Ly T |
sl /ol

Towards a framework for
GPU event generation

Juan M. Cruz-Martinez - Cern TH Department
Milan Christmas Meeting, December 2023

Kinematic coverage

Why do | care?

Fixed-target DIS

v Collider DIS

Fixed-target DY
<t Collider gauge boson production

A

c
o
2
O
>
g,
o
—
aQ
fd
2
)
2
n
=
O
£
@
o)
i
n

C
RS,
.

O

)
©

c O
o o
S §
S O
MO
N
| -
a 5
)
2 9
NI
O N

S
>
)
c
0
S
o
S
)
0n
| -
o
>
n
c
©
j -
)
N

)
ACA
|_I
c
[e)
=2
()
S
O c
S E.2
o O
c S
w o
o O
o o
()] S
@) ©
S o
©

o 0 ¥
o (o]
Q S
© o
= o
@) (@)
@) —
A

®
*
®

=
he,
=
O
-]
>
O
—
oY
Y,
| -
(©
-]
ﬂ_u.
Q
O
)
Q
)
=
n

.« dg e adad 2 d o d
L

%
b 7 *
A g g g g
1

%

" >

L
A dlde aadd g gl gt
4 T S T < oomee

%

e
\ > bbb bb bbb bbb D@ @
e “*. > > Seee
. wv o0
* 1 143 adaddadad g Fee

%o, PR rEr e >

WWYVVVYVYY

109

1071

102

1073

10~*

10’ E

10° E

10° E

0
103 -
10 ;
10* -

(QV

The ingredients of a Monte Carlo generator

4
-
I
p > -
histogramming / analysis Z1P1 i
| ---- H
i L2P2
+ - -
p -
.

~illing interpolation grids

_oop integrals and special functions
PDF uncertainties

- Scale variations
- Infrared subtractions

O = Jddxldxz f1Gep, w0, piz) | M ‘ Pat- i) |2 TP)

w
Parton Distribution Functions

3

matrix element

cuts

The CPU engine

As long as the performance of the
CPUs increase faster than the
complexity of the calculation this is
not really a problem.

And when it starts being a
problem... well, just build
increasingly large clusters of CPUs
to continue the exponential trend...

Because, luckily, Monte Carlo
integrations are, in general highly
parallelizable!

50 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance

™ .,“33' (SpecINT x 10°%)

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Monte Carlo integrals are highly parallelizable

T~372

1.0

0.8 .

064 [

If they are so good, why are we not using them?

> Huge codebases optimized for running on CPU clusters, not necessarily in
GPU-friendly languages

> Papers are needed, porting code is “wasted time”

> EXisting expertise not always translate cleanly to a completely different
architecture/language

> |t’s a catch-22 situation!

Summary from Danilo Plparo s talk at the Event generators acceleration workshop in November:

I

1) leflcult to f|nd all the necessary software expertlse to facae*such ; CnSIIenge in the Monte ,
, Carlo generators community alone
Consolidation of the available software expertise is key, at CERN and elsewhere

I o We need to create a crltlcal mass of developers to apply sw related knowledge to the
| __ __|

= ——— kq_m — — - — e —— R _— —
= —_— - e ——— S —_— _— — ————— — - _ S D

— — — — - — -

= —

So you extend your current code, which

But, in addition, we also need suffer from a lack of tools. allows you to get a paper out, which makes
you more proficient in whatever language that
We need to create a critical mass of GPU based tools so that development can seamlessly code was written in, which in turns makes the

codebase even larger and with it the barrier

move towards hardware accelerators. _ _
to implement it on a GPU has also grown.

The phenomenologist (CPU-based) toolbox

. |Madgraph / Comix
/ OpenLops

myriad of Vegas implementations / cuba

4
2 &

k p
<o . g <o~ 3
U Ry’
a Y

RAMBO / many algorithms available

NUMERICAL
RECIPES

Example Book [C])
Second Edition

Wiliam T. Vetterling
Wiliarm H. Press

Parton Distribution Functions LHAPDF

ut Fastjet

%

i

|

3

h

3

|

h

I

|

%

.

E |

I

" | b

%
P §
d .
~ o ~

s RISy
55 2

Thousands of ROOT scripts

The phenomenologist (GPU-based) lack thereof

I Parton Distribution Functionsl S ——

cuts

B

In the next few slides I’ll try to motivate
how having some kind of framework can
make this jump much easier even if it is
far from perfect.

