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* Fixed target heavy ion experiment * Self-triggered, free-streaming readout

 Under construction at the FAIR facility electronics

* Event selection exclusively done in a

* Up to 700 charged particles in aperture high-performance computing cluster

* High reaction rates up to 10 MRz * Full online event reconstruction

w [irst-level Event Selector (FLES)

* Many probes lack simple trigger signatures
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CBM Readout and First-level Event Selector (FLES)

Self-triggered readout electronics

Front-end Front-end Front-end Front-end < Sends timestamped Nit messages
Board Board Board Board
< / \ — N / \ — Zero-suppressed data stream
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FPGA-based PCle board
Interface to COTS nodes
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Shared compute resources
Online event reconstruction



Microslice Data Model
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t=2 |meta| d.. e [ull detector input data rate
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descriptor data segment Of Up J[O 1 TByte /S
One Channel . _~ Timeslice Component o Time-based partitioning
‘ | IS I | | ' ISk e Stateful streams of
MSO | MS1 [...| MS 99 |MS 100{MS 101]--.|MS 199[MS 200|MS 201 heterogeneous data in
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Imestamp Microslice
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e No global event definition

at this point of the data chain
 The CRI board splits detector data streams into short, context-free "

time intervals and encapsulates them into data transport containers called
microslices e Zero-suppressed data

-> time Interval # data size

e Cut events at boundaries

e Meta data provides all necessary information for data handling, e.g., reference timestamp

* Timeslice building combines subsequent microslices from all sources to
processing intervals called timeslices

e Microslices at the boundaries of timeslices are doubled to create overlap

i -
g

; D ¢ ) (

o o
 §



Common Readout Interface (CRI)

CRI HDL design

Bus Bridge

PCle Logic
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Subsystem Design FLIM
| S 44 [CRannel T :

Xilix Kintex UltraScale XCKU115 5
| | Handling | i1 1} |Interface Channel | 1i —»
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Dual PCle x8 Gen-3 (with PEX switch)
48 optical inputs

‘ Config |“4" Bus Bridge =

Yy

—— Microslices — SC Bus — PCle TLPs

e FPGA-based PCle extension card to the FLES
entry nodes

e Current prototype BNL-712 v2
e Successor with Versal FPGA on the horizon

* Subsystem specific FEE interface and

. microslice creation
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e Microslice stream interface

e Common FLES Interface Module (FLIM)

PIO
Arbiter

PCle Integrated Block

e [Focus on throughput and resilience against erroneous input data

e Scaleable to multi channel and multi PCle

PCle physical functions (PF)

e Segregation of software stacks via



DMA Engine and Bufter Management

Design Challenges

e Producer—consumer problem

Content MS 100
Content MS 101

Data Buffer
Content MS 0
Content MS 1
Content MS 2
Content MS 3
Content MS 99

e High-throughput application requires

x / /«/« /(/v/v ‘ DMA and asynchronous transfers

e Microslices are based on time

\

S|l NEE | intervals, data sizes vary widely
D |alu|lun|lwv il el Descriptor
5 135505 Eies ndr id [hdr ver] _eq id flags [ sys id [sys ver e Low overhead synchronization
Q _é- _é- é- _é- _é- _é- _é- start time o .
§ g g 3| 3 ¥l g 2 CCNM T e Avoiding memory fragmentation
DR ——— e
* Full-offload, scatter/gather DMA engine * Descriptor buffer serves as an index table to the
e Multi-channel support with dynamically shared PCle bandwidth microslice content
e Pre-configured scatter lists remove the need for extensive data ¢ Monotonous index enables reuse of table after copying the data

buffers on the card

e Synchronization via read and write index exchange
* Dual ring buffer memory scheme

e Data buffer holds the microslice content in a continuous stream * Efficient, block-wise data access

e Descriptor buffer holds the fixed-sized microslice descriptors e Maximum four gather entries per timeslice component

e Only two descriptor reads per timeslice component



Software Consumer Interface

Shared
CRI Memory Timeslice
DA Server [ |Undces 15" Building
L HDesc |
T PIO/CPU Device Driver IB Verbs
. . Data : .
-+ FEE | | CRI - HCA -
e Zero-copy interface to timeslice building e DMA buffers are shareable with other PCle

