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Part of the work presented is formalized in a two years 
joint project between the EP-SFT and IT-ST group at 
CERN:
 

Large-scale validation and optimisation of RNTuple, 
the HL-LHC event data format

PSO 

This activity is part of the 

RCS-IT
Research and Computing 
Sector & CERN IT 
Engagement 
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Scope & Approach 

● Local IO optimizations
○ End-user analysis
○ Data conversion tools
○ Parallel Writing

● Remote IO optimizations
○ Scale-out for Analysis
○ Facility Usage

● Data Format optimizations
○ Compression schemes
○ IO sizes

● Final Validation
○ Data Challenge
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RNTuple  Development

Single Node/Local IO 
Optimizations

Single Node/Remote IO
Optimizations

Multi Node/Remote IO
Optimizations

Data Conversion & Compression 
Scheme Optimization

EDM Conditioning

Large Scale Data Challange

2024

2025



ROOT RNTuple

Chapter 1
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RNTuple: redesigned columnar I/O for HENP
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● Building on 25+ years of TTree experience, modern & efficient implementation:
○ Smaller files (typically 10% - 50%), higher throughput (often by factors)
○ More robust: binary format specification, modern API, fully checksummed
○ Efficient support of modern storage systems: NVMe, object stores, async & parallel I/O
○ Forward-looking limits: designed for TB-sized events and PB-sized files

● Feature-rich: works with complex experiment EDMs and with experiment frameworks

● Supported at HL-LHC timescale (2040+)
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ROOT File with RNTuple

RBrowser showing RNTuple data

>2EB (now) → >10EB (end of HL-LHC)
~½ of the WLCG budget on storage

Chapter 1

https://github.com/root-project/root/tree/master/tree/ntuple/v7/doc/specifications.md


Type Class Types EDM Coverage RNTuple Status

PoD
bool, char, std::byte, (u)int[8,16,32,64]_t, 
float, double

Flat n-tuple

Reduced 
AOD

Full AOD / 
ESD / RECO

Available

Records Manually built structs of PoDs

(Nested) vectors
std::vector, RVec, std::array,
C-style fixed-size arrays

Available

String std::string Available

User-defined classes Non-cyclic classes with dictionaries Available

User-defined enums Scoped / unscoped enums with dictionaries Available

User-defined collections Non-associative collection proxy Available

stdlib types
std::pair, std::tuple, std::bitset, 
std::(unordered_)(multi)set, 
std::(unordered_)(multi)map

Available

Alternating types
std::variant, std::unique_ptr,
std::optional

Available

Streamer I/O All ROOT streamable objects (stored as byte array) Available

Low-precision
floating points

Double32_t, f16

Optimization benefitting all EDMs
Available

Custom precision / range
(bfloat16, TensorFloat-32, other AI formats)

Available

HENP I/O Challenge: Rich Event Data Models
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HENP I/O Challenge: Rich Event Data Models
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Limit of HDF5 and Big Data formats (e.g., Parquet)

Chapter 1



HENP I/O has unique requirements and challenges
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1. Natural HENP data layout is 
jagged arrays of complex types with columnar access pattern

○ HDF5 does not fit well due to its inherent tensor layout
○ Otherwise only found in Big Data (but with limited type support)

2. HENP data organization: global federation of file sets
○ Requires XRootD and HTTP remote data access
○ Extra functionality to build data sets from files: 

fast merging, chains, 👉 joins

3. Integration in the HENP software landscape
○ Rich type system of experiment central EDMs with 10k+ columns
○ Multi-threaded reading and writing under tight memory constraints
○ Schema extension during writing
○ Availability in the Python & C++ analysis ecosystem, e.g. in ROOT RDataFrame

4. >10 EB of data to be stored over decades
○ Requires excellent compression (lossy and lossless)
○ Data custodianship over time: 

backward & forward compatibility, schema evolution, bit-level checksumming
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In reality:
>1000 data classes

>10k properties
billions of events

decades of retention

Event data model, very simplified

Due to ROOT's C++ interpreter: 
classes are the schema

Chapter 1

https://indico.cern.ch/event/1338689/contributions/6016137/
https://indico.cern.ch/event/1338689/contributions/6016196/


RNTuple in Practice
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● For maximum optimization opportunities, RNTuple introduces a new on-disk format and a new API

● At the same time, RNTuple is smoothly integrated with the 
established ROOT/HENP ecosystem.

