
https://root.cern

ROOT
Data Analysis Framework

Benchmark Studies of Machine Learning
Inference using SOFIE

Lorenzo Moneta, Ioanna Panagou, Sanjiban Sengupta,  
Neel Shah, Paul Paul Wollenhaupt

https://root.cern

CHEP 2024 L. Moneta EP-SFT

Machine Learning Inference

● Evaluation (Inference) of Machine Learning models is becoming more and
more relevant
● Efficient inference of ML models is critical for production workflows
● Seamless incorporation of inference into existing systems (e.g., reconstruction,

simulation, or analysis software) is needed
● Requires support for model evaluation directly within C++ code, not only Python
● Thread management is crucial for utilising models in multi-threaded

environments
● Often models need to be evaluated at the event level (single-batch processing)
● Important optimising both speed and memory efficiency

2

CHEP 2024 L. Moneta EP-SFT

Tensorflow and PyTorch
● Tensorflow and PyTorch provide inference capabilities

● limited to their model formats
● using in a C++ environment can be challenging

■ not trivial to use Tensorflow C++ API
■ require some heavy dependence

● can be difficult to control threads (Tensorflow)
● often not optimised to desired use cases (e.g. single event evaluation)

● Torch C++ library (LibTorch) is more convenient
● easier to install
● support might not be there for all existing extensions (e.g. pytorch geometric or

pytorch cluster, which are used for GNN models)
■ some issues encountered in converting models from ONNX to Torch format

3

CHEP 2024 L. Moneta EP-SFT

ONNX and ONNXRuntime
● A standard for describing and sharing deep learning models exists:

● ONNX (“Open Neural Network Exchange”)
● cannot describe all possible deep learning models (e.g. GNN) fully

● ONNXRuntime: an efficient inference engine based on ONNX
● Open source, developed by Microsoft
● Can work in both C++ and Python
● Supporting both CPU and GPU

■ NVidia GPUs via TensorRT and AMD using ROCm

● Has been successfully integrated in the HEP software:
■ ATLAS and CMS integrated it into their software frameworks:

● Convenient C++ API
● Easy control of threads
● It is based on ONNX input format for trained models

■ conversions exist from Tensorflow and PyTorch
■ not all models can be converted to ONNX format

4

CHEP 2024 L. Moneta EP-SFT

SOFIE

● Input: trained ML model file
■ ONNX: Common standard for ML models
■ Tensorflow/Keras and PyTorch models  

(with reduced support than ONNX)
■ Support message passing GNNs from

DeepMind’s Graph Nets

5

● Output: generated C++ code
■ Easily invokable directly from C++ (plug-and-use)
■ Minimal dependency (on BLAS only)
■ Can be compiled at run time using ROOT Cling

JIT and can be used in Python.

or

SOFIE : System for Optimised Fast Inference code Emit

CHEP 2024 L. Moneta EP-SFT

Code Generation

6

namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
 // read weight data file
 …………………..
}
std::vector<float> infer(float* tensor_input1){
………………….
//———— Gemm
 BLAS::sgemm_(&op_0_transB, &op_0_transA, &op_0_n, &op_0_m, &op_0_k, &op_0_alpha,
tensor_0weight, &op_0_ldb, tensor_input1, &op_0_lda, &op_0_beta, tensor_21, &op_0_n);

//------ RELU
 for (int id = 0; id < 50 ; id++){
 tensor_22[id] = ((tensor_21[id] > 0)? tensor_21[id] : 0);
 }
…………………..
//———— Gemm
 BLAS::sgemm_(&op_18_transB, &op_18_transA, &op_18_n, &op_18_m, &op_18_k,
&op_18_alpha, tensor_18weight, &op_18_ldb, tensor_38, &op_18_lda, &op_18_beta,
tensor_39, &op_18_n);

// return output
 std::vector<float> ret (tensor_39, tensor_39 + 10);
 return ret;
}
};
}

CHEP 2024 L. Moneta EP-SFT

● SOFIE generated code can be easily used in C++

Using the Generated code: in C++

7
See full Example tutorial code

#include “Model.hxx”
// create session class
TMVA_SOFIE_Model::Session ses(“model_weights.dat”);
//—- event loop
for (ievt = 0; ievt < N; ievt++) {
 // evaluate model: input is a C float array
 float * input = event[ievt].GetData();
 auto result = ses.infer(input);
 …..
}

1. include generated Model
header file

2. Create session class
(read weight data file)

3. Evaluate the model
calling Session::infer
function

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

CHEP 2024 L. Moneta EP-SFT

▶ Code can be compiled using ROOT Cling and used in Python

import ROOT

compile generate SOFIE code using ROOT interpreter

ROOT.gInterpreter.Declare(‘#include “Model.hxx”’)

create session class

s = ROOT.TMVA_SOFIE_Model.Session(‘model_weights.dat’)

