
LOCATIONNick Manganelli - CHEP 2024 - Krakow

On-Demand Column-Joining for End-User Analysis

Nick Manganelli, Ben Galewsky, Burt Holzman

Lindsey Gray, Keith Ulmer

Conference on Computing in High Energy and Nuclear Physics

October 21 - 25 Krakow, Poland

1

Nick Manganelli - CHEP 2024 - Krakow

Motivation

2

Figure 1. Estimated computing resource needs for CMS [10]. Shown are the modeled annual projec-
tions of total CPU and disk needs for CMS through Run 4. The estimated needs for each computing
model scenario are shown by the blue lines. The gray band shows the projected resource availability
for an example scenario that extrapolates the 2021 CMS pledged resources using an annual increase in
available resources of between 10% and 20%. This assumes current WLCG cost projections [12] and a
warranty + 3 years replacement cycle of hardware.

2 Grand Challenges for HL-LHC Computing and Software

In order to e↵ectively focus and structure the U.S. CMS R&D e↵orts, we organize the inno-
vation, research, and development needs for HL-LHC computing into the four Grand Chal-
lenges that encompass the advances needed for HL-LHC computing to succeed:

(1) Modernizing Physics Software and Improving Algorithms

Exploit novel algorithms, including ML/AI, reduce algorithmic complexity, increase
computational intensity, and provide core software infrastructure to enable e↵ective use
of modern hardware and accelerators. The work is organized in the following work pack-
ages:

• Core Software Framework and Software Portability
• Establish Performance Metric and Performance Baseline for Physics Software
• U.S. Contributions to the Charged Particle Tracking Software
• U.S. Contributions to Software for High Granularity Calorimeter
• U.S. Contributions to CMS Advanced Algorithms Work

(2) Building Infrastructure for Exabyte-Scale Datasets

Build infrastructure to archive, store, transfer, and provide access to exabyte-scale
datasets. Explore data lakes and custodial storage: establish a technology and cost model
for custodial/archival storage facilities which manages operations costs, and optimizes
hardware costs. Orchestrate computational services and data access, provide intelligent

Figure 1. Estimated computing resource needs for CMS [10]. Shown are the modeled annual projec-
tions of total CPU and disk needs for CMS through Run 4. The estimated needs for each computing
model scenario are shown by the blue lines. The gray band shows the projected resource availability
for an example scenario that extrapolates the 2021 CMS pledged resources using an annual increase in
available resources of between 10% and 20%. This assumes current WLCG cost projections [12] and a
warranty + 3 years replacement cycle of hardware.

2 Grand Challenges for HL-LHC Computing and Software

In order to e↵ectively focus and structure the U.S. CMS R&D e↵orts, we organize the inno-
vation, research, and development needs for HL-LHC computing into the four Grand Chal-
lenges that encompass the advances needed for HL-LHC computing to succeed:

(1) Modernizing Physics Software and Improving Algorithms

Exploit novel algorithms, including ML/AI, reduce algorithmic complexity, increase
computational intensity, and provide core software infrastructure to enable e↵ective use
of modern hardware and accelerators. The work is organized in the following work pack-
ages:

• Core Software Framework and Software Portability
• Establish Performance Metric and Performance Baseline for Physics Software
• U.S. Contributions to the Charged Particle Tracking Software
• U.S. Contributions to Software for High Granularity Calorimeter
• U.S. Contributions to CMS Advanced Algorithms Work

(2) Building Infrastructure for Exabyte-Scale Datasets

Build infrastructure to archive, store, transfer, and provide access to exabyte-scale
datasets. Explore data lakes and custodial storage: establish a technology and cost model
for custodial/archival storage facilities which manages operations costs, and optimizes
hardware costs. Orchestrate computational services and data access, provide intelligent

Nick Manganelli - CHEP 2024 - Krakow

Motivation

• As the LHC moves into the HL-LHC era, the volume of data to be stored and processed will grow significantly (x10)

• CMS AOD (450kB/event) - Limited Availability, high processing costs, data: C++ classes

• MiniAOD (45kB/event) - Suitable for nearly all analyses, still large, still significant processing, data: C++ classes

• NanoAOD(4kB/event) - Suitable for half of analyses, analysis-ready, data: primitives

2

Figure 1. Estimated computing resource needs for CMS [10]. Shown are the modeled annual projec-
tions of total CPU and disk needs for CMS through Run 4. The estimated needs for each computing
model scenario are shown by the blue lines. The gray band shows the projected resource availability
for an example scenario that extrapolates the 2021 CMS pledged resources using an annual increase in
available resources of between 10% and 20%. This assumes current WLCG cost projections [12] and a
warranty + 3 years replacement cycle of hardware.

