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Figure 1. Estimated computing resource needs for CMS [10]. Shown are the modeled annual projec-
tions of total CPU and disk needs for CMS through Run 4. The estimated needs for each computing
model scenario are shown by the blue lines. The gray band shows the projected resource availability
for an example scenario that extrapolates the 2021 CMS pledged resources using an annual increase in
available resources of between 10% and 20%. This assumes current WLCG cost projections [12] and a
warranty + 3 years replacement cycle of hardware.

2 Grand Challenges for HL-LHC Computing and Software

In order to e↵ectively focus and structure the U.S. CMS R&D e↵orts, we organize the inno-
vation, research, and development needs for HL-LHC computing into the four Grand Chal-
lenges that encompass the advances needed for HL-LHC computing to succeed:

(1) Modernizing Physics Software and Improving Algorithms

Exploit novel algorithms, including ML/AI, reduce algorithmic complexity, increase
computational intensity, and provide core software infrastructure to enable e↵ective use
of modern hardware and accelerators. The work is organized in the following work pack-
ages:

• Core Software Framework and Software Portability
• Establish Performance Metric and Performance Baseline for Physics Software
• U.S. Contributions to the Charged Particle Tracking Software
• U.S. Contributions to Software for High Granularity Calorimeter
• U.S. Contributions to CMS Advanced Algorithms Work

(2) Building Infrastructure for Exabyte-Scale Datasets

Build infrastructure to archive, store, transfer, and provide access to exabyte-scale
datasets. Explore data lakes and custodial storage: establish a technology and cost model
for custodial/archival storage facilities which manages operations costs, and optimizes
hardware costs. Orchestrate computational services and data access, provide intelligent
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• As the LHC moves into the HL-LHC era, the volume of data to be stored and processed will grow significantly (x10) 

• CMS AOD (450kB/event) - Limited Availability, high processing costs, data: C++ classes 

• MiniAOD (45kB/event) - Suitable for nearly all analyses, still large, still significant processing, data: C++ classes 

• NanoAOD(4kB/event) - Suitable for half of analyses, analysis-ready, data: primitives
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• CMS AOD (450kB/event) - Limited Availability, high processing costs, data: C++ classes 

• MiniAOD (45kB/event) - Suitable for nearly all analyses, still large, still significant processing, data: C++ classes 

• NanoAOD(4kB/event) - Suitable for half of analyses, analysis-ready, data: primitives

• Several competing needs create an impedance mismatch 

• Disk space comes at a premium 

• High throughput requires high availability and duplication across sites around the world 

• Traditional analysis workflows tend to duplicate information from large data-tiers (Mini/AOD) via custom “Ntuples”, in order to create more streamlined but 
self-contained input data - for the half of analyses able to use NanoAOD (a “generalized” ntuple), it’s nearly optimal and can obviate the need for intermediate 
Ntuples 

• Fast turnaround (for analyzers) is paramount to getting the science done!
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Data Duplication in a Typical Analysis

• An analysis may be able to use NanoAOD(-like inputs), but must store 
expensive ML outputs 

• Typical approach: Duplicate all necessary input data from 
NanoAOD + added ML information into a custom NanoAOD (May 
permit dropping columns or certain events, but these decrease 
flexibility)
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Data Duplication in a Typical Analysis

• An analysis may be able to use NanoAOD(-like inputs), but must store 
expensive ML outputs 

• Typical approach: Duplicate all necessary input data from 
NanoAOD + added ML information into a custom NanoAOD (May 
permit dropping columns or certain events, but these decrease 
flexibility)

• An analysis may have 90% of data needs met by NanoAOD, but the 
additional requirements drive it to use MiniAOD or AOD 

• Custom NanoAOD variant (superset of central variation) or custom 
NTuple format created from larger datatier (labor and compute-
intensive), duplicating a significant amount of centrally-stored events 
in Nano and Mini formats (inefficient disk utilization)
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• The capability to join NanoAOD data on-demand with auxiliary 

information can obviate the need for much data duplication
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Trino (as described by o1-mini)
Trino is a high-performance, distributed SQL query engine designed for running 
interactive analytic queries against various data sources of all sizes. Originally developed 
by Facebook under the name Presto, Trino was forked in 2020 by the original creators to 
foster a more open and community-driven development model. Trino has since evolved 
into a robust, open-source project maintained by the Trino Software Foundation.

