
Juan M. Cruz-Martinez - Cern TH Department
Milan Christmas Meeting, December 2023

Towards a framework for
GPU event generation

1

2

Why do I care?

The ingredients of a Monte Carlo generator

3

𝒪 = ∫ dΦndx1dx2 f1(x1, μ2
F)f2(x2, μ2

F) |M({pn}, μR) |2 𝒥n
m({pn})

integrator

phase space

cuts

matrix element

Parton Distribution Functions

histogramming / analysis
- Filling interpolation grids

- Loop integrals and special functions

- PDF uncertainties

- Scale variations

- Infrared subtractions

- ….

The CPU engine

4

As long as the performance of the
CPUs increase faster than the
complexity of the calculation this is
not really a problem.

And when it starts being a
problem… well, just build
increasingly large clusters of CPUs
to continue the exponential trend…

Because, luckily, Monte Carlo
integrations are, in general highly
parallelizable!

Monte Carlo integrals are highly parallelizable

5

π ≃ 3.2

π ≃ 3.16

If they are so good, why are we not using them?

6

Huge codebases optimized for running on CPU clusters, not necessarily in
GPU-friendly languages

Papers are needed, porting code is “wasted time”

Existing expertise not always translate cleanly to a completely different
architecture/language

It’s a catch-22 situation!

So you extend your current code, which
allows you to get a paper out, which makes
you more proficient in whatever language that
code was written in, which in turns makes the
codebase even larger and with it the barrier
to implement it on a GPU has also grown.

Summary from Danilo Piparo’s talk at the Event generators' acceleration workshop in November:

But, in addition, we also need suffer from a lack of tools.

We need to create a critical mass of GPU based tools so that development can seamlessly
move towards hardware accelerators.

The phenomenologist (CPU-based) toolbox

7

integrator

phase space

cuts

matrix element

Parton Distribution Functions

histogramming / analysis

LHAPDF

Madgraph / Comix
/ OpenLops

RAMBO / many algorithms available

myriad of Vegas implementations / cuba

Fastjet

Thousands of ROOT scripts

The phenomenologist (GPU-based) lack thereof

8

integrator

phase space

cuts

matrix element

Parton Distribution Functions

histogramming / analysis

?????

?????

?????

?????

?????

?????

In the next few slides I’ll try to motivate
how having some kind of framework can
make this jump much easier even if it is
far from perfect.

pepper

pdfflow / lhapdf…?

Filling up the box with some new tools

9

In order to create an environment in which we could start moving forward we have written some of these tools using TensorFlow

Our goals:

Exactly the same code base for CPU and GPU (no matter the brand!)

A lot of mathematical functions already available

Not adding extra dependencies to our existing codebase (mostly python and, yes, TF)

Easily extensible and interfaceable with other languages (C++, Cuda, Fortran, Rust)

Some caveats and disadvantages:

It’s an external Machine Learning library, their goals are not always aligned with ours

The above is most obvious on some overheads in (mostly) memory and execution time]

The easily in “easily extensible” is subject to opinion

10°12 10°10 10°6 10°2

x

10°15

10°13

10°11

10°9

10°7

10°5

10°3

|f
p
°

f l
|

|f
l|

+
≤

NNPDF31 nlo as 0118/0, flav = 1

Q = 1.65 £ 100

Q = 1.70 £ 100

Q = 4.92 £ 100

Q = 1.00 £ 102

Q = 1.00 £ 103

Q = 1.00 £ 104

Q = 1.00 £ 105

Q = 1.00 £ 106

Q = 2.00 £ 106

PDF Interpolation Library: PDFFlow

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10
Number of (x, Q) points drawn [£105]

101

102

R
at

io
to

LH
A
P
D

F

[hep-ph] 2009.06635 github.com/N3PDF/pdfflow

https://arxiv.org/abs/2009.06635
https://github.com/N3PDF/pdfflow

GPU-aware integration wrapper: VegasFlow

11

[hep-ph] 2002.12921 github.com/N3PDF/vegasflow
VegasFlow implements some widely used importance sampling algorithms and knows how to dispatch integrands to one (or
multiple) GPUs.

The first real-life test we can do is a simple Leading Order process with easy expressions and a not too complicated phase space

Madgraph timing here for reference, it’s
not an apple-to-apples comparison

At this point we have a framework which we can use
to run in different kind of hardware with relatively little
added effort.

We can start building from here!

https://arxiv.org/abs/2002.12921
https://github.com/N3PDF/vegasflow

Parallelising outside the box

12

While we are often thinking about vectorising in the “event-axis”, that’s only one of the options

Maybe -for whatever reason- the strategy doesn’t allow for non-
sequential running.

