
https://root.cern

ROOT
Data Analysis Framework

New RooFit PyROOT interfaces for
connections with Machine Learning

Robin Syring, Jonas Rembser, Lorenzo Moneta

23 October, CHEP 2024

https://root.cern

Introduction to RooFit

▶ RooFit: C++ library for statistical data analysis in ROOT
● provides tools for model building, fitting and statistical tests

▶ Recent development focused on:
● Performance boost (preparing for larger datasets of HL-LHC)
● More user friendly interfaces and high-level tools

1/15

In this presentation we’re showing how targeted new features like
using Python functions inside RooFit can unlock the world of
Simulation Based Inference (SBI) in RooFit

This talk builds on top of RooFit developments shown at previous
conferences:

▶ ACAT 2021 talk showcasing pythonizations
▶ CHEP 2023 talk presenting new vectorizing RooFit

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

https://indico.cern.ch/event/855454/contributions/4596763/
https://indico.jlab.org/event/459/contributions/11570/

Simulation Based Inference (SBI)

▶ In case where you don’t have
analytic models for
probability, but you can
sample with MC simulators

▶ Learn (parametrized)
likelihood ratio to do
parameter estimation
without any histograms

2/15

Figure borrowed from Alexander Held’s talk at the PHYSTAT-SBI 2024 workshop

likelihood ratio trick

learn likelihood ratio from MC
samples

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

https://indico.cern.ch/event/1355601/contributions/5812026/attachments/2857980/4999462/20240516_SBI_meets_reality_HEP%20(1).pdf
https://indico.cern.ch/event/1355601/timetable/?view=standard_numbered

Our Goals

1. Enable SBI in RooFit and show tutorial with most basic example

2. Demonstrate our users how they can improve over histogram-based strategies with SBI
(in particular avoid curse of dimensionality)

3. Create more advanced example with real LHC data

4. Spread the word and gather feedback to guide future development

3/15J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

The Hello World of SBI - 1D fit with one parameter

▶ Our “Hello world”: Gaussian with one
parameter and uniform reference distribution

▶ Simple to sample from these distributions
● but don’t sample too much, in real life

sampling is expensive
▶ We also have analytical NLL for reference
▶ Implemented in the rf615 tutorial

Tutorial idea:

▶ MC samples with floating x and μ from Gaussian
and from uniform

▶ train conditional MLP classifier: s(x,μ)
▶ Create yet another MC sample with fixed μ:

the “observed data”
▶ Use classifier score for parameter inference

4/15

analytical

SBI

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

https://root.cern/doc/master/rf615__simulation__based__inference_8py.html

The Hello World of SBI - Results

▶ We used 40000 MC samples for training
▶ Classifier trained naively, no hyperparam. tuning
▶ Real likelihood ratio approximated well
▶ Compared with traditional template morphing:

● Both SBI and morphing do well

5/15

using MLPClassifier
from sklearn

plot with fixed mu for
validation

NLL sum over
“observed” data

template morphing illustration (see also this presentation)

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

https://indico.cern.ch/event/507948/contributions/2028505/attachments/1262169/1866169/atlas-hcomb-morphwshop-intro-v1.pdf

Extending to multiple dimensions

▶ The rf617 tutorial extends the previous
example to 2D:
● two uncorrelated Gaussians for x1, x2 with

params μ1 and μ2
▶ Everything else the same, also the number of

toy MC samples for training (40000 samples)
▶ SBI model has to learn larger phasespace:

performance deteriorates a bit
▶ Template morphing approach suffers bigger

hit in accuracy as expected

This confirms that SBI is very useful for likelihoods
with many parameters and observables

6/15

using MLPClassifier
from sklearn

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

https://root.cern/doc/master/rf617__simulation__based__inference__multidimensional_8py.html

Higgs to four leptons open data example

What about realistic use-cases and real data?

Use-case: quick histogram-free statistical analysis of
Higgs to four leptons in ATLAS Open Data

▶ Prediction is given by a stack of MC samples
▶ One observable: m4l
▶ One parameter: scaling of the signal part, aka. signal

strength μ

7/15

The output of the RDataFrame tutorial df106,
based on ATLAS Open Data

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

https://root.cern.ch/doc/master/df106__HiggsToFourLeptons_8py.html

Higgs to four leptons result

▶ The rf618 tutorial shows this analysis, which follows up on the
dataframe tutorial
● First RooFit tutorial that uses open data!

▶ The final likelihood ratio is implemented with the mixture model
formula as a function of signal strength and classifiers to
discriminate MC samples
● Like this, no parametrized classifier is required

▶ Results agree with what is expected from histograms

8/15

XGBClassifier + mixture model

mixture model formula
from this paper

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

https://root.cern/doc/master/rf618__mixture__models_8py.html
https://arxiv.org/pdf/1506.02169

Vectorized Python functions in RooFit

▶ RooFit can now wrap Python
functions that take and return
NumPy arrays

▶ In the Open Data tutorial, this is
used twice:
● wrap the XGBoost classifier
● implement the mixture

model

9/15

Set up RooRealVars before: m4l, mu, n_sig, n_bkg

def llr_zz_vs_higgs_f(m4l: np.ndarray) -> np.ndarray:

 prob = model_xgb.predict_proba(m4l.T)[:, 0]

 return (1 - prob) / prob

def mixture_model_f(llr, mu) -> np.ndarray:

 # note: mu is ndarray with one element

 return ... # some numpy code

llr_zz_vs_higgs = RooFit. bindFunction("llr_zz_vs_higgs" ,

 llr_zz_vs_higgs_f,

 m4l)

llr_mixture = RooFit. bindFunction("llr_mixture",

 mixture_model_f,

 llr_zz_vs_higgs , mu)

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

Vectorized Python functions in RooFit

▶ Pretend to RooFit the likelihood
ratio is a normalized pdf

▶ We can then use other RooFit
features, like extended
likelihood fits

10/15

pdf = RooWrapperPdf("pdf", "",

 llr_mixture,

 selfNormalized =True)

better do extended fit

n_pred = RooFormulaVar("n_pred", "n_bkg + mu * n_sig" ,

 [mu, n_sig, n_bkg])

pdf_extended = RooExtendPdf("pdf_extended" , "",

 pdf, n_pred)

nll = pdf_extended.createNLL(data)

trick to bypass
auto-normalization

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

Useful pythonizations for these workflows

Which PyROOT features enabled these workflows?