• Key Features of Trino: 

• Distributed Architecture

• SQL Compatibility

• Federated Querying

• Performance Optimization

• Extensibility and Customization:


• Plugin Architecture: Users can develop custom connectors and functions to 
extend Trino's capabilities.


• Community-Driven: Being open-source, it benefits from contributions and 
innovations from a broad community of developers and organizations.


• Security and Access Control:

• Authentication and Authorization: Supports various security protocols and 

integrates with enterprise security systems.

• Data Encryption: Ensures data privacy through encryption in transit and at rest.
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Benchmarking Trino

• We’ve prepared several benchmark datasets using 
CMS OpenData 

• Source datasets ranging from ~2GB to ~500GB 
(converted to parquet, ZSTD:5, full NanoAOD) 

• GNN Inference (parquet, 8 scalar-float columns / 
event) 

• fully-aligned, intra-file-reversed, intra-file-
shuffled, globally-shuffled variants 

• Testing various combinations (from a few scalar 
columns from source + inference, to dozens of 
ragged fields in source + all 8 inference columns)

6
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Cluster Configuration

7

• Heterogeneous Cluster


• 3 Nodes: Intel Xeon Silver 
4212 @ 2.20GHz (22 cores) 
- 88GB RAM - Ceph on 
NVME storage


• 1 Node: Intel Xeon Silver 
4210 @ 2.20GHz (39 cores) 
- 100GB RAM - Ceph on 
NVME storage


• Shared resource 


• 10 Workers for Trino on 
Cluster 19

Exploratory Environment at FNAL

• Deployed in FNAL 
OpenShift cluster

• Shared Mino Object 
Store

Shared Minio 
Object Store

Hive Metastore

Trino Coordinator

Trino Worker

Trino Worker

Trino Worker

10 Workers

See more in Ben’s slides: 
https://indico.cern.ch/event/1369601/contributions/5883602/

https://indico.cern.ch/event/1369601/contributions/5883602/
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    single_top_s_chan_infer
        Query 20240927_183428_00028_au69m, FINISHED, 11 nodes
        Splits: 862 total, 862 done (100.00%)
        16.64 [34.4M rows, 1.48GB] [2.07M rows/s, 91.3MB/s]

        trino:servicex> select count(*) from single_top_s_chan_join;
          _col0
        ---------
         2867199
        (1 row)

    single_top_s_chan_infer_reversed
        Query 20240927_184139_00033_au69m, FINISHED, 11 nodes
        Splits: 862 total, 862 done (100.00%)
        14.54 [34.4M rows, 1.48GB] [2.37M rows/s, 104MB/s]

        trino:servicex> select count(*) from single_top_s_chan_join;
          _col0
        ---------
         2867199
        (1 row)

    single_top_s_chan_infer_intrafileshuffle
        Query 20240927_184318_00036_au69m, FINISHED, 11 nodes
        Splits: 862 total, 862 done (100.00%)
        15.49 [34.4M rows, 1.5GB] [2.22M rows/s, 98.9MB/s]

        select count(*) from single_top_s_chan_join;
          _col0
        ---------
         2867199
        (1 row)

    single_top_s_chan_infer_globalshuffle
        Query 20240927_184518_00039_au69m, FINISHED, 11 nodes
        Splits: 859 total, 859 done (100.00%)
        15.00 [34.4M rows, 1.5GB] [2.29M rows/s, 102MB/s]

        select count(*) from single_top_s_chan_join;
          _col0
        ---------
         2867199

• Dataset with 2.8M events (rows), 
ragged primitive data for most columns 
(3.7GB source + 93MB inference)


• Encouraging result: seemingly 
invariant* to permutations being 
joined

      CREATE TABLE single_top_s_chan_join 

    WITH (

      format = 'PARQUET',

      external_location = 's3a://servicex/nanotest/parquet/AGC/single_top_s_chan/join_out/'

