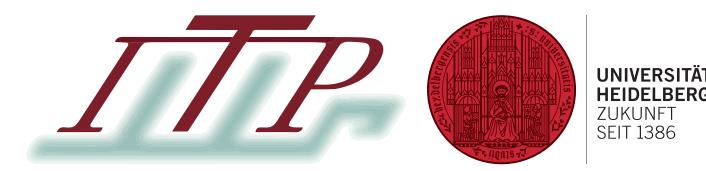
Evaluating Neural Network Uncertainty Estimation with Inconsistent Training Data

Author: Giovanni De Crescenzo

Based on work with: Andrea Barontini & Mark N. Costantini



1

Parton Distribution Functions: PDFs

- QCD: strong interaction theory
- Fundamental fields are quarks and gluons (color) confinement)
- Proton: bound state \mapsto PDFs dependent observables
- PDFs: $\{f_i(x, Q^2)\}_i = 1, ..., n_{fl}$

$$\sigma_{had} = \sum_{i,j} f_i \otimes \hat{\sigma}_{ij} \otimes \hat{\sigma}$$

Convolutional map

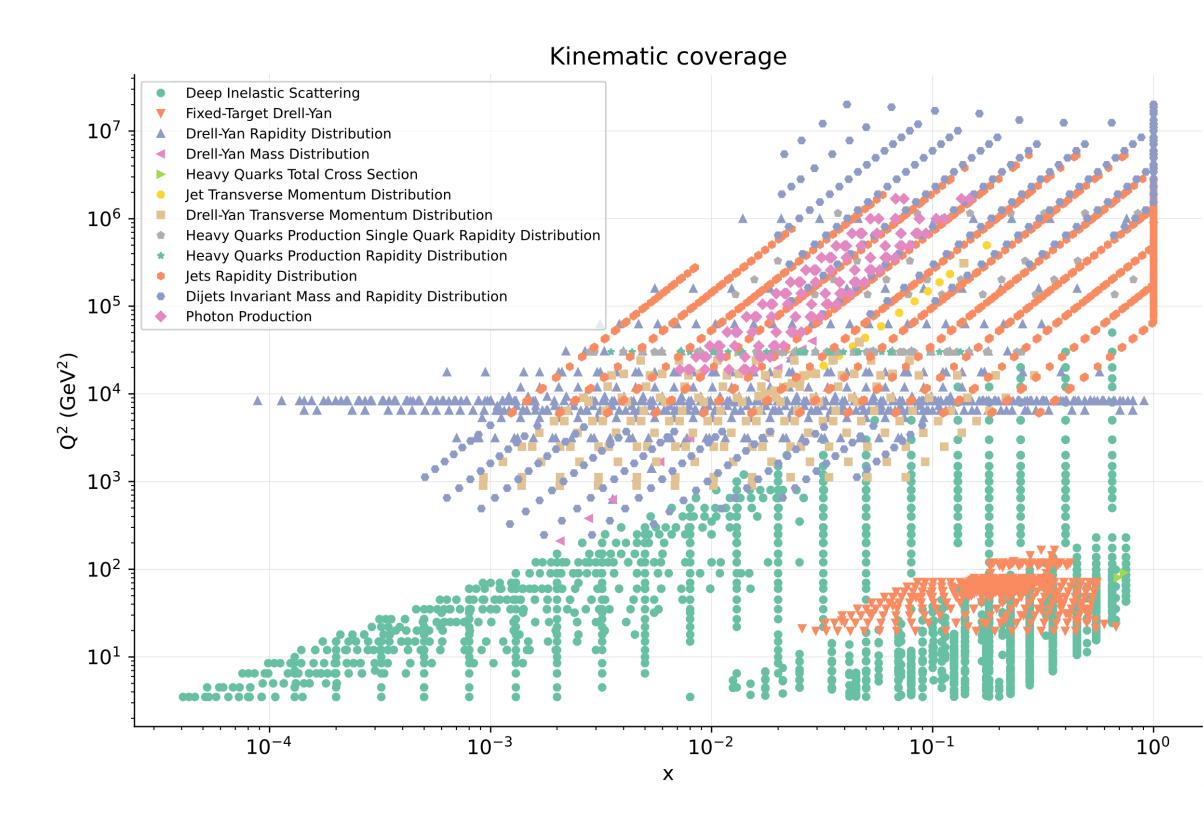
PDFs not computable in perturbation theory