2 Grand Challenges for HL-LHC Computing and Software

In order to e↵ectively focus and structure the U.S. CMS R&D e↵orts, we organize the inno-
vation, research, and development needs for HL-LHC computing into the four Grand Chal-
lenges that encompass the advances needed for HL-LHC computing to succeed:

(1) Modernizing Physics Software and Improving Algorithms

Exploit novel algorithms, including ML/AI, reduce algorithmic complexity, increase
computational intensity, and provide core software infrastructure to enable e↵ective use
of modern hardware and accelerators. The work is organized in the following work pack-
ages:

• Core Software Framework and Software Portability
• Establish Performance Metric and Performance Baseline for Physics Software
• U.S. Contributions to the Charged Particle Tracking Software
• U.S. Contributions to Software for High Granularity Calorimeter
• U.S. Contributions to CMS Advanced Algorithms Work

(2) Building Infrastructure for Exabyte-Scale Datasets

Build infrastructure to archive, store, transfer, and provide access to exabyte-scale
datasets. Explore data lakes and custodial storage: establish a technology and cost model
for custodial/archival storage facilities which manages operations costs, and optimizes
hardware costs. Orchestrate computational services and data access, provide intelligent

Figure 1. Estimated computing resource needs for CMS [10]. Shown are the modeled annual projec-
tions of total CPU and disk needs for CMS through Run 4. The estimated needs for each computing
model scenario are shown by the blue lines. The gray band shows the projected resource availability
for an example scenario that extrapolates the 2021 CMS pledged resources using an annual increase in
available resources of between 10% and 20%. This assumes current WLCG cost projections [12] and a
warranty + 3 years replacement cycle of hardware.

2 Grand Challenges for HL-LHC Computing and Software

In order to e↵ectively focus and structure the U.S. CMS R&D e↵orts, we organize the inno-
vation, research, and development needs for HL-LHC computing into the four Grand Chal-
lenges that encompass the advances needed for HL-LHC computing to succeed:

(1) Modernizing Physics Software and Improving Algorithms

Exploit novel algorithms, including ML/AI, reduce algorithmic complexity, increase
computational intensity, and provide core software infrastructure to enable e↵ective use
of modern hardware and accelerators. The work is organized in the following work pack-
ages:

• Core Software Framework and Software Portability
• Establish Performance Metric and Performance Baseline for Physics Software
• U.S. Contributions to the Charged Particle Tracking Software
• U.S. Contributions to Software for High Granularity Calorimeter
• U.S. Contributions to CMS Advanced Algorithms Work

(2) Building Infrastructure for Exabyte-Scale Datasets

Build infrastructure to archive, store, transfer, and provide access to exabyte-scale
datasets. Explore data lakes and custodial storage: establish a technology and cost model
for custodial/archival storage facilities which manages operations costs, and optimizes
hardware costs. Orchestrate computational services and data access, provide intelligent

Nick Manganelli - CHEP 2024 - Krakow

Motivation

• As the LHC moves into the HL-LHC era, the volume of data to be stored and processed will grow significantly (x10)

• CMS AOD (450kB/event) - Limited Availability, high processing costs, data: C++ classes

• MiniAOD (45kB/event) - Suitable for nearly all analyses, still large, still significant processing, data: C++ classes

• NanoAOD(4kB/event) - Suitable for half of analyses, analysis-ready, data: primitives

• Several competing needs create an impedance mismatch

• Disk space comes at a premium

• High throughput requires high availability and duplication across sites around the world

• Traditional analysis workflows tend to duplicate information from large data-tiers (Mini/AOD) via custom “Ntuples”, in order to create more streamlined but
self-contained input data - for the half of analyses able to use NanoAOD (a “generalized” ntuple), it’s nearly optimal and can obviate the need for intermediate
Ntuples

• Fast turnaround (for analyzers) is paramount to getting the science done!

2

Figure 1. Estimated computing resource needs for CMS [10]. Shown are the modeled annual projec-
tions of total CPU and disk needs for CMS through Run 4. The estimated needs for each computing
model scenario are shown by the blue lines. The gray band shows the projected resource availability
for an example scenario that extrapolates the 2021 CMS pledged resources using an annual increase in
available resources of between 10% and 20%. This assumes current WLCG cost projections [12] and a
warranty + 3 years replacement cycle of hardware.

2 Grand Challenges for HL-LHC Computing and Software

In order to e↵ectively focus and structure the U.S. CMS R&D e↵orts, we organize the inno-
vation, research, and development needs for HL-LHC computing into the four Grand Chal-
lenges that encompass the advances needed for HL-LHC computing to succeed:

(1) Modernizing Physics Software and Improving Algorithms

Exploit novel algorithms, including ML/AI, reduce algorithmic complexity, increase
computational intensity, and provide core software infrastructure to enable e↵ective use
of modern hardware and accelerators. The work is organized in the following work pack-
ages:

• Core Software Framework and Software Portability
• Establish Performance Metric and Performance Baseline for Physics Software
• U.S. Contributions to the Charged Particle Tracking Software
• U.S. Contributions to Software for High Granularity Calorimeter
• U.S. Contributions to CMS Advanced Algorithms Work

