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ZERO DEGREE CALORIMETER 

FAST SIMULATION
The Zero Degree Calorimeter (ZDC) of the ALICE 

experiment at CERN is tradi�onally simulated 

using a computa�onally expensive Monte Carlo 

approach. With their recent advances, Genera�ve 

Neural Networks offer a promising alterna�ve to 

perform this task. Our work focuses on the 

applica�on of Normalizing Flows (NFs) in the 

simula�on of the ZDC responses, with a par�cular 

focus on transfer learning and fine-tuning 

techniques.

DATASET CHALLENGES

Fig. 1. Experiment overview.

Data imbalance

Detector responses diversity

Fig. 3. Dataset structure. Over 90% of the dataset is covered by four types 
of par�cles, with 21 different par�cles in total.

Fig. 4. The same input triggers different detector responses.

Dataset structure

Fig. 2. Dataset structure - 306780 pairs: primary par�cle features + 
detector response.

TWO-STAGE MODELLING

1. Bayesian Neural Network (BNN) for predic�ng 
the total number of photons in the detector 
response.
2. NF for shower shape modelling.

MODEL SELECTION

WASSERSTEIN METRIC FOR ASSESSING MODEL 
QUALITY
Applying checkerboard 
masks to detector 
responses and comparing 
distribu�ons of such 
generated numbers of 
photons between original 
and generated images. 

Fig. 5. Checkerboard masks applied to 
detector responses.

TRANSFER LEARNING + FINE-TUNING

Fig. 6. Fine-tuning schema for NFs.

The model trained using the whole dataset is then 
fine-tuned for specific par�cles using the gradual 
unfreezing technique. We propose two approaches:
1. Star�ng the unfreezing from layers close to the 
base Gaussian distribu�on (TL_nepochs_GD).
2. Star�ng the unfreezing from layers close to the 
data distribu�on (TL_nepochs_DG). 

RESULTS IMPROVEMENT WITH 
TRANSFER LEARNING AND 
FINE-TUNING
The baseline NF model (referred to as Baseline_100) 
achieved a Wasserstein score of 2.34 ± 0.02 and was 
later fine-tuned for Gamma, Neutron, Lambda, K(S)0, 
and Sigma+ par�cles, separately. The model was 
trained for 100 epochs and then fine-tuned for 
another 100 (TL_100_GD and TL_100_DG). The 
performance was also compared with a baseline 
model trained for 200 epochs (Baseline_200) and a 
model trained for the specified par�cle from scratch 
(Individual), also for 200 epochs. 

Fig. 7. Comparison of model performances for different par�cles.

Fig. 8. The best transfer learning + fine-tuning 
setup improvements for different par�cles.

The transfer learning 
+ fine-tuning setup 
outperformed other 
models in 4 out of 5 
cases. For neutrons, 
the baseline model 
was already fit so 
well to the data, that 
no improvements 
were possible.

UNDERSTANDING THE MODEL
Fig. 9. Shap values 
(top) and feature 
importances with their 
impact on model 
output (bo�om) 
calculated for the BNN 
model for predic�ng 

the numbers of 
photons in the 
detector output. As 
physically expected, 
Energy and 
momentum in the z 
direc�on (Pz) are the 
most important 
features, and their 
bigger values 
correspond to bigger 
numbers of photons. 

Fig. 10. Shap values 
(top) and feature 
importances with 

their impact on model 
output (bo�om) 
calculated for a BNN 
surrogate model for 
predic�ng the 
coordinates of the 
center of the shower 
in the detector output 
trained on the outputs 
of the baseline NF 
model. The figure 
shows the analysis for 
the x coordinate. As 
physically expected, 
momentum in the x 
direc�on (Px), Energy, 
and Charge are the 
most important 
features. 

Fig. 11. Shap values 
(top) and feature 
importances with their 
impact on model 
output (bo�om) 
calculated for a BNN 
surrogate model for 
predic�ng the 
coordinates of the 
center of the shower 
in the detector output 
trained on the outputs 
of the baseline NF 
model. The figure 
shows the analysis for 
the y coordinate. As 
physically expected, 
momentum in the y 
direc�on (Py) and 
Energy are the most 
important features. 

CONCLUSIONS
1. NFs offer a strong-performing alterna�ve to 
the Monte Carlo approach on the task of the ZDC 
shower simula�on.
2. NFs can benefit from the transfer learning + 
fine-tuning schema, and the layer unfreezing can 
be executed either star�ng from the layers close 
to the data or to the base ditribu�ons.  
3. The reasoning behind NFs trained on the task 
of the ZDC shower simula�on follows physical 
intui�on.
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