NN parameterized regression + MC for uncertainty

J

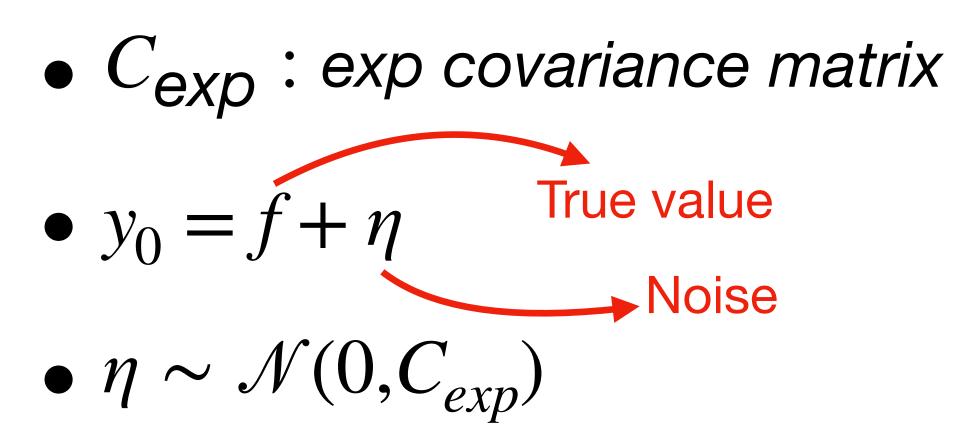
Starting dataset and technical details **Dataset and PDFs features**

- PDFs: vector function $(x, Q^2) \mapsto \mathbb{R}^{N_{fl}}$
- Starting dataset: 4000 datapoints (several "labels": process type, kinematic region...)



• Input:

• y_0 : exp central values

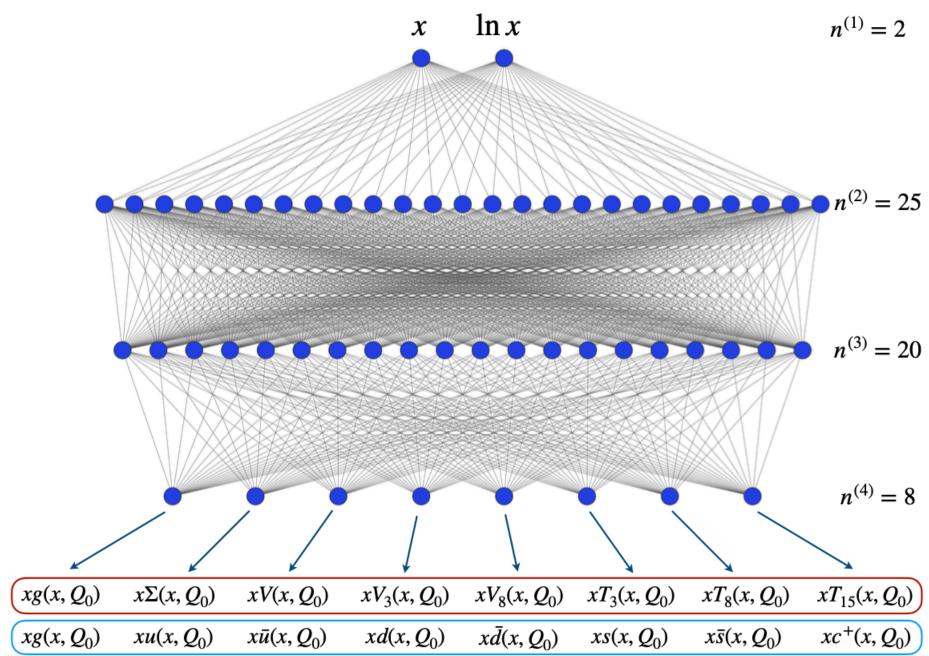


NN parameterization of PDFs and fitting Single PDF fit $x \ln x = n^{(1)} = 2$

- PDFs parameterized at Q_0 energy scale (DGLAP $Q_0 \mapsto Q$)
- Training: loss minimization