    )

    AS

      SELECT single_top_s_chan.run, single_top_s_chan.event, single_top_s_chan.luminosityBlock, 

        Electron_pt,

        Electron_eta,

        Electron_phi,

        Electron_cutBased,

        Electron_ip3d,

        Electron_sip3d,

        Electron_mass,

        Electron_pfRelIso03_all,

        Electron_pfRelIso03_chg,

        Muon_pt,

        Muon_eta,

        Muon_phi,

        Muon_mass,

        Muon_tightId,

        Muon_ip3d,

        Muon_sip3d,

        Muon_pfRelIso04_all,

        Jet_mass,

        Jet_pt,

        Jet_eta,

        Jet_phi,

        Jet_jetId,

        Jet_btagCSVV2,

        Jet_btagDeepFlavB,

        Jet_btagDeepFlavCvB,

        Jet_btagDeepFlavCvL,

        Jet_btagDeepFlavQG,

        Jet_chEmEF,

        Jet_chHEF,

        Jet_muEF,

        Jet_neEmEF,

        Jet_neHEF

        Jet_puIdDisc,

        Jet_qgl,

        Jet_rawFactor,

        Jet_bRegCorr,

        Jet_bRegRes,

        Jet_electronIdx1,

        Jet_electronIdx2,

        Jet_muonIdx1,

        Jet_muonIdx2,

        GNN_p1, GNN_p2, GNN_p3, GNN_p4

      FROM single_top_s_chan

      JOIN single_top_s_chan_infer ON 

        single_top_s_chan.run = single_top_s_chan_infer.run AND

        single_top_s_chan.luminosityBlock = single_top_s_chan_infer.luminosityBlock AND

        single_top_s_chan.event = single_top_s_chan_infer.event;

2.2M events/s 

* stat fluctuations, warm-caching to be eliminated as sources of differences in high-stat testing

s3a://servicex/nanotest/parquet/AGC/single_top_s_chan/join_out/
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Large Dataset Join Benchmark

9

• Largest dataset of 500GB (ttbar) crashed 
trino deployment*

• May indicate that partitioning the joins into 
dask-task sized elements will be a 
necessity to use trino as our distributed 
SQL engine (already a desirable element, as 
described later)

“All that glitters is not gold”

* Incorrect resource limits set for trino in OKD



Nick Manganelli  - CHEP 2024 - Krakow

Benchmark Output Analysis Formats

Test of a simple pseudo-analysis running on 
various root TTree and parquet files, in various 
compression schemes

10

Benchmark of “analysis” read-speed 
Stats computed over 7 runs, 5 loops (timeit) 

1,334,428 events processed
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Coffea analysis
• coffea brings together individual scikit-hep elements needed for a full analysis, and 

provides schema-application, corrections, scaleout(-patterns) 

• and often the first place something is prototyped and tested before being spun out 
into it’s own package 

• Tightly integrated with dask:  

• User’s analysis code is broadcast over datasets to create task graphs 

• Typetracer setup per dataset records operations (lazy, no data executed on) 

• Task graphs are distributed to compute resources to execute 

• Results returned to user’s client (histograms, small arrays, locations of output root/
parquet files, …) 

• Task graphs are key: allow programmatic optimization of analysis, understanding 
necessary inputs as mapped to requested outputs

11

numpythia

hepunits

histoprint
uhi

pyhepmc

pylhe

nndrone
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Joins R&D (End-to-End Processing with dask)
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(Format C)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Dataset 1, Chunk 1 (N events)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Transform A

Dataset 1, Chunk 1 (N events)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Transform A
Load B Dataset 1, Chunk 1 (N events)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Transform A
Load B

Join
Dataset 1, Chunk 1 (N events)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate
Dataset 1, Chunk 1 (N events)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output
Dataset 1, Chunk 1 (N events)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output
Dataset 1, Chunk 1 (N events)

Dataset 2, Chunk X (M events)
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Load A

Joins R&D (End-to-End Processing with dask)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output

Load B
Join Manipulate Output

Dataset 1, Chunk 1 (N events)

