Portable HCAL reconstruction in the CMS [
detector using the Alpaka library

CHEP 2024 Martin Kwok (Fermilab)
19 - 25 October, 2024 | Krakow, Poland on behalf of CMS collaboration

§=]
o
c

L)
o

w
c
o
>

=

-
o
©
(oY
S
@]

O

Introduction Compute Kernels

- Many infrastructural improvements with introducing algorithmic changes
 Code structure
- Data access methods (Simple index with SoA)
» Wrapper around CUDA type-casting intrinsic functions for CPU/GPU backends

Alpaka is a performance portability tool adopted by CMS for Run 3
- One implementation for both CPU and different GPU architectures
Goal of the project
- Re-engineer the CUDA implementation of HCAL local reconstruction using Alpaka
* No algorithmic changes introduced, which simplifies the validation process * Apply Alpaka syntax to CUDA kernels

- Replace custom-CUDA utilities (data-migration, data-structure creation) with * Kernel helper. TU”C’“O”S for simple work division
CMSSW tools - Enhanced readability of kernels

« Use 500 less lines in the Alpaka implementation

Before After
CUDA Computing data stride

// conditions based on the hash
// FIXME: remove hardcoded values /
auto const qieType = qgieTypes[hashedId] > 0@ ? 1 : @; // 2 types at this point

auto constx gieOffsets = gieCoderOffsets| + hashedId x HcalQIECodersGPU::numValuesPerChannel;
auto constx qieSlopes = gieCoderSlopes + hashedId * HcalQIECodersGPU: :numValuesPerChannel;

Alpaka Clean, simple index access

// conditions based on the hash
auto const qieType = mahi.qieTypes_values() [hashedId] > 0 ? 1 +—®T // 2 types at this point
auto constx gieOffsets| = mahi.qieCoders_offsets() [hashedId].data();

auto constx qieSlopes = mahi.gieCoders_slopes() [hashedId].data();

CUDA Utilities

Implementation Validation

There are 4 major components involved in the reconstruction

* Validated at the 2 different levels:

. : convert input data into Structure-Of-Array (SoA) format « Module level validation with O(1000) events
. : produce HCAL conditions in SoA format - Compares per-channel rechit energy
. : compute HCAL energy reconstruction - Observed only numerical differences
» SOA to Legacy conversion: convert to legacy CPU format * Trigger menu level validation with O(100k) events
* HCAL local reconstruction is used by any triggers with jets
CPU | GPU Hence, a more stringent test

* Compare changes of HLT decisions of every paths in the latest HLT menu
* +/-2 events for most paths

Unpacked Raw data
I

3 * Consistent with numerical differences
/ DigiConverter RN SoA Digi Collection \ * Multiple comparisons done with each level:
E - Alpaka GPU v.s. CUDA
. \4
Mahi- . : - Alpaka CPU v.s. Legacy CPU
HCAL calibration ——> MAHI Compute kernel
Alpaka : - Alpaka GPU v.s. Alpaka CPU

v
Legacy RecHit Collection

: |
K SoA to Legacy conversion 4-— SoA RecHit Collection /
. Performance

* Measured event throughput of full HLT menu on dedicated computing node

lllustration of steps involved in CMS HCAL local reconstruction. with same hardware (CPU and GPU) to the data-taking HLT farm
boxes are data-product producers; - boxes indicate data product; * The measurement node is fully loaded, similar to HLT runs in production

* Measured with and without NVIDIA Multi-Process Service (MPS) enabled
* Alpaka implementation brings ~2% speed-up in the full HLT menu

DigiConverter * Only infrastructural improvements
* Without algorithmic changes

box is the auxiliary input data that depends on detector configuration/calibrations

- Structure-Of-Array (SoA) is a more GPU-friendly data structure
A

- CMSSW has introduced generic mechanism to generate common S - :
SoA data-structure using macros CPU s " | GPUWIthMPS MPSspeedup | T WP

MPS
- We defined an HCAL DigiSoA to store in a single structure:

_ HCAL legacy 388.8 ev/s 565.6 ev/s 635.6 ev/s +12.4% +63.5%
- Per-channel numbers (e.g. channel id)
- Per-channel arrays (e.g. energy in each bunch crossings) HCAL alpaka 387.5 ev/s 619.3 ev/s 649.3 ev/s +4.8% +67.6%
- Constant scalar (e.g. total channels)
Alpaka speed up - +9.5% +2.2%
r SoA column (array)
HCAL oA co (int) i}
. . OA column (In
DigiSOA CO"CIUSIO“
SoA Scalar
_
Calibration data * Re-engineered CUDA implementation of HCAL local reconstruction to use Alpaka
* Single implementation for CPU and GPU(s)
* HCAL local reconstructions requires a lot of condition products - Major code simplifications taking advantage of new CMSSW FW capabilities
* €.g. pedestal and response corrections - Common infrastructure for SoA, kernel helper functions
* CUDA implementation used simple arrays for each products - Validated to reproduce CUDA/Legacy CPU code for 2024 data
° Slmpllfled from 18 event prOdUC’[S intO 4 SOA Wlth mUItlple COIUmnS ° Deployed for data tak|ng Since August 2024
* Simplifies access to related-SoA columns with custom class of SoA » Alpaka implementation brings ~2% speed-up in the full HLT menu
HcalRecoParamWithPulseShapeSoA
GENERATE_SOA_LAYOUT (HcalRecoParamSoALayout, . u
Per-Ch | t SOA_COLUMN(u;ntBZ_t, paraml), ﬂ
ernannel parameters el [=] x4 EI
GENERATE_SOA_LAYOUT(IzlcalPulseShapeSoALavout. 256 floats arrays . '-"* "u B
SOA_COLUMN(HcalPsfunctorArray, acc2snsVec), “oluf” -
Per unique PulseShape Egﬁ;@gﬁﬁﬁ%E&Egiﬁ%gfﬁiiggdLé%\if%ﬁ%%@%ggggggém This manuscript has been authored by Fermi Research Alliance, _ E ! =
parameters LLG under Contract No. DE-AC02-07CH11359 with the U.S. Contact: kkwok@fnal.gov OR i3 1
’ o5 floats arravs Department of Energy, Office of Science, Office of High Energy

Physics. FERMILAB'POSTER'24'O304'PPD

mailto:kkwok@fnal.gov