$$\mathcal{L} = \chi^2 = (T - D)^T C_{exp}^{-1} (T - D)$$

- T: NN prediction
- D: data



NN+loss

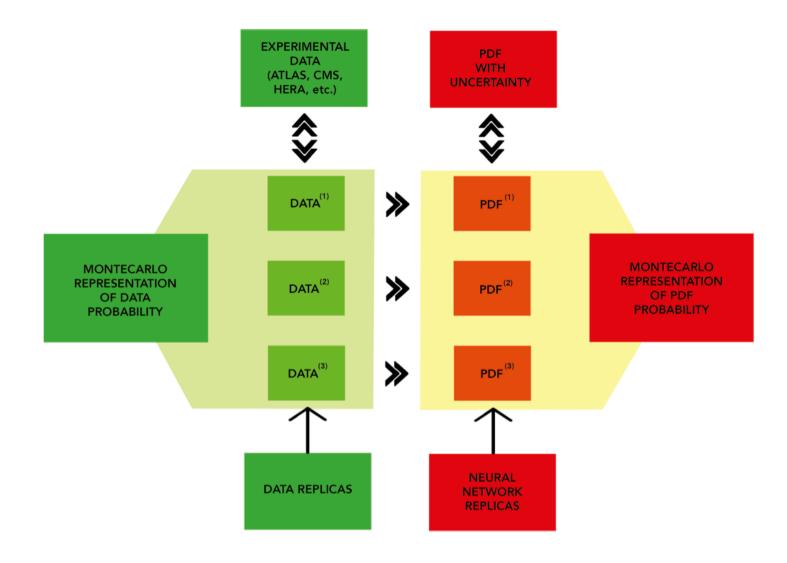
Uncertainty estimation

- PDF uncertainty estimation
- Sample of MC replicas of input data: $y^r := y_0 + \epsilon$ where $\epsilon \sim \mathcal{N}(0, C_{exp})$
- This yields an *ensemble* of replicas, which gives information on PDF uncertainty

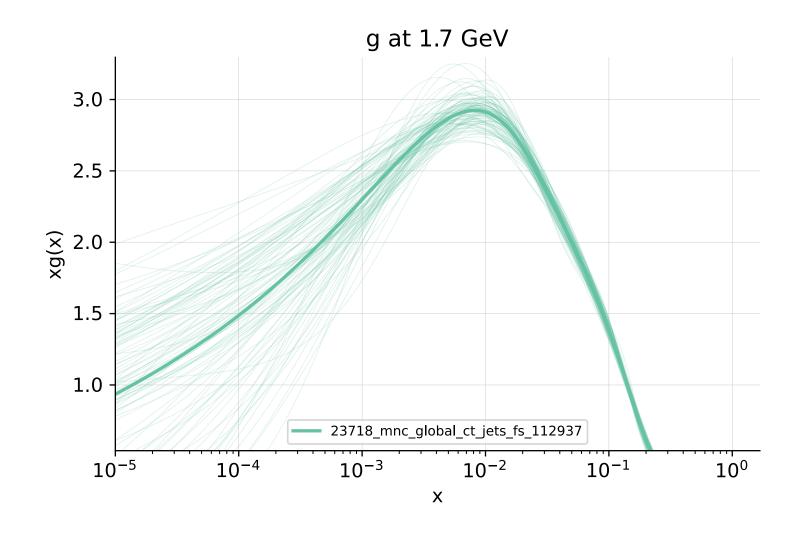
[arXiv:2111.05787]

 C_{exp} drives both replica generation and loss.

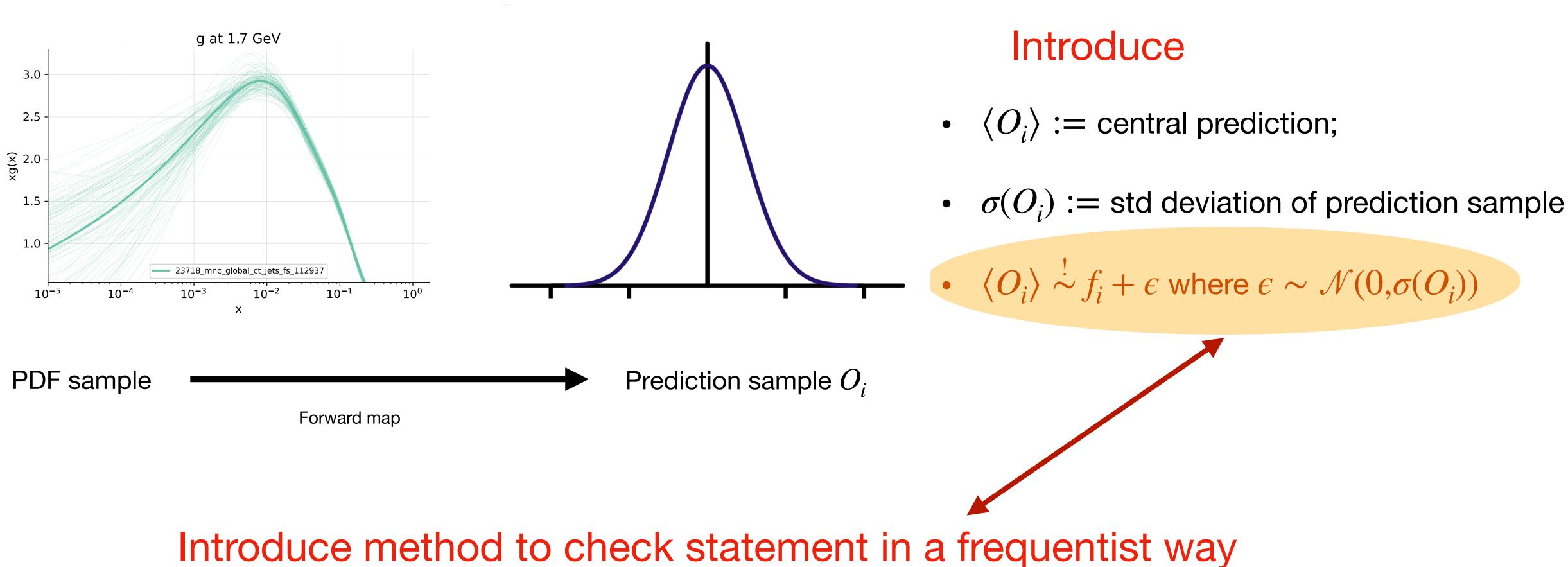
What happens if it is flawed?