#—- event loop

…….

evaluate the model , input can be a numpy array

of type float32

 result = s.infer(input)

✦With the RSofieReader class, it is possible to generate/compile/evaluate a
model in a single step directly from the input ONNX file

✦ see RSofieReader tutorial

Using the Generated code: in Python

8

See full Example
tutorial code

Compile at run-time  
SOFIE generated code  
using Cling

https://root.cern/doc/master/classTMVA_1_1Experimental_1_1RSofieReader.html
https://root.cern/doc/v630/TMVA__SOFIE__RSofieReader_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html
https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html
https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

CHEP 2024 L. Moneta EP-SFT

▶ Have a generic functor class adapting SOFIE model evaluation signature to RDF::Define: 
 SofieFunctor<N,Session>
▶ supporting multi-thread evaluation, using the RDF slots (using RDF::DefineSlot)

ROOT::RDataFrame df("tree", “inputDataFile.root”);
auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv", “m_jlv","m_bb","m_wbb","m_wwbb"}).  
Histo1D(“DNN_Value”);
h1->Draw();

SOFIE Integration with RDataFrame

9

See example tutorial code in C++ or Python

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DNN Output

0

50

100

150

200

250
Backkground data

Signal data

https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html

CHEP 2024 L. Moneta EP-SFT

ONNX Supported Operators

10

Operators implemented in ROOT CPU GPU

Perceptron: Gemm ✓ ✓

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu, Swish ✓ ✓

Convolution and Deconvolution (1D, 2D and 3D) ✓ ✓

Pooling: MaxPool, AveragePool, GlobalAverage ✓ ✓

Recurrent: RNN, GRU, LSTM ✓ ✓

 Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity ✓ ✓

 Layer Binary operators: Add, Sum, Mul, Div ✓ ✓
Other Layer operators: Reshape, Flatten, Transpose, Squeeze,
Unsqueeze, Slice, Concat, Reduce, ✓ ✓

 BatchNormalization, LayerNormalization ✓ ✓

Operators for GNN/Transformers: TopK, Gather, Range, Tile, If ✓

Custom operator ✓

• current CPU
support available
in ROOT

• GPU/SYCL is
implemented in a
separate dev branch
(see ROOT PR)

New developments

https://github.com/root-project/root/pull/13550/

CHEP 2024 L. Moneta EP-SFT

▶ Extended SOFIE functionality to produce GPU code using SYCL
// generate SYCL code internally
model.GenerateGPU();
// write output header and data weight file
model.OutputGeneratedGPU();

GPU Extension of SOFIE

11

model.hxx
namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
 if (filename.empty()) filename =
"Linear_event.dat";
 std::ifstream f;
 f.open(filename);
 // read weight data file
 …………………..
}
std::vector<float> infer(float*
tensor_input1){

with SYCL code

#include “Model.hxx”

// create session class

TMVA_SOFIE_Model::Session
ses(“model_weights.dat”);

//—- event loop

for (ievt = 0; ievt < N; ievt++) {

 // evaluate model: input is a C float array

 float * input = event[ievt].GetData();

 auto result = ses.infer(input);

Inference code needs to be linked
against oneAPI MKL libraries and
compiled using SYCL compiler

▶ Minimise overhead of data transfers between
host and device

▶ Manage buffers efficiently, declaring them at
the beginning

▶ Use libraries for GPU Offloading: GPU BLAS
from Intel one API and PortBLAS for other GPUs

▶ Fuse operators when possible in a single kernel
▶ Replace conditional check with relational

functions

CHEP 2024 L. Moneta EP-SFT

Benchmark Results
● Benchmark ML model evaluation and its memory consumption

● using CPU from a standard Linux desktop
● AMD Ryzen 24 threads 4.4 GHz

● all tests run in single-thread mode
● SOFIE linked using 2 different BLAS implementations:

● Openblas
● Intel MKL (from Intel oneapi)

● ONNXRuntime used CPU version 1.19.2
● LibTorch used CPU version 2.3.1
● GPU benchmark using SOFIE dev branch with SYCL on NVidia Desktop GPU (RTX 4090)

● see more in IWOCL paper
12

https://dl.acm.org/doi/pdf/10.1145/3648115.3648123

CHEP 2024 L. Moneta EP-SFT

Linear Model Benchmark

● Test of a simple linear model: Gemm Layer
■ scaling as a function of batch size

13

➡ SOFIE (with MKL)
faster for single event
evaluation

CHEP 2024 L. Moneta EP-SFT

Linear Model Benchmark (2)
● Test of a simple Linear model

■ scaling as a function of size (number of input x output of Gemm)

14

Memory usage

● SOFIE performs better at small sizes
● Better performances with MKL implementation of BLAS

● Memory usage as foreseen for SOFIE and LibTorch
● Less memory in SOFIE for small models
● ONNXRuntime uses 2x more.