Filling up the box with some new tools

In order to create an environment in which we could start moving forward we have written some of these tools using TensorFlow

1L

~

Our goals:
M Exactly the same code base for CPU and GPU (no matter the brand!)
M A lot of mathematical functions already available
™ Not adding extra dependencies to our existing codebase (mostly python and, yes, TF)

M Easily extensible and interfaceable with other languages (C++, Cuda, Fortran, Rust)

Some caveats and disadvantages:

] It’s an external Machine Learning library, their goals are not always aligned with ours

[J The above is most obvious on some overheads in (mostly) memory and execution time]

[The easily in “easily extensible” is subject to opinion

PDF Interpolation Library: PDFFlow

[hep-ph] 2009.06635 github.com/N3PDF/pdfflow

PDFflow - LHAPDF perfomances E NqN PqDFq31_qn|Oq_aSq_01q18/q quﬂa\f :q 1
3.0l =-4-- PDFFlow: i9 9980XE (CPU) P 13 bevreereeeeeesees e]
PDFFlow: Titan V (GPU) /,-" i .]
2.57 --4-- LHAPDF (CPU) o : —— ¢ =1.65 x 10 — (=1.00 x 10
o _ 107°F Q =1.70 x 10" @ =1.00 x 10°;
201 - —— Q=492x10° —— Q=1.00x 105]
EN ol _ o Q=100 x 10’ Q = 2.00 x 106
o — 1 10 -—— Q= 1.00 x 10?
1.0t e — 3 3
e _ kA _I_ F
/. ‘——"—"" | _9 I
0.5¢ o il — 1077 E
: ‘/O’ ‘—_‘__knr Q, L'\ -
AT —~ | L]
0.0 &A% o
’ | 10—11 : 4
L 10%F :
o ’
T 10719 ~
-] ;
f 101+
g] —15
D(:U f——l--AIL——A-—AI—-A——A-I—A—-A-I—k—*—I-A-—A—I-A—-A-—IA—-A——IA-—‘—-+ 10 E_u“‘l . | ikl ‘ L ‘ | | L
1 2 3 4 5 6 7 8 9 10 1012 1010 1070 102
Number of (z, Q) points drawn [x10°] T

10

https://arxiv.org/abs/2009.06635
https://github.com/N3PDF/pdfflow

GPU-aware integration wrapper: VegasFlow
[hep-ph] 2002.12921 github.com/N3PDF/vegasflow

VegasFlow implements some widely used importance sampling algorithms and knows how to dispatch integrands to one (or
multiple) GPUs.

The first real-life test we can do is a simple Leading Order process with easy expressions and a not too complicated phase space

LO single top @ 8 TeV, target uncertainty 0.014 pb
Intel(R) Core(TM) 19-9980XE CPU @ 3.00GHz

At this point we have a framework which we can use

VegasFlow _ to run in different kind of hardware with relatively little
VegasFlow |

GPU: RTX 2080 Ti We can start building from here!

VegasFlow |
GPU: Titan V

VegasFlow |
Running on CPU

Madgraph _

MG5 aMC@NLO Madgraph timing here for reference, it’s

not an apple-to-apples comparison

0 10 20 30 40 50
Time (minutes)

11

https://arxiv.org/abs/2002.12921
https://github.com/N3PDF/vegasflow

Parallelising outside the box

While we are often thinking about vectorising in the “event-axis”, that’s only one of the options

models

Maybe -for whatever reason- the strategy doesn’t allow for non-

sequential running.
phase space points

* Running different models at once

* The goal of the game is to keep as much of the calculation along
the parallelisation axis constant (luminosity channels, for
instance, are probably not a good candidate for this)

* Maybe thinking about a more general tensorization instead of scales
vectorization

12

Beyond Leading Order

z Infrared subtraction are subtracted locally with antenna

subtraction.

> The Phase Space was manually written with this process in
mind.

> The whole batch of events is generated and cuts immediately
applied before continuing the calculation.

> Phase Space points are then reorganized to eliminate any kind
of branching in the more expensive parts of the calculation

2 For this process, at NLO the cancellation of infrared
divergences works very decently, otherwise care needs to be
put on that as well.

2z We kept an index of each event, its phase space and its
weight in order to fill histograms at the end, in this case we
were trading memory for performance

Can we generalize this to any process? What would we need for that?

Let’s introduce a more realistic scenario: a NLO calculation with non trivial cuts and 4 particles in the final state

MC integration of VFH Higgs ©13 TeV ur = pr

VFH LO
VegasFlow+PDFFlow _ VFH NLO
(i9) TITAN V
beware of power
without control
VegasFlow+PDFFlow
(Xeon) 2x V100 /
VegasFlow+PDFFlow
(i7) RTX 2080
Fortran+LHAPDF _
I7 6700K
0 10 20 30 40

13

Time (seconds)

Beyond process-dependent code: MadFlow

[hep-ph] 2106.10279

)
ot

DO
-
1

do /dp; [tb/GeV]

(S
|

O
—_ —_
o o
=~ [@p} -}
1

—_
O
(\)

=
©
o0

Ratio to MG5H_aMC@NL
-

—
e}
T~

Cross section differential on p, for gg — tt

— MG5_aMCQNLO

MadFlow

|
50

|
100

|
150

200
pr |GeV]

|
250

|
300

|
350

|
400

github.com/N3PDF/madflow

@ Exploit MadGraph interface to write the diagrams in python,
extended to write them in a vectorized way and using
tensorflow-friendly routines

@ Write a phase space generator that’s completely general
(vectorized version of Rambo). We gave it the very original
name of RamboFlow.