MC replica approach

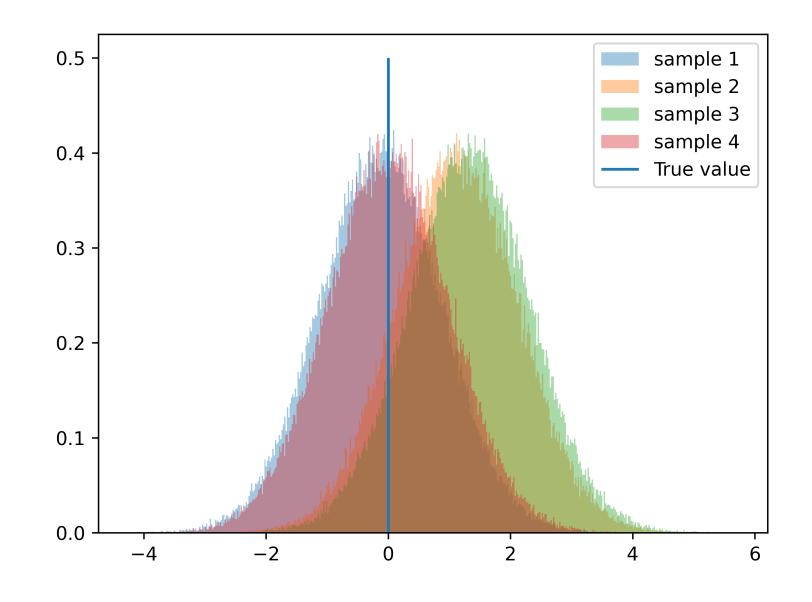


Faithfulness in uncertainty? How do we check uncertainty faithfulness?



Closure testing: validation of the methodology

- Real situation: *f* true value is not known
- Choose f underlying truth (choose PDF set \mapsto "true" dataset)
- Generate "runs of the Universe": $y_0^l := f + \epsilon_1 \mapsto$
- Several *independent* PDF samples \mapsto several independent *predictions* samples

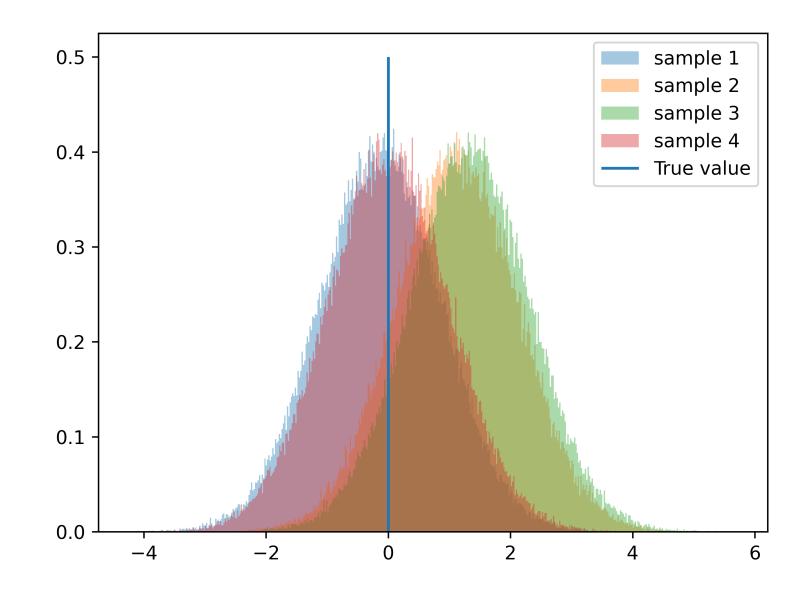


$$\mathbf{y}^{l,r} := y_0^l + \epsilon_2 \text{ where } \epsilon_{1,2} \sim \mathcal{N}(0, C_{exp})$$

• $\langle O_i \rangle \mapsto \langle O_i \rangle^l$ for $l = 1, ..., n_{fits}$ • $\langle \langle O_i \rangle^l \rangle - f \stackrel{!}{=} 0$ $\langle \langle O_i \rangle^l - f \rangle$

Closure testing: validation of the methodology

- Real situation: *f* true value is not known
- Choose f underlying truth (choose PDF set \mapsto "true" dataset)
- Generate "runs of the Universe": $y_0^l := f + \epsilon_1 \mapsto$
- Several *independent* PDF samples \mapsto several independent *predictions* samples



$$\Rightarrow y^{l,r} := y_0^l + \epsilon_2 \text{ where } \epsilon_{1,2} \sim \mathcal{N}(0, C_{exp})$$

