Model Building with Non-Parametric and Parametric Components for Partial Wave Analysis

Lawrence Ng CHEP 2024

Hadron Spectroscopy + Partial Wave Analysis

Quantum Mechanics QED

Low Energy QCD

Degrees of freedom

- Baryons / Mesons
- "Exotic" configurations
 - Tetraquarks
 - Pentaquarks
 - Glueballs
 - Hybrid mesons

Hadron Spectroscopy + Partial Wave Analysis

Degrees of Freedom: Atoms / Molecules

QCD

Broad overlapping resonances

- Partial wave analysis (generalized Fourier analysis) to separate interfering complex-valued contributions
- Complicated dynamics that can be hard to model

Modeling the Complicated Dynamics

Mass Independent Fits Pros:

Minimize model dependence

Cons:

- Prone to instabilities from:
 - Ambiguities
 - Numerical (lower stats)

Largely unexplored

Mass Dependent Fits Pros:

- Smooth results by construction
- Assume some physics (i.e. extract resonance parameters)

Cons

• Biased results / heuristics

Can we (prior)itize smooth dynamics without specifying functional forms?

Yes, but first we need some core concepts

Base Knowledge 1/2: Gaussian Processes

- Generalization of Multivariate Gaussian to infinite dimensions
- At the core: Kernel Function

$$\kappa(x_i, x_j) = Cov(X, X') = \Sigma$$

• Similarity measure / covariance between two points

Specific Kernels are chosen based on domain knowledge

But! We <u>can</u> also learn the kernel from data!

Base Knowledge 2/2: Variational Inference

F(zID) = Complicated Posterior Function Q(z; α) = Simple function Vary α such that Q(z; α) \approx F around some point

Numerical Information Field Theory

Inference Framework developed for astrophysics at Max Planck Institute for Astrophysics

G. Edenhofer, P. Frank, J. Roth, R. H. Leike, M. Guerdi, L. I. Scheel-Platz, M. Guardiani, V. Eberle, M. Westerkamp, and T. A. Enßlin. Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and Variational Inference, 2024.

Mainly working with: Philipp Frank, Torsten Enßlin, Jakob Knollmüller

Description

NIFTy, "**N**umerical Information Field Theory", is a Bayesian imaging library. It is designed to infer the million to billion dimensional posterior distribution in the image space from noisy input data. At the core of NIFTy lies a set of powerful Gaussian Process (GP) models and accurate Variational Inference (VI) algorithms.

An improved map of the Galactic Faraday sky

N. Oppermann^{*1}, H. Junklewitz¹, G. Robbers¹, M.R. Bell¹, T.A. Enßlin¹, A. Bonafede², R. Braun³, J.C. Brown⁴, T.E. Clarke⁵, I.J. Feain³, B.M. Geneslee⁶, A. Hammond⁶, L. Harvey-Snith¹, G. Heald⁷, M. Johnston-Hollitt⁸, U. Klein⁵, P.F. Koroberg^{10,1}, S. A. Mao^{1,17}, N.M. McClure-Griffith³, S. B.O' G. Bullar⁴, T. Lardey¹, T. Robishaw¹³, S. Roy¹⁴, D.H.F.M. Schnitzeler^{3,15}, C. Stomayor-Beltran⁶, J. Stevens¹, J.M. Stif¹, C. Sunstrum⁴, A. Tanna¹⁷, A.R. Taylo⁷, and C.L. Van Eck⁴

Resolving nearby dust clouds* R. H. Leike^{1,2}, M. Glatzle^{1,3}, and T. A. Enßlin^{1,2}

Variable structures in M87* from space, time and frequency resolved interferometry

Philipp Arras^{1,2}, Philipp Frank^{1,2}, Philipp Haim¹, Jakob Knollmüller^{1,2}, Reimar Leike¹, Martin Reinecke¹, and Torsten Enßlin¹

Radiation biology, radio astronomy and cosmic rays using information field theory

Hadron Physics?

Biology

Proposed Method using NIFTy

Software: iftpwa

Gaussian Process Prior

• Kernels are defined in Fourier Space whose parameters are Log-Normally Distributed

I/O Tests: Typical Procedure

I/O Tests: Bayesian Approach

Input / Output Tests

- Draw a sample from the prior
- Generate events with the sampled functional form of the amplitude
- Fit the events using

Ο

- 1) Traditional binned maximum likelihood
- 2) iftpwa framework
- Polarized photoproduction of two pseudoscalar : $\gamma p \rightarrow \eta \pi^0 p \rightarrow 4\gamma p$
 - O Amplitudes described in: [V.Mathieu et.al. (JPAC), Phys.Rev.D 100 (2019) 5, 054017]
 - Form: reflectivity

I/O Study 1

No physics, no resonances, only arbitrary but smooth amplitudes

> Positive reflectivity Waveset: $D_{-1}^+ D_0^+ D_1^+ S_0^+$

Dashed blue line = ground truth Blue line/fill = ift mean / stddev Black error bars = Mass indep. fits

Both approaches perform well

Traditional binned fits have higher scatter

ift results:

- captures truth within uncertainties
- finds the trivial (phase-flip) ambiguity

I/O Study 2

Same as Study 1 but with a₂(1320) Breit-Wigner resonance + Coherent non-parametric background

Single Prior Sample

model curve a₂(1320) coh. bkg.

model curve a₂(1320) coh. bkg.

Individual components are mostly recovered (within uncertainties)

Conclusion

- Partial wave analysis to determine spectrum of hadrons to study non-perturbative QCD
- iftpwa is a complex-valued model building framework allowing mixing of parametric and non-parametric components
- Upcoming publication on the method and release of the framework

Backup

GEOMETRIC VARIATIONAL INFERENCE (GEOVI) [?]

YAML Configuration

Resonance <u>parameter</u> "paras": {"mass": m_a2_1320, "width w_az_1320},

Parametric model Cfg

```
'reaction 000::NegIm::Dm2-',
   'reaction 000::NegIm::Dm1-',
                               Resonance
"name": "$a 2(1700)$",
                              specs as a
"fun": breitwigner normed,
                              dictionary
"paras": {"mass": m_a2_1700, "width": w_a2_1700},
   'reaction_000::NegIm::Dm2-',
   'reaction_000::NegIm::Dm1-',
```

return resonances, smoothScales

Prior Model Specification and Hyperparameters

- Prior model: can have lots of hyperparameters
- Optuna: allows black-box hyperparameter optimization
 handful of optimization algorithms (samplers)
- Define in YAML format the optimization criteria, sampler, search space

```
HYPERPARAMETER_SCANS:

n_trials: 10

objective: "minimize|energy"

sampler: RandomSampler # BruteForceSampler, null

PARAMETRIC_MODEL.resonances.0.a0_980.preScale|suggest_float: "0.1, 5.1, step=0.5"

PARAMETRIC_MODEL.resonances.2.a2_1700.preScale|suggest_float: "0.1, 1.0, step=0.1"

IFT_MODEL.res2bkg|suggest_float: "0.1, 2.1, step=0.5"
```