(2) Building Infrastructure for Exabyte-Scale Datasets

Build infrastructure to archive, store, transfer, and provide access to exabyte-scale
datasets. Explore data lakes and custodial storage: establish a technology and cost model
for custodial/archival storage facilities which manages operations costs, and optimizes
hardware costs. Orchestrate computational services and data access, provide intelligent

Figure 1. Estimated computing resource needs for CMS [10]. Shown are the modeled annual projec-
tions of total CPU and disk needs for CMS through Run 4. The estimated needs for each computing
model scenario are shown by the blue lines. The gray band shows the projected resource availability
for an example scenario that extrapolates the 2021 CMS pledged resources using an annual increase in
available resources of between 10% and 20%. This assumes current WLCG cost projections [12] and a
warranty + 3 years replacement cycle of hardware.

2 Grand Challenges for HL-LHC Computing and Software

In order to e↵ectively focus and structure the U.S. CMS R&D e↵orts, we organize the inno-
vation, research, and development needs for HL-LHC computing into the four Grand Chal-
lenges that encompass the advances needed for HL-LHC computing to succeed:

(1) Modernizing Physics Software and Improving Algorithms

Exploit novel algorithms, including ML/AI, reduce algorithmic complexity, increase
computational intensity, and provide core software infrastructure to enable e↵ective use
of modern hardware and accelerators. The work is organized in the following work pack-
ages:

• Core Software Framework and Software Portability
• Establish Performance Metric and Performance Baseline for Physics Software
• U.S. Contributions to the Charged Particle Tracking Software
• U.S. Contributions to Software for High Granularity Calorimeter
• U.S. Contributions to CMS Advanced Algorithms Work

(2) Building Infrastructure for Exabyte-Scale Datasets

Build infrastructure to archive, store, transfer, and provide access to exabyte-scale
datasets. Explore data lakes and custodial storage: establish a technology and cost model
for custodial/archival storage facilities which manages operations costs, and optimizes
hardware costs. Orchestrate computational services and data access, provide intelligent

Nick Manganelli - CHEP 2024 - Krakow

Data Duplication in a Typical Analysis

3

Nick Manganelli - CHEP 2024 - Krakow

Data Duplication in a Typical Analysis

• An analysis may be able to use NanoAOD(-like inputs), but must store
expensive ML outputs

• Typical approach: Duplicate all necessary input data from
NanoAOD + added ML information into a custom NanoAOD (May
permit dropping columns or certain events, but these decrease
flexibility)

3

Nick Manganelli - CHEP 2024 - Krakow

Data Duplication in a Typical Analysis

• An analysis may be able to use NanoAOD(-like inputs), but must store
expensive ML outputs

• Typical approach: Duplicate all necessary input data from
NanoAOD + added ML information into a custom NanoAOD (May
permit dropping columns or certain events, but these decrease
flexibility)

• An analysis may have 90% of data needs met by NanoAOD, but the
additional requirements drive it to use MiniAOD or AOD

• Custom NanoAOD variant (superset of central variation) or custom
NTuple format created from larger datatier (labor and compute-
intensive), duplicating a significant amount of centrally-stored events
in Nano and Mini formats (inefficient disk utilization)

3

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward

4

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

4

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

4

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

4

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

4

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

• Ideally should support joining with data from larger data-tiers in a
near-seamless fashion (not requiring manual derivation)

4

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

• Ideally should support joining with data from larger data-tiers in a
near-seamless fashion (not requiring manual derivation)

• Needs to be part of the scikit-hep part of the ecosystem

4

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

• Ideally should support joining with data from larger data-tiers in a
near-seamless fashion (not requiring manual derivation)

• Needs to be part of the scikit-hep part of the ecosystem

4

Source A
(TTree)

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

• Ideally should support joining with data from larger data-tiers in a
near-seamless fashion (not requiring manual derivation)

• Needs to be part of the scikit-hep part of the ecosystem

4

Source A
(TTree)

Conversion
(ServiceX)

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

• Ideally should support joining with data from larger data-tiers in a
near-seamless fashion (not requiring manual derivation)

• Needs to be part of the scikit-hep part of the ecosystem

• * Transient converted dataset ** Transformation as necessary

4

Source A
(TTree)

Conversion
(ServiceX)

Source A*
(Parquet)

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

• Ideally should support joining with data from larger data-tiers in a
near-seamless fashion (not requiring manual derivation)

• Needs to be part of the scikit-hep part of the ecosystem

• * Transient converted dataset ** Transformation as necessary

4

Source A
(TTree)

Source B
(*)

Conversion
(ServiceX)

Source A*
(Parquet)

**

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

• Ideally should support joining with data from larger data-tiers in a
near-seamless fashion (not requiring manual derivation)

• Needs to be part of the scikit-hep part of the ecosystem

• * Transient converted dataset ** Transformation as necessary

4

Source A
(TTree)

Source B
(*)

Conversion
(ServiceX)