CPU Time/event

CHEP 2024 L. Moneta EP-SFT

Benchmark of FastSim Model

● The decoder of a VAE: model used in Par04 example in Geant4
➡ Benchmark CPU time

15

➡ SOFIE faster for single event
➡ optimised by using vdt::exp when evaluating Sigmoid function

CHEP 2024 L. Moneta EP-SFT 16

● VAE model used in Par04 example in Geant4
➡ Benchmark memory usage

➡ SOFIE has less memory overhead for small models
➡ increase memory usage for larger complexity

Benchmark of FastSim Model (2)

CHEP 2024 L. Moneta EP-SFT

Benchmark: Convolutional models
● CPU performance for convolution models

● 2D and 3D model and a Resnet model

17

➡ Better performances in LibTorch and ONNXRuntime
➡ using probably more optimised convolutional kernels

14 layers
(100x100)

5 layers
(32x32x32)

10 layers
(224x224)

CHEP 2024 L. Moneta EP-SFT 18

➡Extensive usage of memory in SOFIE for ConvNets:
➡ no intra-layer optimisations

● Memory usage in convolution models
● 2D and 3D model and a Resnet model

Benchmark: Convolutional models (2)

14 layers
(100x100)

5 layers
(32x32x32)

20 layers
(224x224)

CHEP 2024 L. Moneta EP-SFT

Benchmark on GPU vs CPU (ResNet)

19

✦ Using SYCL GPU
implementation for Reset

✦ 20 conv. layers with input
images of sizes 224x224)

✦ Varying Batch size

see IWOCL paper

https://dl.acm.org/doi/pdf/10.1145/3648115.3648123

CHEP 2024 L. Moneta EP-SFT

Performances for an ATLAS GNN
● One of the GNN1 model used for jet tagging
● Measure time and memory vs the number of input tracks

● input 14 features/track

20

20 40 60 80 100
Number of input tracks

0
5

10
15
20
25
30
35
40
45

Ti
m

e/
ev

en
t (

m
s)

SOFIE OpenBlas

SOFIE MKL

ONNXRuntime

CPU Time vs number of input tracks Memory vs number of input tracks

➡ Similar performances for smaller inputs
➡ better scaling in ONNXRuntime

20 40 60 80 100
Number of input tracks

0

50

100

150

200

250

300

350

M
em

or
y

 (M
B)

SOFIE

ONNXRuntime

CHEP 2024 L. Moneta EP-SFT

Performances for CMS GNN
● Particle Net GNN used in CMS for jet flavour tagging
● measure time and memory usage vs the number of input tracks

● input: 20 features/track

21

Memory vs number of input tracks

CPU Time vs number of input tracks

50 100 150 200 250 300 350 400 450 500
Number of input tracks

20
40
60
80

100
120
140
160
180
200

M
em

or
y

 (M
B)

SOFIE

ONNXRuntime

50 100 150 200 250 300 350 400 450 500
Number of input tracks

0

10

20

30

40

50

Ti
m

e/
ev

en
t (

m
s)

SOFIE OpenBlas

SOFIE MKL

ONNXRuntime

➡ Similar trend as in ATLAS GNN
➡ room for memory and CPU  

optimisation in SOFIE

CHEP 2024 L. Moneta EP-SFT

GNN from GraphNets in SOFIE
● Added SOFIE support for direct parsing of GNN models

● no need to use the ONNX format, direct parsing from the saved Python model

● Initiated with a network developed by LHCb  
(model for full event interpretation (arXiv:2304.08610)

● Message Passing GNN built and trained using the DeepMind’s Graph Nets library
● Important to have an efficient implementation with minimal dependencies
● Support for a dynamic number of nodes/edges
● User can customise architecture to combine different GNN blocks

22

RModel_GNN

https://arxiv.org/abs/2304.08610

CHEP 2024 L. Moneta EP-SFT

Benchmark of GraphNets GNN

● Test inference performance of a toy architecture from LHCb
● scaling number of nodes and edges

23

CPU Usage Memory Usage

▶ 10 faster for small GNN size
▶ comparable for large GNN

▶ similar performances since  
dominated by matrix operations 

▶ No optimisation for memory has
been done so far in SOFIE.