. . . , , devices, e.g. an InfiniBand HCA
e Microdriver architecture device driver (PDA)

e |OMMU support for compact S/G lists e Data publishing agent: CRI server

e Handles all communication with the hardware and serializes

e DMA directly to POSIX shared memory user requests

space buffers e Lightweight synchronization via read and write indices

o Multi-gigabyte buffers without issues e Multi-consumer support



System Throughput Benchmark
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 PCle throughput measured with internal
pattern generators

T o B total —o 1288 total —a e Single PCle 3.0 8x interface
2068 payload - === 1255 payload - - - e Realistic, time-based microslice creation
;imit o | « Eight paraliol microsice sireams o oversaturate
- - ------ & T - | interface
e Very good performance even for small
- R e icroslice sizes
1 B e Expected performance increase for higher PCle
payload sizes
15 . Full-chain throughput eaches 95% of the
L - o theoretical PCle limit
10 ps 100 ps 1 ms
Microslice length e (Can be increased to 98% for 512 Byte packet sizes

¢ Minimal CPU load

e Only limited by lack of credits from the host system



Multi-device Scaling

Mem

PEX H

Buff O

CPUOH—_
Buff 2

 FLES entry stage design foresees multiple CRIs per node

CRIO
e Simultaneous operation of multiple high-speed PCle devices in a PEX |-

L

. . 0b:00.1, Oa:O(iI_
non-uniform memory access (NUMA) environment

CRIT Mem
PEX |

o Test Setup: ey | ot

CPU 1
CRI 2 ol Buff 2

e Dual Xeon E5-2650 v4,128 GB 2400 MHz DDR4 PEX |- o

8e:00.1, 8d:0(i|‘
e 3 CRI with two PCle x8 Gen-3 endpoints each

| | | |
40| [E10b:00.1
e NUMA aware buffer placement 0a:00.1

87:00.1
30 | |l 86:00.1

B 3c:00.1
™ 8d:00.1 I

e [wo of the cards write to their local NUMA node

e [he third card writes balances to both NUMA nodes

* \ery promising result in small setup

e > 7/ (GB/s for a single endpoint

Throughput / GB /s

e 0.7 GB/s for both endpoints (limitation of the root port?) 10

e Perfect scaling to multiple cards: 40.2 GB/s total

e Perfect fairness 0 1 9 3 4 5

Active devices



MCBM detector setup

Full-system test mCBM

FLES entry stage

e The FLES input interface is in continuous use In
numerous physics and development setups

« Example FAIR Phase-0 experiment mCBM %

100%

e CRIwith FLIM and FLES SW is the central data taking system oomes

80% —
' . 300 MB/s
e 12 CRIsin six FLES entry nodes
200 MB/s
e Regular data taking campaigns
100 MB/s
20%
e Control and monitoring system
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e Hardware monitoring of all critical parameters, me— wan || = imr e sk 1zawen
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o Example 2024 data taking —
o 7 detector Systems: - :Z(;ZB/S == Total (right y-axis)
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Summary

e Solution to structure heterogeneous input data: microslice data model

e [ime-based containers allow subsystem-agnostic, highly efficient data handling

e FLES interface module:

e Provides the connectivity to the detector systems and handles all input data

 Custom DMA engine and dual ring buffer memory model for most efficient data access

e Optimized host interface for zero-copy, high-throughput data transport

e In active use in several CBM test setups, in-beam tests and FAIR Phases-0 experiments
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FLIM Hardwaredesign

subsystem clock domain | PCle clock domain (250 MHz)

___________________________________

i |
i FLIM Channel\ : 'DMA Channel
256 | '
é Microslice X | 256 me_to_tip |
' Interface = [dropper[_Ttruncator[] MC FIFO 7 - TLP FIFO[
: ‘ T T —
| mc__pgen |
| |
: Y - e
i | ebdm || [rbdm
i | . X
| | |
i —> rf_data [ cdc > rf_dma [+ N L
i | o
| i i
cdc ‘mc_cnt }“’ rf_device “*’{ Bus Bridge \<—h: i
—— Microslices —— SC Bus —— Backpressure PCle TLPs

e Microslice interface:

e 256 Bit, variable subsystem clock (up to 250 MHz;
timing target: 160 MHz, 41 Gbit/s)

e Backpressure free (may still have handshaking signals),
iInternal drop point and derandomization buffer

v_
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 FLIM: 6 channels (2x 3 channels for
twofold designs)