Joining (Trino)

Source A*
(Parquet)

**

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

• Ideally should support joining with data from larger data-tiers in a
near-seamless fashion (not requiring manual derivation)

• Needs to be part of the scikit-hep part of the ecosystem

• * Transient converted dataset ** Transformation as necessary

4

Source A
(TTree)

Source B
(*)

Conversion
(ServiceX)

Joining (Trino)

Source A*
(Parquet)

A + B

**

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Joins: A Way Forward
• The capability to join NanoAOD data on-demand with auxiliary

information can obviate the need for much data duplication

• Needs to be: fast, scaleable, reliable

• Must support ragged data (vectors/arrays of primitives per-event,
not just scalars)

• Needs to support (in CMS context) NanoAOD + NanoAOD-like
inputs (ML inference results, subsets of information derived from
parent datatier like MiniAOD with minimal duplication)

• Ideally should support joining with data from larger data-tiers in a
near-seamless fashion (not requiring manual derivation)

• Needs to be part of the scikit-hep part of the ecosystem

• * Transient converted dataset ** Transformation as necessary

4

Source A
(TTree)

Source B
(*)

Conversion
(ServiceX)

Joining (Trino)

Source A*
(Parquet)

User
Analysis

A + B

**

https://scikit-hep.org/

Nick Manganelli - CHEP 2024 - Krakow

Trino (as described by o1-mini)
Trino is a high-performance, distributed SQL query engine designed for running
interactive analytic queries against various data sources of all sizes. Originally developed
by Facebook under the name Presto, Trino was forked in 2020 by the original creators to
foster a more open and community-driven development model. Trino has since evolved
into a robust, open-source project maintained by the Trino Software Foundation.

• Key Features of Trino:

• Distributed Architecture

• SQL Compatibility

• Federated Querying

• Performance Optimization

• Extensibility and Customization:

• Plugin Architecture: Users can develop custom connectors and functions to
extend Trino's capabilities.

• Community-Driven: Being open-source, it benefits from contributions and
innovations from a broad community of developers and organizations.

• Security and Access Control:

• Authentication and Authorization: Supports various security protocols and

integrates with enterprise security systems.

• Data Encryption: Ensures data privacy through encryption in transit and at rest.

5

Nick Manganelli - CHEP 2024 - Krakow

Benchmarking Trino

• We’ve prepared several benchmark datasets using
CMS OpenData

• Source datasets ranging from ~2GB to ~500GB
(converted to parquet, ZSTD:5, full NanoAOD)

• GNN Inference (parquet, 8 scalar-float columns /
event)

• fully-aligned, intra-file-reversed, intra-file-
shuffled, globally-shuffled variants

• Testing various combinations (from a few scalar
columns from source + inference, to dozens of
ragged fields in source + all 8 inference columns)

6

A:1
A:2
…

A:M

Source File 1

Source File A

1:1
1:2
…
1:N

Nick Manganelli - CHEP 2024 - Krakow

Benchmarking Trino

• We’ve prepared several benchmark datasets using
CMS OpenData

• Source datasets ranging from ~2GB to ~500GB
(converted to parquet, ZSTD:5, full NanoAOD)

• GNN Inference (parquet, 8 scalar-float columns /
event)

• fully-aligned, intra-file-reversed, intra-file-
shuffled, globally-shuffled variants

• Testing various combinations (from a few scalar
columns from source + inference, to dozens of
ragged fields in source + all 8 inference columns)

6

A:1
A:2
…

A:M

1:1
1:2
…
1:N

Source File 1

Source File A

Inference File 1
1:1
1:2
…
1:N

A:1
A:2
…

A:M

Inference File A

Aligned

Nick Manganelli - CHEP 2024 - Krakow

Benchmarking Trino

• We’ve prepared several benchmark datasets using
CMS OpenData

• Source datasets ranging from ~2GB to ~500GB
(converted to parquet, ZSTD:5, full NanoAOD)

• GNN Inference (parquet, 8 scalar-float columns /
event)

• fully-aligned, intra-file-reversed, intra-file-
shuffled, globally-shuffled variants

• Testing various combinations (from a few scalar
columns from source + inference, to dozens of
ragged fields in source + all 8 inference columns)

6

A:1
A:2
…

A:M

1:1
1:2
…
1:N

Source File 1

Source File A

Inference File 1
1:N

1:N-1
…
1:1

1:1
1:2
…
1:N

A:1
A:2
…

A:M

Inference File A
A:M

A:M-1
…
A:1

Aligned
Reversed

Nick Manganelli - CHEP 2024 - Krakow

Benchmarking Trino

• We’ve prepared several benchmark datasets using
CMS OpenData

• Source datasets ranging from ~2GB to ~500GB
(converted to parquet, ZSTD:5, full NanoAOD)

• GNN Inference (parquet, 8 scalar-float columns /
event)

• fully-aligned, intra-file-reversed, intra-file-
shuffled, globally-shuffled variants

