
Portable HCAL reconstruction in the CMS
detector using the Alpaka library

Martin Kwok (Fermilab) 
on behalf of CMS collaboration

Introduction

Conclusion

Alpaka is a performance portability tool adopted by CMS for Run 3
- One implementation for both CPU and different GPU architectures

Goal of the project
- Re-engineer the CUDA implementation of HCAL local reconstruction using Alpaka
• No algorithmic changes introduced, which simplifies the validation process
• Replace custom-CUDA utilities (data-migration, data-structure creation) with  

CMSSW tools

Contact: kkwok@fnal.gov OR

CHEP 2024
19 - 25 October, 2024 | Krakow, Poland

Performance

Validation Implementation

CMSSW
FW

CPU
Legacy

CUDA
MAHI

CPU GPU

Alpaka

CUDA Utilities

Before After

CPU GPU

Unpacked Raw data

DigiConverter

MAHI Compute kernel

SoA Digi Collection

HCAL calibration

SoA RecHit CollectionSoA to Legacy conversion

Legacy RecHit Collection

Mahi- 
Alpaka

Illustration of steps involved in CMS HCAL local reconstruction.  
Green boxes are data-product producers; red boxes indicate data product;  

Cyan box is the auxiliary input data that depends on detector configuration/calibrations

DigiConverter

Calibration data

Compute Kernels

There are 4 major components involved in the reconstruction
• DigiConverter: convert input data into Structure-Of-Array (SoA) format
• Calibration Data: produce HCAL conditions in SoA format
• Compute Kernel: compute HCAL energy reconstruction
• SoA to Legacy conversion: convert to legacy CPU format

• Structure-Of-Array (SoA) is a more GPU-friendly data structure
• CMSSW has introduced generic mechanism to generate common

SoA data-structure using macros
• We defined an HCAL DigiSoA to store in a single structure:

• Per-channel numbers (e.g. channel id)
• Per-channel arrays (e.g. energy in each bunch crossings)
• Constant scalar (e.g. total channels)

ids

Size

data …

… …

…SoA column (array)

SoA column (int)

SoA Scalar

HCAL
DigiSoA

• HCAL local reconstructions requires a lot of condition products
• e.g. pedestal and response corrections
• CUDA implementation used simple arrays for each products
• Simplified from 18 event products into 4 SoA with multiple columns
• Simplifies access to related-SoA columns with custom class of SoA

HcalRecoParamWithPulseShapeSoA

• Many infrastructural improvements with introducing algorithmic changes
• Code structure
• Data access methods (Simple index with SoA)
• Wrapper around CUDA type-casting intrinsic functions for CPU/GPU backends
• Apply Alpaka syntax to CUDA kernels

• Kernel helper functions for simple work division
• Enhanced readability of kernels

• Use 500 less lines in the Alpaka implementation

CUDA

Alpaka

Computing data stride

Clean, simple index access

• Validated at the 2 different levels:
• Module level validation with O(1000) events
• Compares per-channel rechit energy
• Observed only numerical differences

• Trigger menu level validation with O(100k) events
• HCAL local reconstruction is used by any triggers with jets 

Hence, a more stringent test
• Compare changes of HLT decisions of every paths in the latest HLT menu
• +/-2 events for most paths
• Consistent with numerical differences

• Multiple comparisons done with each level:
- Alpaka GPU v.s. CUDA
- Alpaka CPU v.s. Legacy CPU
- Alpaka GPU v.s. Alpaka CPU

• Measured event throughput of full HLT menu on dedicated computing node
with same hardware (CPU and GPU) to the data-taking HLT farm
• The measurement node is fully loaded, similar to HLT runs in production
• Measured with and without NVIDIA Multi-Process Service (MPS) enabled
• Alpaka implementation brings ~2% speed-up in the full HLT menu
• Only infrastructural improvements
• Without algorithmic changes

CPU
GPU without

MPS
GPU with MPS MPS speed up

GPU speed up w.r.t.
CPU

HCAL legacy 388.8 ev/s 565.6 ev/s 635.6 ev/s +12.4% +63.5%

HCAL alpaka 387.5 ev/s 619.3 ev/s 649.3 ev/s +4.8% +67.6%

Alpaka speed up - + 9.5% +2.2%

• Re-engineered CUDA implementation of HCAL local reconstruction to use Alpaka
• Single implementation for CPU and GPU(s)
• Major code simplifications taking advantage of new CMSSW FW capabilities
- Common infrastructure for SoA, kernel helper functions
• Validated to reproduce CUDA/Legacy CPU code for 2024 data
• Deployed for data taking since August 2024
• Alpaka implementation brings ~2% speed-up in the full HLT menu

FERMILAB-POSTER-24-0304-PPD

This manuscript has been authored by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Office of Science, Office of High Energy
Physics.

mailto:kkwok@fnal.gov