▶ Callbacks to Python from C++ code in PyROOT,
preferably done either by:
● std::function<T> pythonization

11/15

Demo 1: std::function pythonization

ROOT.gInterpreter.Declare("""

int myfunc(std::function<int(int)> func) {

 return func(2);

}

""")

print(ROOT.myfunc(lambda x: x * x))

J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

Useful pythonizations for these workflows

Which PyROOT features enabled these workflows?

▶ Callbacks to Python from C++ code in PyROOT,
preferably done either by:
● std::function<T> pythonization
● virtual dispatching by inheriting from C++

class in Python
▶ Note: implementing callback mechanisms via the

CPython API is more error prone

12/15

Demo 2: C++ virtual dispatching

ROOT.gInterpreter.Declare("""

class MyBaseClass {

public:

 void talk() {

 std::cout << getSpeech() << std::endl;

 }

 virtual std::string getSpeech() {

 return "I'm base!";

 }

};

""")

class MyDerivedClass(ROOT.MyBaseClass):

 def getSpeech(self):

 return "I'm derived in Python!"

MyDerivedClass().talk()
J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

Useful pythonizations for these workflows

Which PyROOT features enabled these workflows?

▶ Callbacks to Python from C++ code in PyROOT,
preferably done either by:
● std::function<T> pythonization
● virtual dispatching by inheriting from C++

class in Python
▶ Note: implementing callback mechanisms via the

CPython API is more error prone
▶ Copy-free data transfer between C++ and Python:

● Python to C++: Implicit conversion from
NumPy arrays to C-style arrays

● C++ to Python: Python buffer interface
support for C-style arrays

● See backup for example

Step up your own interoperability game with this tech!

12/15J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

Demo 2: C++ virtual dispatching

ROOT.gInterpreter.Declare("""

class MyBaseClass {

public:

 void talk() {

 std::cout << getSpeech() << std::endl;

 }

 virtual std::string getSpeech() {

 return "I'm base!";

 }

};

""")

class MyDerivedClass(ROOT.MyBaseClass):

 def getSpeech(self):

 return "I'm derived in Python!"

MyDerivedClass().talk()

RooFits vectorized evaluation interface

▶ New vectorizing RooFit evaluation interface:
presented at previous conferences, provides great
speedup, the default since ROOT 6.32

▶ Requires implementing this method in your RooFit
class, which fills computation result into context object:

● void RooAbsReal::doEval(
 RooFit::EvalContext & ctx
)

▶ This is used together with C++ virtual dispatching from
Python to implement our use-case

Without interface for vectorized evaluation, the SBI
integration would not have been possible.

13/15J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

Speedup with vectorized evaluation for ATLAS Higgs
combination benchmark with ROOT 6.32 (additional
speedup with AD is another story, see ICHEP 2024
presentation)

https://indico.cern.ch/event/1291157/contributions/5889615/
https://indico.cern.ch/event/1291157/contributions/5889615/

Our efforts to be more inviting for developers

We want to make contributing to RooFit’s C++ and Python code as easy as possible:

▶ Standalone RooFit build on top of existing ROOT installation

▶ Proposed workflow to develop RooFit pythonizations without having to build any part of
the ROOT CMake project, along the lines of:

git clone git@github.com:root-project/root.git

cd root/roofit/pythonizations

pip install -e . # install RooFit pythonizations in editable mode

14/15J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

https://github.com/guitargeek/roofit
https://github.com/root-project/root/pull/16608
https://github.com/root-project/root/pull/16608

Conclusions and outlook

▶ New pythonizations allow you to wrap Python functions that work with NumPy arrays
inside RooFit

▶ Main intended use: bring ML models trained with Python libraries inside your RooFit
model to do neural simulation based inference

▶ New tutorials show this for three examples of increasing complexity:
● 1D Gaussian fit with one parameter and Multidimensional Gaussian fit
● Mixture model fit to open Higgs to four leptons data

▶ Many possible ways to continue based on eventual user demand:
● New RooFit classes for operations with neural likelihood ratios (like mixture model)?
● Support specific usehases like EFT analysis?
● Enable serialization of SBI models with RooWorkspace?

This is mostly new territory, easy for early adopters and contributors to make an impact!

15/15J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

Backup - Data transfer between Python and C++ with NumPy arrays

ROOT.gInterpreter.Declare("""

class Squarer {

public:

 Squarer(std::size_t n) : fBuffer(n) {}

 double * call(double * x) {

 for (std::size_t i = 0; i < fBuffer.size(); ++i) {

 fBuffer[i] = x[i] * x[i];

 }

 return fBuffer.data();

 }

private:

 std::vector<double> fBuffer;

};

""")

16/15J. Rembser | CERN EP-SFT | CHEP 2024 | RooFit News

arr = np.array([1., 2., 3.], dtype=np.float64)

squarer = ROOT.Squarer(len(arr))

Pass NumPy array, and also create new NumPy array

from output. Conversions are zero-copy operations!

arr_square = np.frombuffer(squarer.call(arr),

 dtype=np.float64,

 count=len(arr))

print(arr_square)