• Testing various combinations (from a few scalar
columns from source + inference, to dozens of
ragged fields in source + all 8 inference columns)

6

A:1
A:2
…

A:M

1:1
1:2
…
1:N

Source File 1

Source File A

Inference File 1
1:N

1:N-1
…
1:1

1:1
1:2
…
1:N

1:7
1:945

…
1:*

A:1
A:2
…

A:M

Inference File A
A:M

A:M-1
…
A:1

A:98
A:3
…
A:*

Aligned
Reversed

Shuffled

Nick Manganelli - CHEP 2024 - Krakow

Benchmarking Trino

• We’ve prepared several benchmark datasets using
CMS OpenData

• Source datasets ranging from ~2GB to ~500GB
(converted to parquet, ZSTD:5, full NanoAOD)

• GNN Inference (parquet, 8 scalar-float columns /
event)

• fully-aligned, intra-file-reversed, intra-file-
shuffled, globally-shuffled variants

• Testing various combinations (from a few scalar
columns from source + inference, to dozens of
ragged fields in source + all 8 inference columns)

6

A:1
A:2
…

A:M

1:1
1:2
…
1:N

Source File 1

Source File A

Inference File 1
1:N

1:N-1
…
1:1

1:1
1:2
…
1:N

1:7
1:945

…
1:*

A:1
A:2
…

A:M

Inference File A
A:M

A:M-1
…
A:1

A:98
A:3
…
A:*

3:5
A:M

8:104
…
1:1
…

9:48
…
A:4
:

Aligned
Reversed

Shuffled
Globally Shuffled

Nick Manganelli - CHEP 2024 - Krakow

Cluster Configuration

7

• Heterogeneous Cluster

• 3 Nodes: Intel Xeon Silver
4212 @ 2.20GHz (22 cores)
- 88GB RAM - Ceph on
NVME storage

• 1 Node: Intel Xeon Silver
4210 @ 2.20GHz (39 cores)
- 100GB RAM - Ceph on
NVME storage

• Shared resource

• 10 Workers for Trino on
Cluster 19

Exploratory Environment at FNAL

• Deployed in FNAL
OpenShift cluster

• Shared Mino Object
Store

Shared Minio
Object Store

Hive Metastore

Trino Coordinator

Trino Worker

Trino Worker

Trino Worker

10 Workers

See more in Ben’s slides:
https://indico.cern.ch/event/1369601/contributions/5883602/

https://indico.cern.ch/event/1369601/contributions/5883602/

Nick Manganelli - CHEP 2024 - Krakow

Small Dataset Join Benchmark

8

 single_top_s_chan_infer
 Query 20240927_183428_00028_au69m, FINISHED, 11 nodes
 Splits: 862 total, 862 done (100.00%)
 16.64 [34.4M rows, 1.48GB] [2.07M rows/s, 91.3MB/s]

 trino:servicex> select count(*) from single_top_s_chan_join;
 _col0

 2867199
 (1 row)

 single_top_s_chan_infer_reversed
 Query 20240927_184139_00033_au69m, FINISHED, 11 nodes
 Splits: 862 total, 862 done (100.00%)
 14.54 [34.4M rows, 1.48GB] [2.37M rows/s, 104MB/s]

 trino:servicex> select count(*) from single_top_s_chan_join;
 _col0

 2867199
 (1 row)

 single_top_s_chan_infer_intrafileshuffle
 Query 20240927_184318_00036_au69m, FINISHED, 11 nodes
 Splits: 862 total, 862 done (100.00%)
 15.49 [34.4M rows, 1.5GB] [2.22M rows/s, 98.9MB/s]

 select count(*) from single_top_s_chan_join;
 _col0

 2867199
 (1 row)

 single_top_s_chan_infer_globalshuffle
 Query 20240927_184518_00039_au69m, FINISHED, 11 nodes
 Splits: 859 total, 859 done (100.00%)
 15.00 [34.4M rows, 1.5GB] [2.29M rows/s, 102MB/s]

 select count(*) from single_top_s_chan_join;
 _col0

 2867199

• Dataset with 2.8M events (rows),
ragged primitive data for most columns
(3.7GB source + 93MB inference)

• Encouraging result: seemingly
invariant* to permutations being
joined

 CREATE TABLE single_top_s_chan_join

 WITH (

 format = 'PARQUET',

 external_location = 's3a://servicex/nanotest/parquet/AGC/single_top_s_chan/join_out/'

)

 AS

 SELECT single_top_s_chan.run, single_top_s_chan.event, single_top_s_chan.luminosityBlock,