○ RNTuple data stored in ROOT files
○ Consistent tooling

■ RBrowser support
■ TFileMerger & hadd support
■ Disk-to-disk converter TTree → RNTuple [1]

○ RNTuple adopts TTree’s I/O customization and schema evolution system
○ For RDataFrame code: no change required
○ Based on the specification: 3rd party readers available, e.g. for 👉Julia

● For frameworks and power users, RNTuple provides a modern API for (multi-threaded) writing and reading
○ Follows C++ core guidelines
○ e.g., smart pointers, runtime errors signaled by exceptions
○ Reviewed by HEP-CCE

A TTree and an RNTuple in the same ROOT file. In this example, 
the RNTuple data has been converted from the tree using the 

RNTupleImporter.

Chapter 1

https://root.cern.ch/doc/master/ntpl008__import_8C.html
https://indico.cern.ch/event/1338689/contributions/6016137/
https://www.anl.gov/hep-cce


RNTuple in Practice
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● At the same time, RNTuple is smoothly integrated with the 
established ROOT/HENP ecosystem.

○ RNTuple data stored in ROOT files
○ Consistent tooling

■ RBrowser support
■ TFileMerger & hadd support
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○ For RDataFrame code: no change required
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● For frameworks and power users, RNTuple provides a modern API for (multi-threaded) writing and reading
○ Follows C++ core guidelines
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https://root.cern.ch/doc/master/ntpl008__import_8C.html
https://indico.cern.ch/event/1338689/contributions/6016137/
https://www.anl.gov/hep-cce
https://github.com/root-project/root/tree/master/tutorials/v7/ntuple


RNTuple Performance: Data Volume
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Contributors to space savings
● More compact on-disk representation of 

collections and booleans (trigger bits)
● Same page merging
● Type-based data encoding optimized for 

better compression ratio

Example: ATLAS DAOD
RNTuple in ATLAS 👉 [1] 👉 [2] 👉 [3]

Note that due to data preconditioning in RNTuple, 
the relative difference between compression 
algorithms fades.

Chapter 1

More performance studies
● 👉 CMS
● 👉 LHCb
● 👉 Comparison with HDF5 & Parquet (ACAT 21)

Also: new default settings, 
e.g. zstd compression algorithm

M. Foll

https://indico.cern.ch/event/1338689/contributions/6010806/
https://indico.cern.ch/event/1338689/contributions/6010811/
https://indico.cern.ch/event/1338689/contributions/6010824/
https://indico.cern.ch/event/1338689/contributions/6010800/
https://indico.cern.ch/event/1338689/contributions/6010401/
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012118


RNTuple Performance: Throughput Examples

13J. Blomer, A.Peters | CERN EP-SFT & IT-SD | CHEP 2024 | RNTuple & EOS

Contributors to higher throughput
● Asynchronous prefetching
● Multi-stream disk access through io_uring
● Code optimization
● New on-disk layout allows for higher degree of 

explicit and implicit parallelization
● New RDataFrame I/O scheduler

Better IMT scalability 
👉 CMS

👉 Parallel & Direct I/O writing

Higher single-core 
RDataFrame read 
throughput across various 
final-stage ntuple types and 
data access modes.

Chapter 1

https://indico.cern.ch/event/1338689/contributions/6010800/
https://indico.cern.ch/event/1338689/contributions/6010002/


Beyond Files: Support for Object Stores
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● Object store (S3) is the primary storage 
technology in the cloud

● A storage option for HPC, too 
(e.g., DAOS on Aurora)

● RNTuple is built such that its data blocks can 
be directly mapped to an object store.

● Pre-production implementation for DAOS
○ Prototype implementation for S3

● RNTuple design gives access to native 
performance of object stores

Example of mapping onto S3 objects

👉 RNTuple on DAOS

Native RNTuple object store support reaches 2GB/s/client.
The file system emulation layer peaks at 250MB/s/client.

Chapter 1

https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_02066/epjconf_chep2021_02066.html


Chapter 1 - Status & Outlook
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TTree enters legacy support mode

➢ RNTuple is transitioning into production
○ Major milestone after 6 years of R&D

■ Final first version of on-disk format for ROOT 6.34 (November 2024)
■ Future ROOT versions will be backwards-compatible

○ First production API: ROOT 6.36 (H1 / 2025)
■ Will incorporate the HEP-CCE API review suggestions

➢ Start of first exploitation phase in 2025
➢ RNTuple provides a solid basis for future I/O R&D

RNTuple is a HENP I/O system for the HL-LHC era

Chapter 1



RNTuple with Remote Storage
70 Node 
Cluster

Single
Node

SWAN
HTCondor

20 PB
HDD EOS

150 PB
HDD EOS

284 TB
NVME CephFS

Compute

Storage

Chapter 2

root:// root:// POSIX
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EC 10+2 EC 10+2 2x Replication

Network 100GE

2240 cores32 cores 64++ cores

See also Next-Gen Storage Infrastructure for ALICE https://indico.cern.ch/event/1338689/contributions/6010773/

25/100GE
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● We set up a bare-metal computing environment, EO2C, with 70 nodes on 
100GE for a large-scale validation study and benchmarked it using 
three different storage backends.