I ririrrir """

global throttling)

iy

PCle interface

e Signals on internal buffer fill state (for optimizations and

13
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Proposed CRI read-out data path

GBT recv. [~ hardware- fles interface
P specific readout [—>| module (FLIM)
GBT recv. data path channel
FLIM PCI
interface
— | GBT recv. ~ hardware- fles interface /
specific readout [—| module (FLIM)
— | GBT recv. — data path channel

A

> 3

full bandwith aggregation controlled

data discard

time,
throttling

time
TFC Interface utilization
<

Not shown here: controls, second SLR
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<
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Time Stamp Considerations (1) — Single Measurement

e Fach measurement has:

e A time stamp (known during readout)

e [he time of the associated physics event (assigned after reconstruction)

 These time stamps differ for several reasons

e | imited precision in TFC time distribution

e | imited precision in per-subsystem time distribution to FEE

e | mited intrinsic detector time resolution

e Physics and detector effects (e.q., particle time of flight, drift velocity)

 Handled by microslice concept

e Specify time uncertainty interval of measurements (per FLES input)

e (Generate timeslices with sufficient overlap



Time Stamp Considerations (2) — Stream of Measurements

* Frontend message streams are not automatically merged in chronological order by
detector readout electronics

¢ Streams cannot easily be cut into intervals

« However, the maximum time deviation is usually known (e.g. unsorted only within one epoch,
FEE drain time)

* \WWe can handle this limited time deviation via same overlap concept
 Reduces requirements on microslice building in hardware

 CRI design implementation example:

e Start new microslice when first measurement in corresponding time interval is encountered

e Put any subseguent measurements into the new microslice, even it timestamp Is lower again

e (Generally specify larger interval of possible corresponding event time for all microslices



Microslice Requirements

e Each component defines the maximum time deviation of

physical event data in a microslice with respect to the
microslice reference timestamp

e This includes differences between message timestamp and event time, and

ne deviation in assigning detector messages to t

ne "nominal” microslice

 Microslice guarantee: All included measurements have an
event time In the validity interval

e Note: this doesn’t imply that all measurement with event time in the validity
interval are included

microslice timestamp

¢ nominal length
= >|
validity interval
— >
event time




Microslice Building Design Guidelines

validity interval

I
microslice timestamp

! nominal length
< >
|
— > event data in this region
event time

can be in either microslice

 The nominal microslice length and validity interval length are fixed for each subsystem (or
component)

e Future plans: Do not require a globally common microslice length.
* No sorting required within the microslice, software has to sort the messages anyway

 The nominal intervals between multiple components align in event time

e Microslice timestamp modulo nominal length = O if feasible

* Note: this definition is fully backwards compatible with the initial requirements



Timeslice (Component) Building

| |
| |
core interval timeslice n-1 | core interval timeslice n | core interval timeslice n+1
| |
| |
| |

components

event time

e A timeslice is the collection of all microslices with a validity interval intersecting the timeslice
core interval.

 Timeslices overlap, but without an explicitly defined overlap region

* Timeslice guarantee: All measurements with event time In core interval are included

v
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Scaling and Packaging Efficiency

« CBM has a wide range of running scenarios

Timeslice Fragmentation Overhead

30 77 o on 1500 e FLES is expeced to work with a fraction of compute and
| Zifr_lllGooBr/ls e network resources in the start version
2.5—: “\ Thg’io;z%ls — Oover  F 1250 . .
S S  Microslices allow to scale the system to
2.0- - 1000 lower rates by increasing the length of a
= 1\ microslice
%;; 1'5_; B o Keeps the overhead proportional to the data rate
© - \\
H- gV o * Optimal microslice size can be calculated
o Neore = 324 .
. . from overhead for a given target
' e configuration
0B w0kB | 40%B | 60kB | sOKB | 100kB e Overhead components

Microslice Size

e Overhead from packaging of microslices

e Overhead from duplication of microslices for overlap
region