 Electron_pt,

 Electron_eta,

 Electron_phi,

 Electron_cutBased,

 Electron_ip3d,

 Electron_sip3d,

 Electron_mass,

 Electron_pfRelIso03_all,

 Electron_pfRelIso03_chg,

 Muon_pt,

 Muon_eta,

 Muon_phi,

 Muon_mass,

 Muon_tightId,

 Muon_ip3d,

 Muon_sip3d,

 Muon_pfRelIso04_all,

 Jet_mass,

 Jet_pt,

 Jet_eta,

 Jet_phi,

 Jet_jetId,

 Jet_btagCSVV2,

 Jet_btagDeepFlavB,

 Jet_btagDeepFlavCvB,

 Jet_btagDeepFlavCvL,

 Jet_btagDeepFlavQG,

 Jet_chEmEF,

 Jet_chHEF,

 Jet_muEF,

 Jet_neEmEF,

 Jet_neHEF

 Jet_puIdDisc,

 Jet_qgl,

 Jet_rawFactor,

 Jet_bRegCorr,

 Jet_bRegRes,

 Jet_electronIdx1,

 Jet_electronIdx2,

 Jet_muonIdx1,

 Jet_muonIdx2,

 GNN_p1, GNN_p2, GNN_p3, GNN_p4

 FROM single_top_s_chan

 JOIN single_top_s_chan_infer ON

 single_top_s_chan.run = single_top_s_chan_infer.run AND

 single_top_s_chan.luminosityBlock = single_top_s_chan_infer.luminosityBlock AND

 single_top_s_chan.event = single_top_s_chan_infer.event;

2.2M events/s

* stat fluctuations, warm-caching to be eliminated as sources of differences in high-stat testing

s3a://servicex/nanotest/parquet/AGC/single_top_s_chan/join_out/

Nick Manganelli - CHEP 2024 - Krakow9

“All that glitters is not gold”

Nick Manganelli - CHEP 2024 - Krakow

Large Dataset Join Benchmark

9

“All that glitters is not gold”

Nick Manganelli - CHEP 2024 - Krakow

Large Dataset Join Benchmark

9

• Largest dataset of 500GB (ttbar) crashed
trino deployment*“All that glitters is not gold”

Nick Manganelli - CHEP 2024 - Krakow

Large Dataset Join Benchmark

9

• Largest dataset of 500GB (ttbar) crashed
trino deployment*“All that glitters is not gold”

* Incorrect resource limits set for trino in OKD

Nick Manganelli - CHEP 2024 - Krakow

Large Dataset Join Benchmark

9

• Largest dataset of 500GB (ttbar) crashed
trino deployment*

• May indicate that partitioning the joins into
dask-task sized elements will be a
necessity to use trino as our distributed
SQL engine (already a desirable element, as
described later)

“All that glitters is not gold”

* Incorrect resource limits set for trino in OKD

Nick Manganelli - CHEP 2024 - Krakow

Benchmark Output Analysis Formats

Test of a simple pseudo-analysis running on
various root TTree and parquet files, in various
compression schemes

10

Benchmark of “analysis” read-speed
Stats computed over 7 runs, 5 loops (timeit)

1,334,428 events processed

Nick Manganelli - CHEP 2024 - Krakow

Coffea analysis
• coffea brings together individual scikit-hep elements needed for a full analysis, and

provides schema-application, corrections, scaleout(-patterns)

• and often the first place something is prototyped and tested before being spun out
into it’s own package

• Tightly integrated with dask:

• User’s analysis code is broadcast over datasets to create task graphs

• Typetracer setup per dataset records operations (lazy, no data executed on)

• Task graphs are distributed to compute resources to execute

• Results returned to user’s client (histograms, small arrays, locations of output root/
parquet files, …)

• Task graphs are key: allow programmatic optimization of analysis, understanding
necessary inputs as mapped to requested outputs

11

numpythia

hepunits

histoprint
uhi

pyhepmc

pylhe

nndrone

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Dataset 1, Chunk 1 (N events)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Transform A

Dataset 1, Chunk 1 (N events)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Transform A
Load B Dataset 1, Chunk 1 (N events)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Transform A
Load B

Join
Dataset 1, Chunk 1 (N events)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate
Dataset 1, Chunk 1 (N events)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output
Dataset 1, Chunk 1 (N events)

Nick Manganelli - CHEP 2024 - Krakow

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output
Dataset 1, Chunk 1 (N events)

Dataset 2, Chunk X (M events)

Nick Manganelli - CHEP 2024 - Krakow

Load A

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output

Load B
Join Manipulate Output

Dataset 1, Chunk 1 (N events)

Dataset 2, Chunk X (M events)

Nick Manganelli - CHEP 2024 - Krakow

Load A

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output

Load B
Join Manipulate Output

Dataset 1, Chunk 1 (N events)

Dataset 2, Chunk X (M events)

Dataset Z, Chunk Y

Nick Manganelli - CHEP 2024 - Krakow

Transform C
Transform B

Load A

Joins R&D (End-to-End Processing with dask)

12

Source A
(Format A)

Source B
(Format B)

Source C?
(Format C)

coffea
(Build joined
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output

Load B
Join Manipulate Output

Join Manipulate Output
Transform A

Dataset 1, Chunk 1 (N events)

