Model Building with Non-Parametric and Parametric Components for Partial Wave Analysis

Lawrence Ng CHEP 2024

1

Hadron Spectroscopy + Partial Wave Analysis

Quantum Mechanics QED

Low Energy QCD

Degrees of freedom

- Baryons / Mesons
- "Exotic" configurations
	- Tetraquarks
	- Pentaquarks
	- Glueballs
	- Hybrid mesons

Hadron Spectroscopy + Partial Wave Analysis

Degrees of Freedom: Atoms / Molecules

 $O(|C|)$

Broad overlapping resonances

- Partial wave analysis (generalized Fourier analysis) to separate **interfering complex-valued** contributions
- **Complicated dynamics that can be hard to model**

Modeling the Complicated Dynamics

Mass Independent Fits Pros:

- Minimize model dependence Cons:
	- Prone to instabilities from:
		- Ambiguities
		- Numerical (lower stats)

Largely unexplored

Mass Dependent Fits Pros:

- Smooth results by construction
- Assume some physics (i.e. extract

Can we (prior)itize smooth dynamics without specifying functional forms?

Yes, but first we need some core concepts

Base Knowledge 1/2: **Gaussian Processes**

- Generalization of Multivariate Gaussian to infinite dimensions
- At the core: **Kernel Function**

$$
\kappa(x_i, x_j) = Cov(X, X') = \Sigma
$$

○ Similarity measure / covariance between two points

Specific Kernels are chosen based on domain knowledge

But! We can also learn the kernel from data!

5

Base Knowledge 2/2: **Variational Inference**

F(z|D) = Complicated Posterior Function Q(z; α) = Simple function Vary α such that $\overline{Q(z;\alpha)} \approx \overline{F}$ around some point

Numerical **I**nformation **F**ield **T**heor**y**

Inference Framework developed for astrophysics at Max Planck Institute for Astrophysics

G. Edenhofer, P. Frank, J. Roth, R. H. Leike, M. Guerdi, L. I. Scheel-Platz, M. Guardiani, V. Eberle, M. Westerkamp, and T. A. Enßlin. Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and Variational Inference, 2024.

Mainly working with: Philipp Frank, Torsten Enßlin, Jakob Knollmüller

Description

NIFTy, "Numerical Information Field Theory", is a Bayesian imaging library. It is designed to infer the million to billion dimensional posterior distribution in the image space from noisy input data. At the core of NIFTy lies a set of powerful Gaussian Process (GP) models and accurate Variational Inference (VI) algorithms.

An improved map of the Galactic Faraday sky

N. Oppermann*¹, H. Junklewitz¹, G. Robbers¹, M.R. Bell¹, T.A. Enßlin¹, A. Bonafede², R. Braun³, J.C. Brown⁴, T.E. Clarke⁵, I.J. Feain³, B.M. Gaensler⁶, A. Hammond⁶, L. Harvey-Smith³, G. Heald⁷, A.R. Taylor⁴, and C.L. Van Eck⁴

Resolving nearby dust clouds* R. H. Leike^{1,2}, M. Glatzle^{1,3}, and T. A. Enßlin^{1,2}

Variable structures in M87* from space, time and frequency resolved interferometry

Philipp Arras^{1,2}, Philipp Frank^{1,3}, Philipp Haim¹, Jakob Knollmüller^{1,2}, Reimar Leike¹, Martin Reinecke¹, and Torsten Enßlin¹

Radiation biology, radio astronomy and cosmic rays using information field theory

Hadron Physics?

Biology

Proposed Method using NIFTy

Software: iftpwa

Gaussian Process Prior

● **Kernels** are defined in **Fourier Space** whose parameters are **Log-Normally Distributed**

I/O Tests: Typical Procedure

I/O Tests: Bayesian Approach

Input / Output Tests

- Draw a sample from the prior
- Generate events with the sampled functional form of the amplitude
- **Fit the events using**
	- 1) Traditional binned maximum likelihood
	- 2) iftpwa framework
- Polarized photoproduction of two pseudoscalar : **γp → ηπ0p → 4γp**
	- Amplitudes described in: **[V.Mathieu et.al. (JPAC), Phys.Rev.D 100 (2019) 5, 054017]**
	- Form: l m ε spin spin-projection reflectivity

I/O Study 1

No physics, no resonances, only arbitrary but smooth amplitudes

> **Positive reflectivity Waveset:** D_{-1} ⁺ D_0 ⁺ D_1 ⁺ S_0 ⁺

Dashed blue line = ground truth Blue line/fill $=$ ift mean / stddev Black error bars $=$ Mass indep. fits

Both approaches perform well

Traditional binned fits have higher scatter

ift results:

- captures truth within uncertainties
- finds the trivial (phase-flip) ambiguity

I/O Study 2

Same as Study 1 but with **a₂(1320) Breit-Wigner resonance + Coherent non-parametric background**

Single Prior Sample

model curve $a_2(1320)$ coh. bkg.

model curve $a_2(1320)$ coh. bkg.

Individual components are mostly recovered (within uncertainties)

Conclusion

- Partial wave analysis to determine spectrum of hadrons to study non-perturbative QCD
- iftpwa is a **complex-valued** model building framework allowing mixing of **parametric** and **non-parametric** components
- Upcoming publication on the method and release of the framework

Backup

GEOMETRIC VARIATIONAL INFERENCE (GEOVI) [?]

YAML Configuration

Parametric model Cfg

def etapi $a2a2p()$:

```
m a2 1320 = LogNormal(sigma=0.0013 * 30, mean=1.3186)
w a2 1320 = LogNormal(sigma=0.002 * 30. mean=0.105)
```

```
m_a^2_1700 = LogNormal(sigma=0.05, mean=1.700)w a2 1700 = Loal(siama=0.05, mean=0.300)
```
resonances = $\{$ **Resonance** $"a2 1320":$ **parameter** "name": "\$a $2(1320)$ \$", "fun": breitwigner_normed, "paras": {"mass": m_a2_1320, "width": w_az_1320}, "waves": ['reaction 000::NeqIm::Dm2-', 'reaction 000::NegIm::Dm1-', I, **Resonance** "a2 1700": { "name": "\$a 2(1700)\$", **specs as a** "fun": breitwigner normed, "preScale": 0.25,
"paras": {"mass": m a2_1700, "width": w a2_1700}, "preScale": 0.25, "waves": ['reaction_000::NegIm::Dm2-', 'reaction 000::NegIm::Dm1-', 1. ₿,

 $smoothScales = False$ return resonances, smoothScales

Prior Model Specification and Hyperparameters

- Prior model: can have lots of hyperparameters
- Optuna: allows black-box hyperparameter optimization handful of optimization algorithms (samplers)
- Define in YAML format the optimization criteria, sampler, search space

```
HYPERPARAMETER SCANS:
                                             Hyperparameter values at best 
   n trials: 10
                                             objective not always the best!objective: "minimize|energy"
   sampler: RandomSampler # BruteForceSampler, null
   PARAMETRIC_MODEL.resonances.0.a0_980.preScale|suggest_float: "0.1, 5.1, step=0.5"
   PARAMETRIC_MODEL.resonances.2.a2_1700.preScale|suggest_float: "0.1, 1.0, step=0.1"
   IFT MODEL.res2bkg|suggest float: "0.1, 2.1, step=0.5"
```
