for small GNN size
▶ comparable for large GNN

▶ similar performances since  
dominated by matrix operations 

▶ No optimisation for memory has 
been done so far in SOFIE.
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Summary of Benchmarks
● SOFIE benchmark results demonstrate:

● Faster inference for event-level evaluations
● Lower memory consumption in smaller models 
● Larger model sizes lead to reduced performance

● Memory usage in SOFIE has not been optimised for multi-layer models
● Fusions of the operator have not been implemented yet from ONNX model
● Better scaling for models parsed from GraphNets  

(overhead in splitting model with large number of operators as done in ONNX
● LibTorch and ONNXRuntime show similar performances (CPU and 

memory, with smaller memory usage in LibTorch)
● Less flexibility in converting models from ONNX format to Torch

24
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Conclusions
● SOFIE, an easy-to-use inference engine for Deep Learning models, is available

● Supporting several ONNX operators, including some production models from 
experiments (e.g complex GNNs)

● Supporting also GNNs based on GraphNets (cannot be easily converted to ONNX)
● Integrated with other ROOT tools (RDataFrame ) for ML inference in end-user analysis
● Simple to use in C++ and Python 
● Give fully control to users of the generated code and no additional dependency needed 
● SOFIE can also be used for storing models (and weights) in ROOT format
● A prototype implementation for GPU using SYCL has been developed 

● Future developments according to user needs 
● Plans to implement memory optimisations and fusion of ONNX operators
● Extend GPU support (porting to CUDA and/or ALPAKA if interest by experiments)

25
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SOFIE References

● SOFIE in ROOT GitHub:
● https://github.com/root-project/root/tree/master/tmva/sofie)

● Example notebooks on using SOFIE: 
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Tutorials are also available in the tutorial/tmva directory

● Link to SOFIE code in current ROOT master in GitHub

● Link to PR implementing SOFIE to SYCL code generation

● Link to benchmarks in rootbench 

26

https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/root-project/root/pull/13550
https://github.com/root-project/rootbench/pull/239


Backup Slides
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Parsing input models

● Parser: from ONNX to  SOFIE::RModel class 
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser; 
RModel model = parser.Parse("model.onnx"); 

▶ Parser exists also for (with more limited support)
▶ Native PyTorch files (model.pt files) 

SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");

▶ Native Keras files (model.h5 files)
         SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");

28
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● Parser: from ONNX to  SOFIE::RModel class 
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser; 
RModel model = parser.Parse("Model.onnx"); 

● Code Generation: from RModel to a C++ file (Model.hxx)  
and a weight file (Model.dat) 

// generate text code internally
model.Generate();  
// write output header file and data weight file
model.OutputGenerated(); 

▶ Generated code has minimal dependency 
▶ only linear algebra library (BLAS) and no ROOT dependency
▶ can be easily integrated in your project

Code Generation
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namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
   if (filename.empty()) filename = "Linear_event.dat";
   std::ifstream f;
   f.open(filename);
   // read weight data file
   …………………..
}
std::vector<float> infer(float* tensor_input1){

C++ code
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SOFIE GNN Support
● Developed C++ classes for representing GNN structure. 

● based on SOFIE RModel and the ROperator classes developed for 
supporting ONNX.

● SOFIE classes provide the functionality to generate C++ inference code
● Python code (based on PyROOT) for initialising SOFIE classes from the 

Graph Nets models 

30

RModel_GNN

Graph Nets GNN
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GNN Support
● Follow Graph Nets architecture 

● A model is described by 
■ number of nodes and edges
■ sender/receiver list of edges
■ number of features (for node, edge and global) 

● Updating  functions on node, edge and global features
■  MLP (Multi-Layer Perceptron)

■ including activation functions  
and layer normalisation

■ Aggregation functions 
■ Mean, Sum,…

31
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GNN Inference
● Final model is composed by several blocks 

chained together
● SOFIE can generate C++ code for  

each single GNN block
● a C++ struct of RTensor’s represents the GNN 

data flowing trough the model
● Users can stuck the GNN blocks according to  

the desired architecture in the inference function for 
the full model

32



CHEP 2024 L. Moneta  EP-SFT

ParticleNet Architecture

● The architecture of ATLAS GNN (see ATL-PHYS-PUB-2022-027)

33

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
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ParticleNet Architecture

● The architecture of Particle Net based on DGCNN and EdgeConv 
(see link)
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https://cms-ml.github.io/documentation/inference/particlenet.html#__tabbed_1_3


Performance on CPU vs GPU
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