Dataset 2, Chunk X (M events)

Dataset Z, Chunk Y

Nick Manganelli - CHEP 2024 - Krakow

Ongoing and Future Developments

13

Nick Manganelli - CHEP 2024 - Krakow

Ongoing and Future Developments
• Baseline and Optional Targets of US CMS HL-LHC R&D Program (2024) in collaboration with IRIS-HEP

• Building Typetracer for pseudo-joined data

• Generation of ServiceX conversion tasks

• Building Trino join queries, embedding of joined-output into daskified analysis

• Updated and expand ServiceX MiniAOD conversion/selection of auxiliary information to be joined with NanoAOD (Stretch Goal)

13

Nick Manganelli - CHEP 2024 - Krakow

Ongoing and Future Developments
• Baseline and Optional Targets of US CMS HL-LHC R&D Program (2024) in collaboration with IRIS-HEP

• Building Typetracer for pseudo-joined data

• Generation of ServiceX conversion tasks

• Building Trino join queries, embedding of joined-output into daskified analysis

• Updated and expand ServiceX MiniAOD conversion/selection of auxiliary information to be joined with NanoAOD (Stretch Goal)

• Funded by LPC Distinguished Researcher Program (2025)

• Native Ceph Object Store usage (Currently object -> file -> object)

13

Nick Manganelli - CHEP 2024 - Krakow

Ongoing and Future Developments
• Baseline and Optional Targets of US CMS HL-LHC R&D Program (2024) in collaboration with IRIS-HEP

• Building Typetracer for pseudo-joined data

• Generation of ServiceX conversion tasks

• Building Trino join queries, embedding of joined-output into daskified analysis

• Updated and expand ServiceX MiniAOD conversion/selection of auxiliary information to be joined with NanoAOD (Stretch Goal)

• Funded by LPC Distinguished Researcher Program (2025)

• Native Ceph Object Store usage (Currently object -> file -> object)

• Future developments within US CMS and IRIS-HEP

• Kafka integration for streaming output

• RNTuple support in trino

13

Nick Manganelli - CHEP 2024 - Krakow

Specific Example Use-cases

14

Nick Manganelli - CHEP 2024 - Krakow

Specific Example Use-cases

• Augmenting with objects from MiniAOD datatier

• Adding ParticleFlow candidates for reclustering

• Full set of ML taggers

14

Nick Manganelli - CHEP 2024 - Krakow

Specific Example Use-cases

• Augmenting with objects from MiniAOD datatier

• Adding ParticleFlow candidates for reclustering

• Full set of ML taggers

• Caching Experiment-wide objects (systematic variations, CMS ParticleTransformer,
FlashSim?)

• Versioning potential

14

Nick Manganelli - CHEP 2024 - Krakow

Specific Example Use-cases

• Augmenting with objects from MiniAOD datatier

• Adding ParticleFlow candidates for reclustering

• Full set of ML taggers

• Caching Experiment-wide objects (systematic variations, CMS ParticleTransformer,
FlashSim?)

• Versioning potential

• Caching Analysis-specific non-ML (derived quantities, systematic variations) and ML
results (event, object classifiers)

14

Nick Manganelli - CHEP 2024 - Krakow

Funding Acknowledgements

15

This work was performed with support of the U.S. CMS Software and Computing Operations Program under the U.S. CMS HL-
LHC R&D Initiative. This work was partially supported by Fermilab operated by Fermi Research Alliance, LLC under Contract
No. DE-AC02-07CH11359 with the Department of Energy, and by the National Science Foundation under grant ACI-1450377 and
Cooperative Agreement PHY-1120138. Additional support came from the Department of Energy DE-SC0010005 grant.
This project is supported by the National Science Foundation under Cooperative Agreements OAC-1836650 and PHY-2323298.
Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Nick Manganelli - CHEP 2024 - Krakow

BACKUP

16

Nick Manganelli - CHEP 2024 - Krakow

US CMS Software and Computing - HL-LHC R&D (WBS4)

17

Figure 1. Estimated computing resource needs for CMS [10]. Shown are the modeled annual projec-
tions of total CPU and disk needs for CMS through Run 4. The estimated needs for each computing
model scenario are shown by the blue lines. The gray band shows the projected resource availability
for an example scenario that extrapolates the 2021 CMS pledged resources using an annual increase in
available resources of between 10% and 20%. This assumes current WLCG cost projections [12] and a
warranty + 3 years replacement cycle of hardware.