● The performance studies used an Analysis Grand Challenge example
using RDataFrame

○ In all measurements, the dataset is uncached both in the back-end and, where 
applicable, in the client cache.

17

Large Scale Validation - Introduction

Chapter 2
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Node 
1-10

Node 11-20 Node 21-30 Node 31-40 Node 41-50 Node 51-60 Node 61-70

/shared/ CephFS /home directory + batch system written in bash

EOSPILOT
14 nodes 100GE 1334x 18TB HDDs

 24 PB - 20 PB usable
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EOSALICEO2

125 nodes 100GE  12000x  HDDs 
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CephFS
8 nodes  25GE 

80 x 7.6 TB NVMe 
 568 TB - 284 TB usable

CO
M

PU
TE

STO
RA

G
E

100GE NETWORK

40 GB/s 380  GB/s 22.5 GB/s

$4 $0.8$35

Max read

$/x
1 $/x

1 
$/x

6/12 

EO2C  Analysis Facility

Price per Volume Relative Price

Chapter 2

See also APPENDIX
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Test cases: CMS Analysis Grand Challenge
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https://github.com/iris-hep/analysis-grand-challenge/tree/main/analyses/cms-open-data-ttbar

mt
multi-threaded

dask-local
multi-process

dask-ssh
multi-process/node

     dask-remote
multi-process/node

AGC
Running modes

Single 
node

Single 
node

Multi 
nodes

Multi 
nodes

Chapter 2

1 2 3 4
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CMS AGC Dataset & Formats
● Six datasets were used as input for the benchmarks, based on CMS OpenData ttbar, 

including three generations of AGC RNTuple files 
three generations of AGC RNTuple files

20

Name Format Comp Size #Files

TTree ZLIB 1.94 TB 787

TTree ZSTD 1.59 TB 787

AGC1 RNTuple ZSTD 1.04 TB 787

AGC2 RNTuple 
2xcondensed
Cluster Size 200M

ZSTD 1.04 TB 396

AGC3 RNTuple
Cluster Size 100M
Adaptive Pagesize

ZSTD 965 GB 787

AGC100|20

0
RNTuple 100x 
inflated AGC1|2

ZSTD 104 TB 39600

➔ The runtime of ttbar AGC is
relatively short, making it unsuitable for 
running with distributed Dask and 
large-scale parallelism, runtime < init.time
( > 100 workers …)

➔ We created a 100x inflated
Dataset adding each data file 100x 
into the 104 TB 
AGC100|200 dataset

Chapter 2
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● The CMS OpenData ttbar analysis poses a challenging use-case for a 
spinning-disk-based infrastructure because …

21

➔ the analysis reads only 6.4% 
of the full data set as input
◆ sparse scattered forward 

reading
◆ not really HDD friendly

AGC1  ttbar read pattern may 2024 - x:timestamp y:file - offset

CMS AGC Read Pattern

Chapter 2



AGC RNTuple Size

22
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TTRee ZLIB TTree ZSTD RNTuple

AGC 1'946'631'920'767 1'594'321'501'163 964082593461000

➔ For a fair comparison, we rewrote 
the data using the ZSTD TTree 
format and compared the resulting 
size to RNTuple, achieving a 39% 
reduction in volume for AGC3 

➔ How do  Realtime & CPU when 
running the mt AGC1 ttbar analysis?