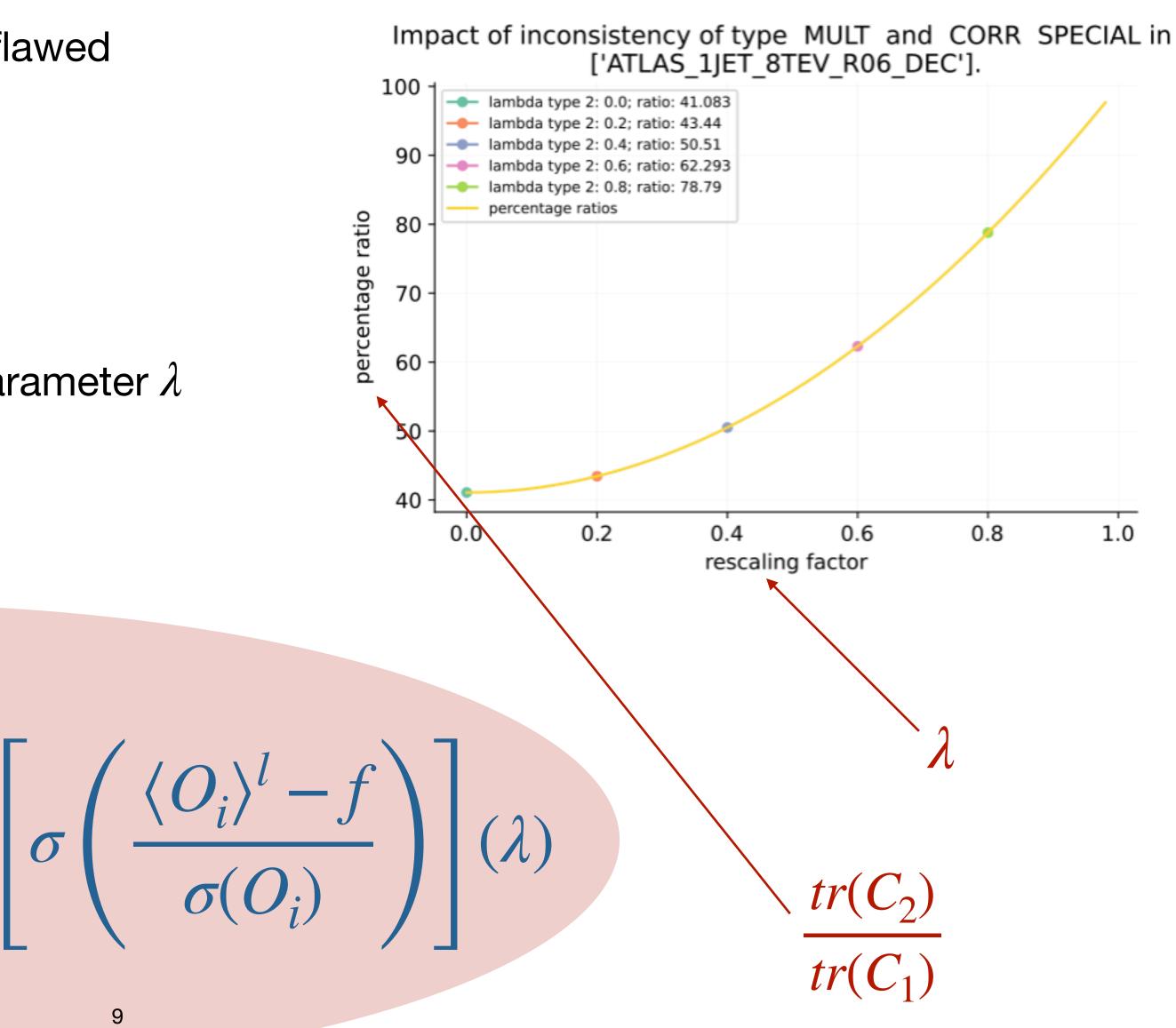
• $\langle O_i \rangle \mapsto \langle O_i \rangle^l$ for $l = 1, ..., n_{fits}$ • $\langle \langle O_i \rangle^l \rangle - f \stackrel{!}{=} 0$ $\langle \langle O_i \rangle^l - f \rangle$

Inconsistent closure testing

- Inconsistent Closure testing: simulate C_{exp} is flawed ullet
- "Real error": $\epsilon_1 \sim \mathcal{N}(0, C_1)$
- "Experimental error": $\epsilon_2 \sim \mathcal{N}(0, C_2)$
- $C_2 \neq C_1$; tune the difference with a "scale" parameter λ and exp label (JETS, DIS, DY...)