CHEP 2024 L. Moneta EP-SFT

Summary of Benchmarks
● SOFIE benchmark results demonstrate:

● Faster inference for event-level evaluations
● Lower memory consumption in smaller models
● Larger model sizes lead to reduced performance

● Memory usage in SOFIE has not been optimised for multi-layer models
● Fusions of the operator have not been implemented yet from ONNX model
● Better scaling for models parsed from GraphNets  

(overhead in splitting model with large number of operators as done in ONNX
● LibTorch and ONNXRuntime show similar performances (CPU and

memory, with smaller memory usage in LibTorch)
● Less flexibility in converting models from ONNX format to Torch

24

CHEP 2024 L. Moneta EP-SFT

Conclusions
● SOFIE, an easy-to-use inference engine for Deep Learning models, is available

● Supporting several ONNX operators, including some production models from
experiments (e.g complex GNNs)

● Supporting also GNNs based on GraphNets (cannot be easily converted to ONNX)
● Integrated with other ROOT tools (RDataFrame) for ML inference in end-user analysis
● Simple to use in C++ and Python
● Give fully control to users of the generated code and no additional dependency needed
● SOFIE can also be used for storing models (and weights) in ROOT format
● A prototype implementation for GPU using SYCL has been developed

● Future developments according to user needs
● Plans to implement memory optimisations and fusion of ONNX operators
● Extend GPU support (porting to CUDA and/or ALPAKA if interest by experiments)

25

CHEP 2024 L. Moneta EP-SFT

SOFIE References

● SOFIE in ROOT GitHub:
● https://github.com/root-project/root/tree/master/tmva/sofie)

● Example notebooks on using SOFIE:
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Tutorials are also available in the tutorial/tmva directory

● Link to SOFIE code in current ROOT master in GitHub

● Link to PR implementing SOFIE to SYCL code generation

● Link to benchmarks in rootbench 

26

https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/root-project/root/pull/13550
https://github.com/root-project/rootbench/pull/239

Backup Slides

27

CHEP 2024 L. Moneta EP-SFT

Parsing input models

● Parser: from ONNX to SOFIE::RModel class
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("model.onnx");

▶ Parser exists also for (with more limited support)
▶ Native PyTorch files (model.pt files)

SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");

▶ Native Keras files (model.h5 files)
 SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");

28

CHEP 2024 L. Moneta EP-SFT

● Parser: from ONNX to SOFIE::RModel class
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("Model.onnx");

● Code Generation: from RModel to a C++ file (Model.hxx)  
and a weight file (Model.dat)

// generate text code internally
model.Generate();
// write output header file and data weight file
model.OutputGenerated();

▶ Generated code has minimal dependency
▶ only linear algebra library (BLAS) and no ROOT dependency
▶ can be easily integrated in your project

Code Generation

29

namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
 if (filename.empty()) filename = "Linear_event.dat";
 std::ifstream f;
 f.open(filename);
 // read weight data file
 …………………..
}
std::vector<float> infer(float* tensor_input1){

C++ code

CHEP 2024 L. Moneta EP-SFT

SOFIE GNN Support
● Developed C++ classes for representing GNN structure.

● based on SOFIE RModel and the ROperator classes developed for
supporting ONNX.

● SOFIE classes provide the functionality to generate C++ inference code
● Python code (based on PyROOT) for initialising SOFIE classes from the

Graph Nets models

30

RModel_GNN

Graph Nets GNN

CHEP 2024 L. Moneta EP-SFT

GNN Support
● Follow Graph Nets architecture

● A model is described by
■ number of nodes and edges
■ sender/receiver list of edges
■ number of features (for node, edge and global)

● Updating functions on node, edge and global features
■ MLP (Multi-Layer Perceptron)

■ including activation functions  
and layer normalisation

■ Aggregation functions
■ Mean, Sum,…

31

CHEP 2024 L. Moneta EP-SFT

GNN Inference
● Final model is composed by several blocks

chained together
● SOFIE can generate C++ code for  

each single GNN block
● a C++ struct of RTensor’s represents the GNN

data flowing trough the model
● Users can stuck the GNN blocks according to  

the desired architecture in the inference function for
the full model

32

CHEP 2024 L. Moneta EP-SFT

ParticleNet Architecture

● The architecture of ATLAS GNN (see ATL-PHYS-PUB-2022-027)

33

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/

CHEP 2024 L. Moneta EP-SFT

ParticleNet Architecture

● The architecture of Particle Net based on DGCNN and EdgeConv 
(see link)

34

https://cms-ml.github.io/documentation/inference/particlenet.html#__tabbed_1_3

Performance on CPU vs GPU

35