 Running different models at once

 The goal of the game is to keep as much of the calculation along
the parallelisation axis constant (luminosity channels, for
instance, are probably not a good candidate for this)

 Maybe thinking about a more general tensorization instead of
vectorization

phase space points

models

scales

Beyond Leading Order
Let’s introduce a more realistic scenario: a NLO calculation with non trivial cuts and 4 particles in the final state

0 10 20 30 40

Time (seconds)

Fortran+LHAPDF
i7 6700K

VegasFlow+PDFFlow
(i7) RTX 2080

VegasFlow+PDFFlow
(Xeon) 2x V100

VegasFlow+PDFFlow
(i9) TITAN V

6.5

0.42

0.53

0.34

46

15.2

7.4

5.1

MC integration of VFH Higgs @13 TeV µF = pT,j1

VFH LO

VFH NLO

beware of power
without control

Infrared subtraction are subtracted locally with antenna
subtraction.

The Phase Space was manually written with this process in
mind.

The whole batch of events is generated and cuts immediately
applied before continuing the calculation.

Phase Space points are then reorganized to eliminate any kind
of branching in the more expensive parts of the calculation

For this process, at NLO the cancellation of infrared
divergences works very decently, otherwise care needs to be
put on that as well.

We kept an index of each event, its phase space and its
weight in order to fill histograms at the end, in this case we
were trading memory for performance

Can we generalize this to any process? What would we need for that?

13

0 50 100 150 200 250 300

Time (s)

MG5 aMC@NLO
36 active CPU cores

MadFlow
36 activate CPU cores

MadFlow
GPU Titan V

Performance results for gg ! tt̄
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Beyond process-dependent code: MadFlow
[hep-ph] 2106.10279 github.com/N3PDF/madflow

14

0

5

10

15

20

25

dæ
/d

p t
[f
b
/G

eV
]

Cross section diÆerential on pt for gg ! tt̄

MG5 aMC@NLO

MadFlow

0 50 100 150 200 250 300 350 400

pt [GeV]

0.94

0.96

0.98

1.00

1.02

1.04

1.06

R
at

io
to

M
G

5
aM

C
@

N
L
O

Exploit MadGraph interface to write the diagrams in python,
extended to write them in a vectorized way and using
tensorflow-friendly routines

Write a phase space generator that’s completely general
(vectorized version of Rambo). We gave it the very original
name of RamboFlow.

We can then modify our previous example to use this
Madgraph interface to automagically generate the matrix
elements. Only at Leading Order.

https://arxiv.org/abs/2106.10279
https://github.com/N3PDF/madflow

Beyond process-dependent code: MadFlow
[hep-ph] 2106.10279 github.com/N3PDF/madflow

15

https://arxiv.org/abs/2106.10279
https://github.com/N3PDF/madflow

Beyond process-dependent code: MadFlow
[hep-ph] 2106.10279 github.com/N3PDF/madflow

15

https://arxiv.org/abs/2106.10279
https://github.com/N3PDF/madflow

Beyond process-dependent code: MadFlow
[hep-ph] 2106.10279 github.com/N3PDF/madflow

15

https://arxiv.org/abs/2106.10279
https://github.com/N3PDF/madflow

Beyond hardware agnostic code: overoptimization

16

Now we have to pay the debt that we bypassed at the beginning.

Until now we have been programming with tools that allowed us to use our existing codebase and that could run in any kind of
hardware. As announced at the beginning, this introduced an overhead. This overhead is now explicitly visible.

At the same time we can remember one of the advantages that we mentioned at the beginning

Easily extensible and interfaceable with other languages (C++, Cuda, Fortran, Rust)

Let´s now use that power.

Since in this case the bottleneck is created
by the sheer amount of diagrams, we can
write a transpiler so that we can convert
them in CUDA code that gets compiled
before running the process.

The gains are mostly on memory, but that
translates to a gain also in running time

Beyond hardware agnostic code: overoptimization

16

Now we have to pay the debt that we bypassed at the beginning.

Until now we have been programming with tools that allowed us to use our existing codebase and that could run in any kind of
hardware. As announced at the beginning, this introduced an overhead. This overhead is now explicitly visible.

At the same time we can remember one of the advantages that we mentioned at the beginning

Easily extensible and interfaceable with other languages (C++, Cuda, Fortran, Rust)

Let´s now use that power.

Since in this case the bottleneck is created
by the sheer amount of diagrams, we can
write a transpiler so that we can convert
them in CUDA code that gets compiled
before running the process.

The gains are mostly on memory, but that
translates to a gain also in running time

CLARA .es

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

17

Full-fledged GPU Monte Carlo event generators required dedicated efforts
Incremental improvements might not seem worth it…
However… slow and steady wins the race

Vectorize new implementations whenever possible, even if doesn’t seem that useful
Train students and future researchers on these new techonologies
Release and share these tools and make them available!

