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Introduction

Conclusion 

Alpaka is a performance portability tool adopted by CMS for Run 3
- One implementation for both CPU and different GPU architectures 

Goal of the project
- Re-engineer the CUDA implementation of HCAL local reconstruction using Alpaka
• No algorithmic changes introduced, which simplifies the validation process
• Replace custom-CUDA utilities (data-migration, data-structure creation) with  

CMSSW tools
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Illustration of steps involved in CMS HCAL local reconstruction.  
Green boxes are data-product producers; red boxes indicate data product;  

Cyan box is the auxiliary input data that depends on detector configuration/calibrations
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There are 4 major components involved in the reconstruction
• DigiConverter: convert input data into Structure-Of-Array (SoA) format 
• Calibration Data: produce HCAL conditions in SoA format
• Compute Kernel: compute HCAL energy reconstruction
• SoA to Legacy conversion: convert to legacy CPU format

• Structure-Of-Array (SoA) is a more GPU-friendly data structure
• CMSSW has introduced generic mechanism to generate common 

SoA data-structure using macros
• We defined an HCAL DigiSoA to store in a single structure: 

• Per-channel numbers (e.g. channel id)
• Per-channel arrays (e.g. energy in each bunch crossings)
• Constant scalar (e.g. total channels) 
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• HCAL local reconstructions requires a lot of condition products
• e.g. pedestal and response corrections 
• CUDA implementation used simple arrays for each products
• Simplified from 18 event products into 4 SoA with multiple columns
• Simplifies access to related-SoA columns with custom class of SoA

HcalRecoParamWithPulseShapeSoA

• Many infrastructural improvements with introducing algorithmic changes
• Code structure
• Data access methods (Simple index with SoA)
• Wrapper around CUDA type-casting intrinsic functions for CPU/GPU backends
• Apply Alpaka syntax to CUDA kernels

• Kernel helper functions for simple work division
• Enhanced readability of kernels 

• Use 500 less lines in the Alpaka implementation
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Computing data stride

Clean, simple index access

• Validated at the 2 different levels:
• Module level validation with O(1000) events
• Compares per-channel rechit energy  
• Observed only numerical differences 

• Trigger menu level validation with O(100k) events 
• HCAL local reconstruction is used by any triggers with jets 

Hence, a more stringent test
• Compare changes of HLT decisions of every paths in the latest HLT menu
• +/-2 events for most paths
• Consistent with numerical differences

• Multiple comparisons done with each level:
- Alpaka GPU v.s. CUDA
- Alpaka CPU v.s. Legacy CPU
- Alpaka GPU v.s. Alpaka CPU

• Measured event throughput of full HLT menu on dedicated computing node 
with same hardware (CPU and GPU) to the data-taking HLT farm
• The measurement node is fully loaded, similar to HLT runs in production 
• Measured with and without NVIDIA Multi-Process Service (MPS) enabled
• Alpaka implementation brings ~2% speed-up in the full HLT menu
• Only infrastructural improvements 
• Without algorithmic changes

CPU
GPU without 

MPS
GPU with MPS MPS speed up

GPU speed up w.r.t. 
CPU

HCAL legacy 388.8 ev/s 565.6 ev/s 635.6 ev/s +12.4% +63.5%

HCAL alpaka 387.5 ev/s 619.3 ev/s 649.3 ev/s +4.8% +67.6%

Alpaka speed up - + 9.5% +2.2%

• Re-engineered  CUDA implementation of HCAL local reconstruction to use Alpaka 
• Single implementation for CPU and GPU(s)
• Major code simplifications taking advantage of new CMSSW FW capabilities 
- Common infrastructure for SoA, kernel helper functions 
• Validated to reproduce CUDA/Legacy CPU code for 2024 data
• Deployed for data taking since August 2024 
• Alpaka implementation brings ~2% speed-up in the full HLT menu
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