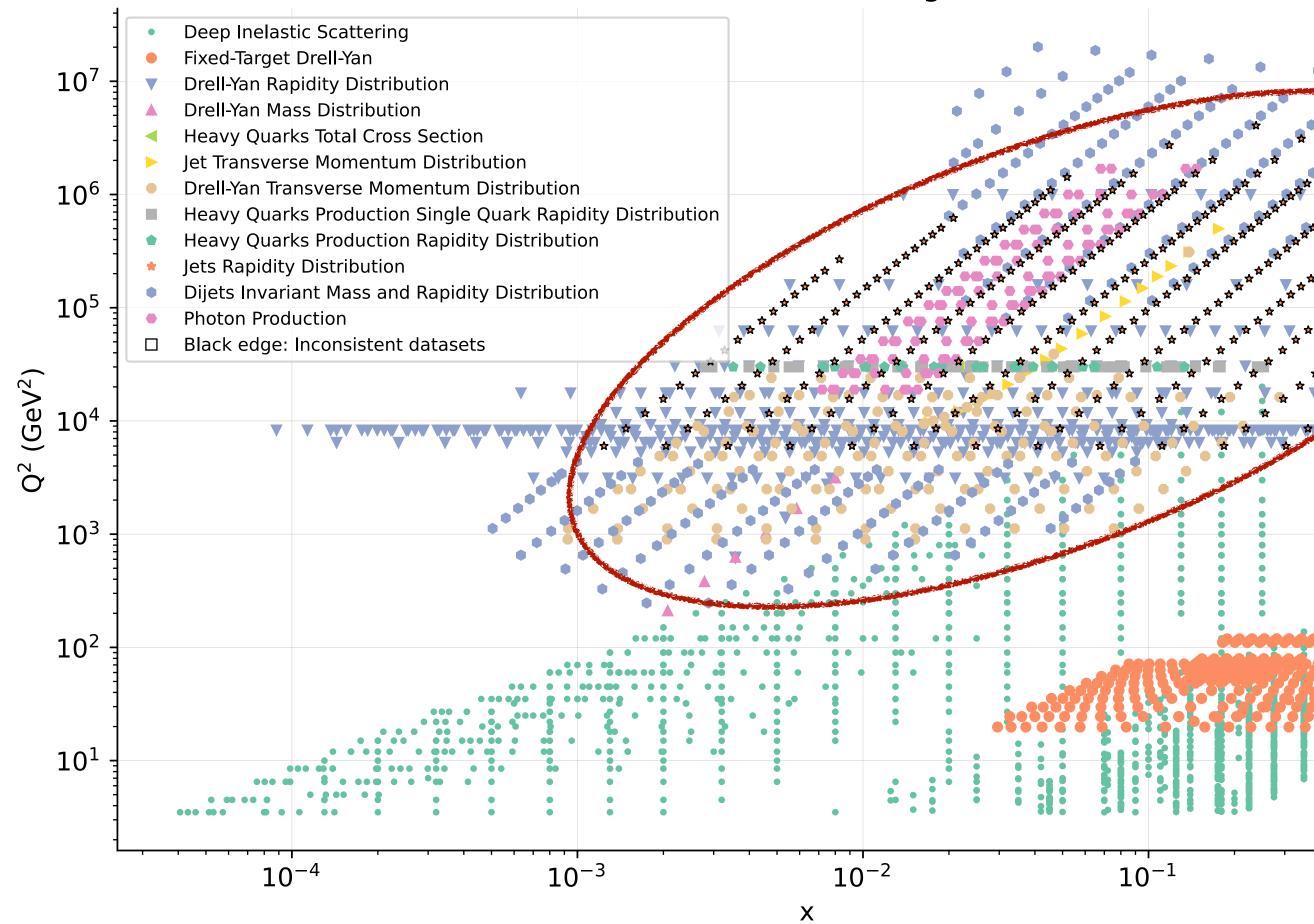
•
$$y_0^l := f + \epsilon_1^l \mapsto y^{l,r} := y_0^l + \epsilon_2^{l,r}$$

Check trend of std deviation:



Inconsistent dataset ATLAS SINGLE JET 8TEV

Kinematic coverage



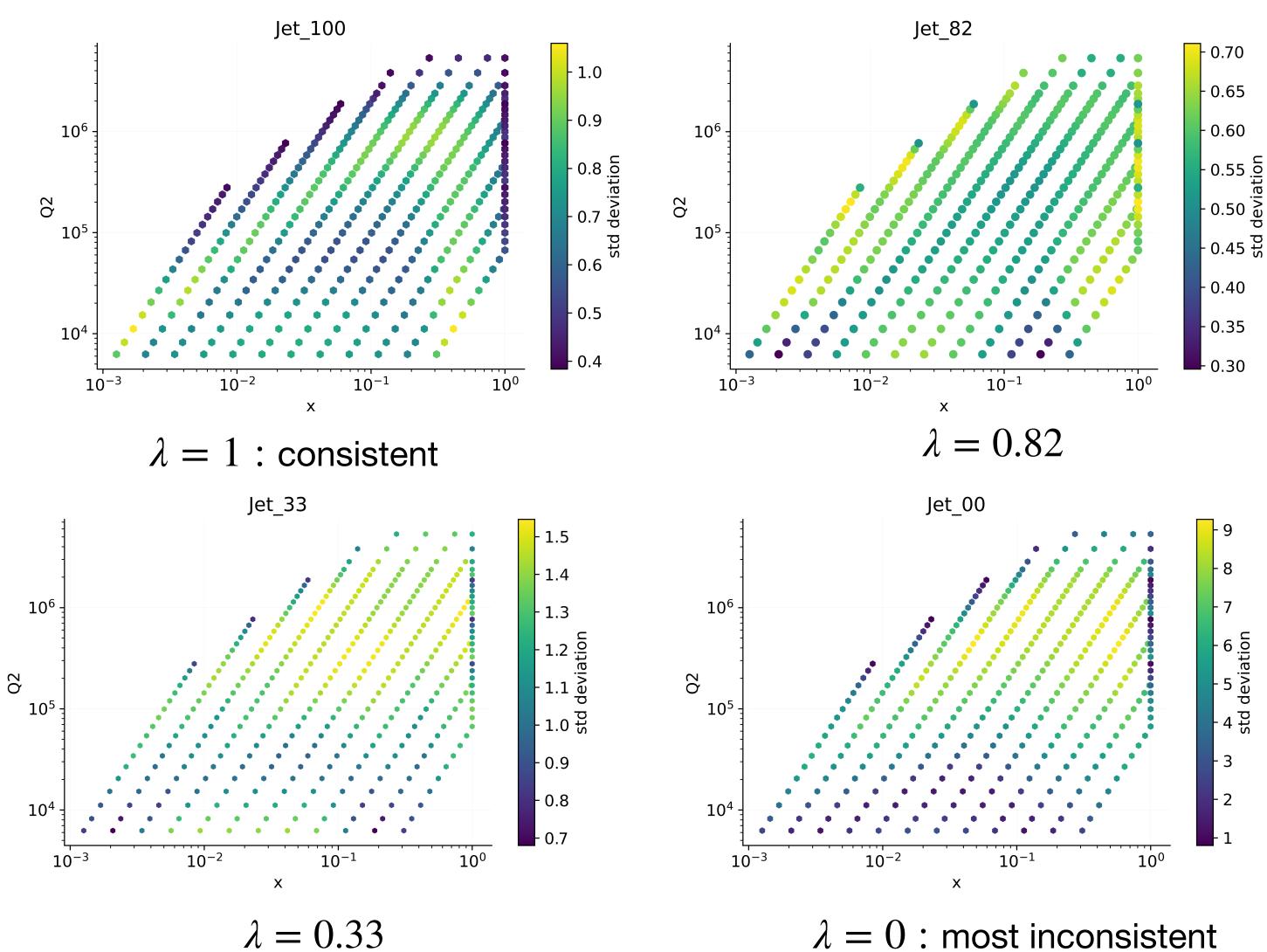
Inconsistent ds

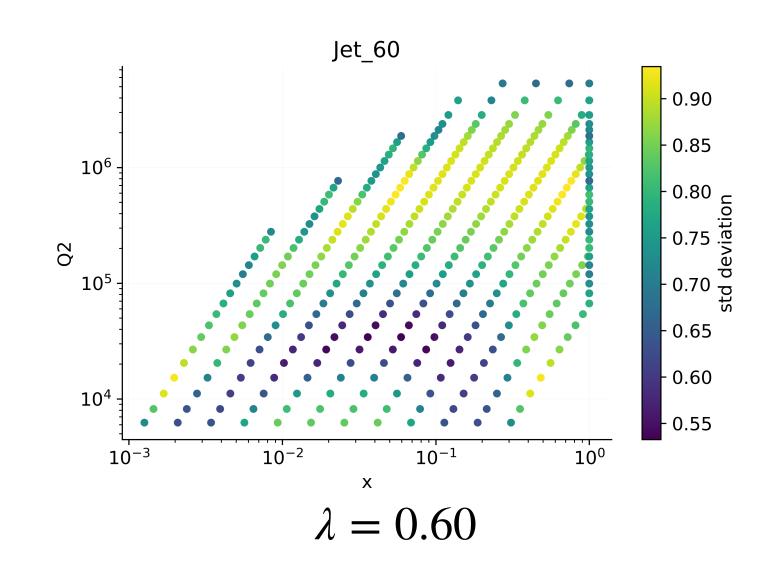
- Portion of the whole dataset (~5%)
- Rescale all systematic uncertainties (even irrealistic range)