Realtime Meas. March 2024:
TTree ZSTD : 250s
RNTuple AGC1 : 240s 
“Something is wrong …”

Size Reduction from TTree to RNTuple

AGC3

Advantage of using RNTuple: the identical 
contents is stored using less disk space

Chapter 2



AGC mt
multi-threaded 
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The AGC mt RNTuple Journey 2024 in short  240s→ 70s

fasterResult:>

Beginning 
RNTuple

ReadV Fix 

RNTuple

 XRootD 
Demultiplexing

Data Format
Cluster/Pagesize

Journal Cache

-25%

-17%

-50%

-7%

70s

240s

Holistic Optimization for
Single Node with remote EOS

Single Node AGC Benchmarking 32 cores - multi-threaded - against EOSPILOT

March
April

May
July

October

AGC2 AGC3

AGC1

AGC1

AGC1

AGC3

Chapter 2

See also 
APPENDIX



AGC dask-local
multi-process 
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The AGC RNTuple Journey 2024 - mt vs dask 
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● Green computing:
dask-local uses ~30% 
more CPU than mt for 
the identical AGC3 job

○ startup phase  →

● But:
dask allows scale out 
over multiple nodes 

○ startup phase
low impact  for
longer running  jobs

Chapter 2

Processing Time

MB/s
2000

1500

1000

500

Initialization IO/Processing Phase

Figure: CPU & IO vs time for dask-local AGCFigure: Runtime dask-local AGC3



AGC dask-scale-out
multi-node/process 
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● When scaling AGC100 to few nodes with dask-ssh  it was able to saturate the 
EOSPILOT and even the EOSALICEO2 Instances … not limited by bandwidth …

● Performance scales 
up to 20 nodes, then 
scalability breaks with  
O2 backend

● Each client node runs 
64 dask worker

○ 30 nodes → 
1920 worker

AGC RNTuple - IO scalability 

2x 
faster

Only 2.2x faster  not 3x ! 

Chapter 2
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The AGC200 (condensed)  
data format resulted in 
significantly larger and less 
read requests:

~27kb →~540kb
~2M IOPS →~100k IOPS 
787 files →396 files
reads are mostly contained in readV requests

It helped to boost the instance 
output using the same storage 
hardware by factor >3 . 

● Introducing modified RNTuple format for AGC200 with EOSPILOT

AGC RNTuple - Format Improvements 

Chapter 2
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With a 100x inflated AGC200 
dataset we observe that as 
the number of client nodes 
increases, the initialization 
time gets close the 
processing time, resulting in 
a breakdown of scalability.

Single Analysis 
extremely sparse 

reaches avg. INGRES
222 GBit/s 

during processing

345 GBit/s 

● Introducing modified RNTuple format for AGC200 with EOSALICEO2 

AGC RNTuple - Format Improvements - fewer IOPS 

Side Remark:
Instance can do 5 TBit/s when streaming  

Chapter 2
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● Average and peak output rates for
2x condensed RNTuple format for 
AGC200 with EOSALICEO2

AGC RNTuple Backend Traffic 

● Virtual IO rates: scaling traffic from 
6.4% of the accessed data to the 
entire data  - sparseness defines 
instance output [0.345 - 5 TBit /s]

Chapter 2
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AGC Optimized Caching

33

“Can we use a high-performance shared filesystem as 
a distributed cache and still gain performance?”

R&D Project
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▶ By default CephFS
creates 4x read amplification

● A 22.5 GB/s 
Filesystem delivers
5.6 GB/s of data you need

● After disabling read-ahead still 
+30% amplification

▶ JCache avoids read 
amplification and
space overhead in the cache

● Works well  with default
read-head

● 22.5 GB/s used for the 
requested IO by applications

JCache - why journaling?

Chapter 2

Payload

Blocks

Paged Cache/
Filesystem Blocks

Block Alignment Constraints
1.Read-amplification

Filesystem  Read-ahead 
2.Read-amplification

CephFS
Payload 
requested

Payload 
delivered
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CLIENT

LAN SERVER

LAN/WAN SERVER

LAN/WAN SERVER

client-side JCache deployment

server-side JCache deployment

JCache - deployment model

Chapter 2

simplification: no need for credential delegation/forwarding 



J. Blomer, A.Peters | CERN EP-SFT & IT-SD | CHEP 2024 | RNTuple & EOS 36

▶ JCache provides easy insight 
into application IO including 
bandwidth profiling