Dataset 2, Chunk X (M events)
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Joins R&D (End-to-End Processing with dask)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output

Load B
Join Manipulate Output

Dataset 1, Chunk 1 (N events)

Dataset 2, Chunk X (M events)

Dataset Z, Chunk Y
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Transform C
Transform B

Load A

Joins R&D (End-to-End Processing with dask)
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Source A 
(Format A)

Source B 
(Format B)

Source C? 
(Format C)

coffea 
(Build joined 
typetracer)

Dask Tasks

Transform A
Load B

Join Manipulate Output

Load B
Join Manipulate Output

Join Manipulate Output
Transform A

Dataset 1, Chunk 1 (N events)

Dataset 2, Chunk X (M events)

Dataset Z, Chunk Y
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Ongoing and Future Developments
• Baseline and Optional Targets of US CMS HL-LHC R&D Program (2024) in collaboration with IRIS-HEP 

• Building Typetracer for pseudo-joined data 

• Generation of ServiceX conversion tasks 

• Building Trino join queries, embedding of joined-output into daskified analysis 

• Updated and expand ServiceX MiniAOD conversion/selection of auxiliary information to be joined with NanoAOD (Stretch Goal)
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Ongoing and Future Developments
• Baseline and Optional Targets of US CMS HL-LHC R&D Program (2024) in collaboration with IRIS-HEP 

• Building Typetracer for pseudo-joined data 

• Generation of ServiceX conversion tasks 

• Building Trino join queries, embedding of joined-output into daskified analysis 

• Updated and expand ServiceX MiniAOD conversion/selection of auxiliary information to be joined with NanoAOD (Stretch Goal)

• Funded by LPC Distinguished Researcher Program (2025) 

• Native Ceph Object Store usage (Currently object -> file -> object)

• Future developments within US CMS and IRIS-HEP 

• Kafka integration for streaming output 

• RNTuple support in trino

13
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• Full set of ML taggers
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Specific Example Use-cases

• Augmenting with objects from MiniAOD datatier  

• Adding ParticleFlow candidates for reclustering 

• Full set of ML taggers

• Caching Experiment-wide objects (systematic variations, CMS ParticleTransformer, 
FlashSim?) 

• Versioning potential

• Caching Analysis-specific non-ML (derived quantities, systematic variations) and ML 
results (event, object classifiers)

14
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US CMS Software and Computing - HL-LHC R&D (WBS4)
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Figure 1. Estimated computing resource needs for CMS [10]. Shown are the modeled annual projec-
tions of total CPU and disk needs for CMS through Run 4. The estimated needs for each computing
model scenario are shown by the blue lines. The gray band shows the projected resource availability
for an example scenario that extrapolates the 2021 CMS pledged resources using an annual increase in
available resources of between 10% and 20%. This assumes current WLCG cost projections [12] and a
warranty + 3 years replacement cycle of hardware.

2 Grand Challenges for HL-LHC Computing and Software

In order to e↵ectively focus and structure the U.S. CMS R&D e↵orts, we organize the inno-
vation, research, and development needs for HL-LHC computing into the four Grand Chal-
lenges that encompass the advances needed for HL-LHC computing to succeed:

(1) Modernizing Physics Software and Improving Algorithms

Exploit novel algorithms, including ML/AI, reduce algorithmic complexity, increase
computational intensity, and provide core software infrastructure to enable e↵ective use
of modern hardware and accelerators. The work is organized in the following work pack-
ages:

• Core Software Framework and Software Portability
• Establish Performance Metric and Performance Baseline for Physics Software
• U.S. Contributions to the Charged Particle Tracking Software
• U.S. Contributions to Software for High Granularity Calorimeter
• U.S. Contributions to CMS Advanced Algorithms Work

(2) Building Infrastructure for Exabyte-Scale Datasets

Build infrastructure to archive, store, transfer, and provide access to exabyte-scale
datasets. Explore data lakes and custodial storage: establish a technology and cost model
for custodial/archival storage facilities which manages operations costs, and optimizes
hardware costs. Orchestrate computational services and data access, provide intelligent