@ We can then modify our previous example to use this
Madgraph interface to automagically generate the matrix
elements. Only at Leading Order.

Performance results for gg — tt
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

MadFlow |
GPU Titan V

MadFlow |
36 activate CPU cores

MG5_aMCQNLO |
36 active CPU cores

0 50 100 150 200 250 300
Time (s)
14

https://arxiv.org/abs/2106.10279
https://github.com/N3PDF/madflow

Beyond process-dependent code: MadFlow

[hep-ph] 2106.10279

NVIDIA RTX A6000 48GB
NVIDIA V100 32GB

Titan V + RTX 2080 Ti

NVIDIA RTX 2080 Ti 12GB
NVIDIA Titan V 12GB

AMD Radeon VIl 16GB
NVIDIA Quadro T2000 4GB
AMD EPYC 7742 64 cores 2TB
E5-2698 20 cores 256GB
19-9980XE 18 cores 128GB
AMD 2990WX 32 cores 128GB
19-10885H 8 cores 32GB

github.com/N3PDF/madflow

MadFlow time for 1M events
pp - ttg (36 diagrams)

15

50 100 150

Time (s)

https://arxiv.org/abs/2106.10279
https://github.com/N3PDF/madflow

Beyond process-dependent code: MadFlow
[hep-ph] 2106.10279 github.com/N3PDF/madflow

MadFlow time for 1M events
pp - ttgg (267 diagrams)

NVIDIA RTX A6000 48GB
NVIDIA V100 32GB

Titan V + RTX 2080 Ti

NVIDIA RTX 2080 Ti 12GB
NVIDIA Titan V 12GB

AMD Radeon VII 16GB

AMD EPYC 7742 64 cores 2TB
E5-2698 20 cores 256GB
19-9980XE 18 cores 128GB
AMD 2990WX 32 cores 128GB

0 250 500 750 1000 1250 1500
Time (s)

15

https://arxiv.org/abs/2106.10279
https://github.com/N3PDF/madflow

Beyond process-dependent code: MadFlow
[hep-ph] 2106.10279 github.com/N3PDF/madflow

MadFlow time for 100k events
pp - ttggg (2604 diagrams)

NVIDIA RTX A6000 48GB
NVIDIA V100 32GB

Titan V + RTX 2080 Ti

NVIDIA RTX 2080 Ti 12GB
NVIDIA Titan V 12GB

AMD Radeon VII 16GB

AMD EPYC 7742 64 cores 2TB
E5-2698 20 cores 256GB
19-9980XE 18 cores 128GB
AMD 2990WX 32 cores 128GB

0 500 1000 1500 2000
Time (s)

15

https://arxiv.org/abs/2106.10279
https://github.com/N3PDF/madflow

Beyond hardware agnostic code: overoptimization

Now we have to pay the debt that we bypassed at the beginning.

Until now we have been programming with tools that allowed us to use our existing codebase and that could run in any kind of
hardware. As announced at the beginning, this introduced an overhead. This overhead is how explicitly visible.

At the same time we can remember one of the advantages that we mentioned at the beginning

M Easily extensible and interfaceable with other languages (C++, Cuda, Fortran, Rust)

Let’s now use that power.

Titan V 12 GB, Tree-level 1M events

Generic code (tf)

Since in this case the bottleneck is created gg >t~ Device specific (Cuda)
by the sheer amount of diagrams, we can

write a transpiler so that we can convert 9g>tt-g

them in CUDA code that gets compiled

before running the process. p>tieg

The gains are mostly on memory, but that
translates to a gain also in running time

gg>tt~gg

0 5 10 Time (s) 15 / /200 220

16

Beyond hardware agnostic code: overoptimization

Now we have to pay the debt that we bypassed at the beginning.

Until now we have been programming with tools that allowed us to use our existing codebase and that could run in any kind of
hardware. As announced at the beginning, this introduced an overhead. This overhead is how explicitly visible.

At the same time we can remember one of the advantages that we mentioned at the beginning

M Easily extensible and interfaceable with other languages (C++, Cuda, Fortran, Rust)

gg - ggtt (1-10° events)

Bl Cuda
Bl Default

Let’s now use that power.
RTX A6000

Since in this case the bottleneck is created

by the sheer amount of diagrams, we can

write a transpiler so that we can convert

them in CUDA code that gets compiled TITAN V
before running the process.

The gains are mostly on memory, but that
translates to a gain also in running time

GTX 1060

0 1000 2000 3000
Total execution time [s]

6 Full-fledged GPU Monte Carlo event generatorg required dedicated efforte