▶ JCache is maintaining 100% 
async IO and allows 
disconnected operation

JCache - embedded IO benchmarking
# ----------------------------------------------------------------------- #
# JCache : 2024 CERN.EOS - Andreas-Joachim Peters                         #
# ----------------------------------------------------------------------- #
# JCache : cache combined hit rate  : 100.00 %
# JCache : cache read     hit rate  : 100.00 %
# JCache : cache readv    hit rate  : 100.00 %
# ----------------------------------------------------------------------- #
# JCache : total bytes    read      : 8976091232
# JCache : total bytes    readv     : 53958826610
# ----------------------------------------------------------------------- #
# JCache : total iops     read      : 34056
# JCache : total iops     readv     : 10707
# JCache : total iops     readvread : 93611
# ----------------------------------------------------------------------- #
# JCache : avg.  bytes    read      : 263568.00
# JCache : avg.  bytes    readv     : 5039584.00
# ----------------------------------------------------------------------- #
# JCache : open files     read      : 1050
# JCache : open unique f. read      : 796
# JCache : time to open files (s)   : 0.000
# ----------------------------------------------------------------------- #
# JCache : total unique files bytes : 976614396598
# JCache : total unique files size  : 976.61 GB
# JCache : percentage dataset read  : 6.44 %
# ----------------------------------------------------------------------- #
# JCache : app user time            : 3329.07 s
# JCache : app real time            : 72.48 s
# JCache : app sys  time            : 41.17 s
# JCache : app acceleration         : 45.93x
# JCache : app readrate             : 868.35 MB/s [ peak (1s) 1.94 GB/s ]
# ----------------------------------------------------------------------- #

# IO Timeprofile 
# --------------
#  1670.00 MB/s |                                         
#  1484.44      |         **  *                           
#  1298.89      |           ** **                         
#  1113.33      |        *       **      **   ***   **    
#   927.78      |                    *  *  *       *  *   
#   742.22      |       *          ** **    **   *        
#   556.67      |                                 *    * *
#   371.11      |                                         
#   185.56      |                                       * 
#     0.00      | ******                                  
#                ----------------------------------------
#                0   10  20  30  40  50  60  70  80  90  [ 100 % = 72.48s ]
# ----------------------------------------------------------------------- 

Chapter 2
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@30 client nodes 
Network  bottleneck
25 GBit Network

@40 client nodes 
Storage bottleneck

>70 client nodes
Storage bottleneck

AGC200 - Backend Performance Comparisons

18x 28x 40xSpeedup 

compared to 
single client node

>120 client nodes
Storage bottleneck

72x

measured Theoretical
If we would have 100 GE

Chapter 2

What did we reach?

Runtime
hours→minutes

● Client & JCache 
Dimensioning  
allows to scale 
down run-time “as 
you want” or “as you 
can afford

"A solid strategy is to 
establish a data 
format that can be 
efficiently read from 
HDD back-ends."



AGC with SWAN&HTCondor*
*A Pilot Analysis Facility at CERN

dask-remote
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CERN Analysis Facility Pilot - SWAN + HTCondor

Courtesy: Slide from Enric Tejedor / CERN SWAN team

Chapter 2

Web portal

User session
1. Submit job requests to deploy 
Dask workers

2. Execute 
jobs

3. Run analysis 
computations



J. Blomer, A.Peters | CERN EP-SFT & IT-SD | CHEP 2024 | RNTuple & EOS 40

New Jupyter Lab Interface with HTCondor Plug-inExtensive Monitoring Abilities

CERN Analysis Facility Pilot - SWAN + HTCondor

Chapter 2
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● Positive 
○ Works with similar runtime - assuming a similar performance environment

for Dask workers operating in batch

○ Simple access in a web browser

○ Integration of EOS/CERNBox Sharing

○ Access to hundreds of thousands of cores in batch farm

● Room for Improvements 
○ Long time to initialize setup for an interactive system

■ can take few minutes 

○ HTCondor cluster interface can get disconnected  

○ Dask initialization time correlated to number of workers

■ User needs to understand how many workers are useful for a 
given task 

○ The setup is not yet fully automated and requires few manual steps

AGC cms ttbar benchmark

CERN Analysis Facility Pilot - Results

Chapter 2

More about the SWAN+HTCondor analysis pilot this afternoon see https://indico.cern.ch/event/1338689/contributions/6010680/

https://indico.cern.ch/event/1338689/contributions/6010680/


Summaries
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● Detailed benchmarking has allowed for substantial improvements in RNTuple 
for remote access from EOS (AGC example)

○ Excavated several issues which don’t appear in local environments
○ Achieved >3x less run-time for TTree → RNTuple
○ Achieved -39% size reduction for TTree → RNTuple
○ Achieved -40% size reduction for moving from Replication → EC(10+2) in EOS
○ Achieved running extreme case of sparse CMS AGC analysis at 345 GBit/s during processing (HDD storage)

● Optimized caching plug-in R&D JCache 
○ Suitable to use high-performance shared file systems as shared cache with low overhead
○ Provides out of the box IO summaries and profiles
○ Allows to optimize AGC benchmark to lowest run-time performance eliminating read overhead
○ Suitable to run on end-user devices

● These results can provide valuable input for the architecture of future 
analysis facilities

○ NVME and HDDs - Shared File System combined with Remote Accessible Storage
○ Baremetal approach and/or SWAN+HTCondor 
○ Usability and savings with EOS erasure coded storage for analysis

43

Chapter 2 - Summary 
Holistic Approach RNTuple + EOS
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Final Summary &
Future Outlook 

A special thanks to all the teams from the IT and EP 
group who have helped advancing this project.