Nick Manganelli  - CHEP 2024 - Krakow

FriendTrees

• Traditional ROOT workflows have some functionality that can alleviate the data 
duplication issues, via the FriendTree mechanism 

• Supports joining entry-by-entry events in two separate (groups of) files 

• Can accommodate some situations with non-aligned (out-of-order) joins 
with BuildIndex (major + minor keys, i.e. run + event) 

• https://root.cern/doc/master/
classTTree.html#a3f6b5bb591ff7a5bd0b06eea6c12b998 

•

18

https://root.cern/doc/master/classTTree.html#a3f6b5bb591ff7a5bd0b06eea6c12b998
https://root.cern/doc/master/classTTree.html#a3f6b5bb591ff7a5bd0b06eea6c12b998
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O1-mini’s description of TTrees, Parquet, RNTuple
2. Technology Descriptions

a. ROOT TTrees

ROOT TTrees are a fundamental data structure within the ROOT framework, widely used in HEP for storing and analyzing large datasets.
• Structure: TTrees store data in a hierarchical, tree-like structure with branches representing different variables (columns).
• Features:

◦ Custom Compression: Supports various compression algorithms tailored for HEP data.
◦ Provenance Tracking: Maintains metadata and provenance information essential for reproducible research.
◦ Integration with ROOT: Seamless integration with ROOT's data analysis tools and C++/Python interfaces.

b. Apache Parquet

Apache Parquet is an open-source, columnar storage format optimized for performance and interoperability across different data processing frameworks.
• Structure: Stores data in column chunks, enabling efficient compression and encoding schemes.
• Features:

◦ Language Agnostic: Supports multiple programming languages (e.g., Java, C++, Python).
◦ Wide Ecosystem Support: Integrates with big data tools like Apache Spark, Hive, and Pandas.
◦ Efficient Compression: Utilizes advanced compression techniques to reduce storage footprint.

c. ROOT RNTuple

ROOT RNTuple is a newer addition to the ROOT framework, designed to address some limitations of TTrees and to provide a modern, efficient, and scalable storage solution.
• Structure: Similar to TTrees but optimized for better performance and scalability.
• Features:

◦ Asynchronous I/O: Enhances read/write performance by supporting non-blocking operations.
◦ Better Parallelism: Designed to leverage multi-threading and distributed computing environments.
◦ Improved Data Model: Offers a more flexible and robust data schema compared to TTrees.

19
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Trino Use Cases (as described by o1-mini)

• Use Cases of Trino 
• Interactive Analytics:


• Ideal for business intelligence (BI) tools and dashboards that require real-time or near-real-time query responses.

• Data Lake Querying:


• Facilitates querying large-scale data lakes stored in platforms like Amazon S3, Google Cloud Storage, or HDFS without the need for data movement.

• Federated Data Access:


• Enables organizations to query and analyze data spread across multiple heterogeneous systems from a single interface.

• ETL and Data Transformation:


• Can be used in Extract, Transform, Load (ETL) processes to transform and move data between systems efficiently.

20
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Model o1-mini says…
Trino in the Context of Data Storage Technologies 
Given your previous interest in ROOT TTrees, Apache Parquet, and ROOT RNTuple, it's valuable to understand how Trino 
interacts with these and other columnar storage formats:

• Apache Parquet:


◦ Integration: Trino has robust support for querying Parquet files, allowing users to perform SQL queries directly on Parquet-
formatted data stored in data lakes or distributed file systems.


◦ Performance: Leveraging Parquet's columnar storage, Trino can efficiently read only the necessary columns, reducing I/O 
and speeding up query execution.


• ROOT TTrees and RNTuple:

◦ Integration: While Trino is primarily designed to work with widely-adopted data formats like Parquet, CSV, JSON, and 

various databases, integrating with specialized formats like ROOT TTrees or RNTuple may require custom connectors or 
data transformation steps.


◦ Use in HEP: In High Energy Physics (HEP), where ROOT formats are prevalent, Trino could be used alongside data 
processing pipelines that convert ROOT data to more Trino-friendly formats for broader analysis and integration with other 
data sources.


•
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