2 Grand Challenges for HL-LHC Computing and Software

In order to e↵ectively focus and structure the U.S. CMS R&D e↵orts, we organize the inno-
vation, research, and development needs for HL-LHC computing into the four Grand Chal-
lenges that encompass the advances needed for HL-LHC computing to succeed:

(1) Modernizing Physics Software and Improving Algorithms

Exploit novel algorithms, including ML/AI, reduce algorithmic complexity, increase
computational intensity, and provide core software infrastructure to enable e↵ective use
of modern hardware and accelerators. The work is organized in the following work pack-
ages:

• Core Software Framework and Software Portability
• Establish Performance Metric and Performance Baseline for Physics Software
• U.S. Contributions to the Charged Particle Tracking Software
• U.S. Contributions to Software for High Granularity Calorimeter
• U.S. Contributions to CMS Advanced Algorithms Work

(2) Building Infrastructure for Exabyte-Scale Datasets

Build infrastructure to archive, store, transfer, and provide access to exabyte-scale
datasets. Explore data lakes and custodial storage: establish a technology and cost model
for custodial/archival storage facilities which manages operations costs, and optimizes
hardware costs. Orchestrate computational services and data access, provide intelligent

Nick Manganelli - CHEP 2024 - Krakow

FriendTrees

• Traditional ROOT workflows have some functionality that can alleviate the data
duplication issues, via the FriendTree mechanism

• Supports joining entry-by-entry events in two separate (groups of) files

• Can accommodate some situations with non-aligned (out-of-order) joins
with BuildIndex (major + minor keys, i.e. run + event)

• https://root.cern/doc/master/
classTTree.html#a3f6b5bb591ff7a5bd0b06eea6c12b998

•

18

https://root.cern/doc/master/classTTree.html#a3f6b5bb591ff7a5bd0b06eea6c12b998
https://root.cern/doc/master/classTTree.html#a3f6b5bb591ff7a5bd0b06eea6c12b998

Nick Manganelli - CHEP 2024 - Krakow

O1-mini’s description of TTrees, Parquet, RNTuple
2. Technology Descriptions

a. ROOT TTrees

ROOT TTrees are a fundamental data structure within the ROOT framework, widely used in HEP for storing and analyzing large datasets.
• Structure: TTrees store data in a hierarchical, tree-like structure with branches representing different variables (columns).
• Features:

◦ Custom Compression: Supports various compression algorithms tailored for HEP data.
◦ Provenance Tracking: Maintains metadata and provenance information essential for reproducible research.
◦ Integration with ROOT: Seamless integration with ROOT's data analysis tools and C++/Python interfaces.

b. Apache Parquet

Apache Parquet is an open-source, columnar storage format optimized for performance and interoperability across different data processing frameworks.
• Structure: Stores data in column chunks, enabling efficient compression and encoding schemes.
• Features:

◦ Language Agnostic: Supports multiple programming languages (e.g., Java, C++, Python).
◦ Wide Ecosystem Support: Integrates with big data tools like Apache Spark, Hive, and Pandas.
◦ Efficient Compression: Utilizes advanced compression techniques to reduce storage footprint.

c. ROOT RNTuple

ROOT RNTuple is a newer addition to the ROOT framework, designed to address some limitations of TTrees and to provide a modern, efficient, and scalable storage solution.
• Structure: Similar to TTrees but optimized for better performance and scalability.
• Features:

◦ Asynchronous I/O: Enhances read/write performance by supporting non-blocking operations.
◦ Better Parallelism: Designed to leverage multi-threading and distributed computing environments.
◦ Improved Data Model: Offers a more flexible and robust data schema compared to TTrees.

19

Nick Manganelli - CHEP 2024 - Krakow

Trino Use Cases (as described by o1-mini)

• Use Cases of Trino
• Interactive Analytics:

• Ideal for business intelligence (BI) tools and dashboards that require real-time or near-real-time query responses.

• Data Lake Querying:

• Facilitates querying large-scale data lakes stored in platforms like Amazon S3, Google Cloud Storage, or HDFS without the need for data movement.

• Federated Data Access:

• Enables organizations to query and analyze data spread across multiple heterogeneous systems from a single interface.

• ETL and Data Transformation:

• Can be used in Extract, Transform, Load (ETL) processes to transform and move data between systems efficiently.

20

Nick Manganelli - CHEP 2024 - Krakow

Model o1-mini says…
Trino in the Context of Data Storage Technologies
Given your previous interest in ROOT TTrees, Apache Parquet, and ROOT RNTuple, it's valuable to understand how Trino
interacts with these and other columnar storage formats:

• Apache Parquet:

◦ Integration: Trino has robust support for querying Parquet files, allowing users to perform SQL queries directly on Parquet-
formatted data stored in data lakes or distributed file systems.

◦ Performance: Leveraging Parquet's columnar storage, Trino can efficiently read only the necessary columns, reducing I/O
and speeding up query execution.

• ROOT TTrees and RNTuple:

◦ Integration: While Trino is primarily designed to work with widely-adopted data formats like Parquet, CSV, JSON, and

various databases, integrating with specialized formats like ROOT TTrees or RNTuple may require custom connectors or
data transformation steps.

◦ Use in HEP: In High Energy Physics (HEP), where ROOT formats are prevalent, Trino could be used alongside data
processing pipelines that convert ROOT data to more Trino-friendly formats for broader analysis and integration with other
data sources.

•

21