● RNTuple is transitioning to production

● Solid basis for future IO R&D

● Local and remote access optimizations 
with significant improvements
○ used a worst-case test case validating NVME 

and HDD storage backends

● For the final part of this activity we count 
on participation from experiments to
○ optimize specific data formats
○ validate them in a large scale data challenge

Thank You For Your Attention!
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● 2x AMD EPYC 7302 and 7313 16-Core Processor
● DDR4 3200 MT/s 16x16 GB - 256 GB
● Intel® Ethernet Network Adapter E810 - 1x100GE
● Filesystems

○ / EXT4 2 TB NVME
○ /data01..96  XFS 18TB HDD

● 2x AMD EPYC 7302 and 7313 16-Core Processor
● DDR4 3200 MT/s 16x16 GB - 256 GB
● Intel® Ethernet Network Adapter E810 - 1x100GE
● Filesystems

○ / EXT4 2 TB NVME
○ /cvmfs CvmFS filesystem
○ /shared CephFS home directory
○ /jcache CephFS cache directory 

Compute EO2CStorage EOSPILOT/ALICEO2

Storage & Compute Hardware

Chapter 2
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Single Node multi-threaded AGC Benchmarking 32 cores

MT XRootD 
Server

XRootD 
Client

MT XRootD 
Server

XRootD 
Client

1 connection 
per server

N connections 
per server

default

demux
patch

Observation: when you repeat a measurement twice reading initially uncached data from remote you see a 
significant reduction in run-time with the second run.  This is due to a client side bottleneck! 

Connection Demultiplexing eliminates this bottleneck.

● Reported last year at CHEP in the context of  XCache benchmarking
● If your storage is made of more servers than threads used in your application, multiplexing does 

not play a role (e.g. large CERN instances like EOSATLAS/CMS/PUBLIC)
● For EOSPILOT it still plays a role. 
● XRootD team identified problem in parallel-socket implementation - when this is fixed enabling 

parallel sockets should eliminate this problem without the need for manual multiplexing

Mode 1st run 2nd run

Default 142s 77s

Demux64 83s 75s

AGC2

Chapter 2
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● XCache 
○ well established in HEP as a block based XRootD based cache server

■ If data is only partially accessed block chunking introduces moderate to significant space 
overhead of the payload vs cached data contents e.g. 128k blocksize +123%

■ there is also a visible real time overhead when reading cold data through XCache in a LAN 
environment with not saturated infrastructure (2x - 5x).

■ Implemented as a server-side plug-in in XRootd
● JCache 

○ JCache is using journaling to cache file contents not blocks (code derived from eosxd)
■ Stores only payload - 0% size overhead - 15% real-time overhead for cold AGC case in LAN
■ Implemented as a client plug-in which can be deployed client and server-side 
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Final Sprint Improvements - from XCache to JCache

Can we use an NVME based shared 
filesystem as a distributed cache and gain 
performance?

yes! R&D project

Chapter 2
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● Using file locking for cache journals allows to use a shared file system as a 
distributed cache on many clients 

○ we used CephFS with 8 NVME nodes (see before) and double replication

● One drawback of using a shared file system is the impact of automatic read-ahead 
and object block sizes defined

○ With default mount options CephFS inflates the required traffic on the wire >4x due to the 
automatic read-ahead algorithm

○ With ra=64k or ra=0k this creates still 1.3x more traffic than required
○ We used a default block size of 4M, tried also 1M - no change in behaviour 

● When running AGC200 on 30 nodes using dask-ssh the run-time is defined by the 
maximal bandwidth of the CephFS backend and the read overhead

○ The CephFS back-end saturates at around 22.5 GB/s 
■ Run-time is 550s - 50% longer than on EOSPILOT (due to bandwidth limit + read overhead)
■ Origin is that our CephFS cluster has only 25GE on each storage node!
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JCache - caching into shared filesystems - CephFS

Chapter 2