 10^{-1}

10⁰

Results: output trend of std deviation TESTING DS: CMS SINGLE JET 8TEV





- Output is evaluated on JET observables
- Input inconsistency also JET dataset
- Just to give an idea:
 - $\sigma > 1$: uncertainty underestimation
 - $\sigma < 1$: uncertainty overestimation

Overlook and summary

- Closure test setting can be used in any situation in which we have to deal with reliable uncertainty estimation
- "Hard" to detect inconsistencies
- "One-to-one" correspondence between input inconsistency and output performance

Next steps

- Study more cases
- Keep correlations into account in prediction space

Overlook and summary

- Closure test setting can be used in any situation in which we have to deal with reliable uncertainty estimation
- "Hard" to detect inconsistencies
- "One-to-one" correspondence between input inconsistency and output performance

Next steps

- Study more cases
- Keep correlations into account in prediction space

Thanks for your attention!

Backup slides Definition of inconsistency

 C_{exp} is defined summing together different uncertainty sources \bullet

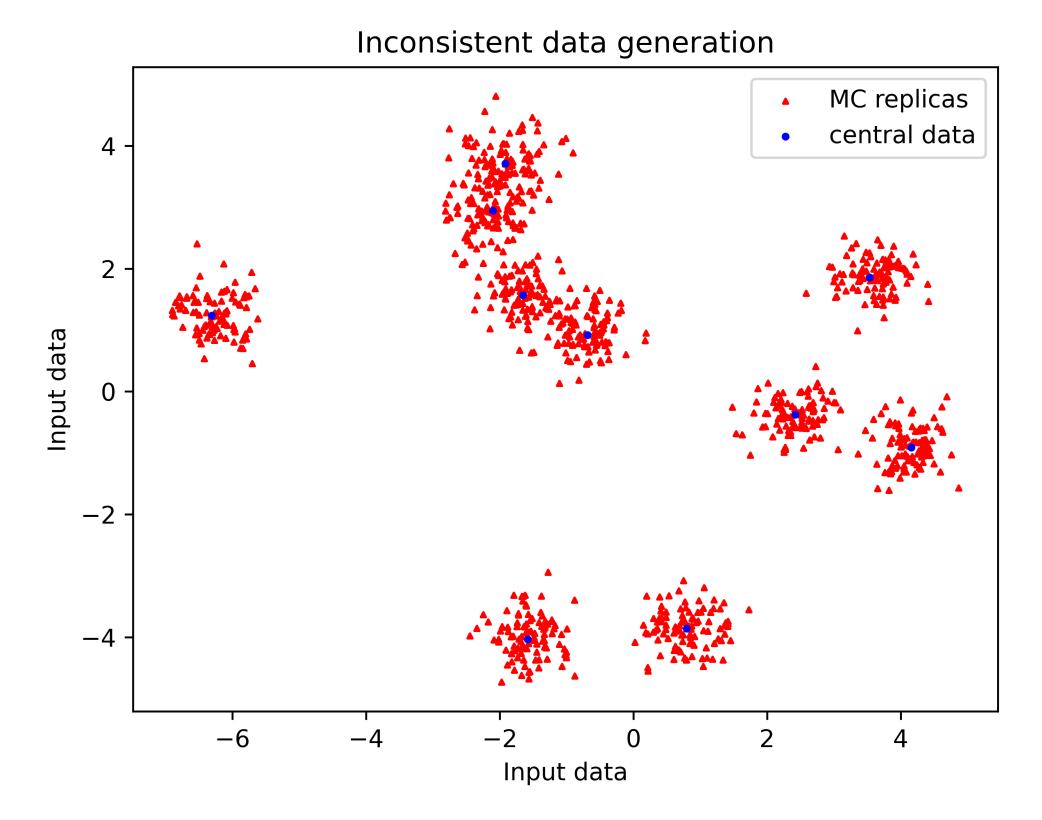
$$\operatorname{cov}_{ij} := \left(\sum_{k=1}^{N_{sys}} \sigma_{i,k} \sigma_{j,k} + F_i F_j \sigma_N^2\right) + \delta_{i,j} \sigma_{i,t}^2$$

- F_* experimental central value \bullet
- $\sigma_{*,k}$ systematic uncertainties ${\bullet}$
- σ_N overall normalization uncertainty
- $\sigma_{i,t}$ uncorrelated uncertainty

Inconsistent cov' defined as follows:

•
$$cov_{ij}' := \left(\sum_{k=1}^{N_{sys}} \lambda_k \sigma_{i,k} \lambda_k \sigma_{j,k} + F_i F_j \sigma_N^2\right) + \delta_{i,j} \sigma_{i,t}^2$$

Where $\lambda_k < 1$ if we affect the k-th uncertainty

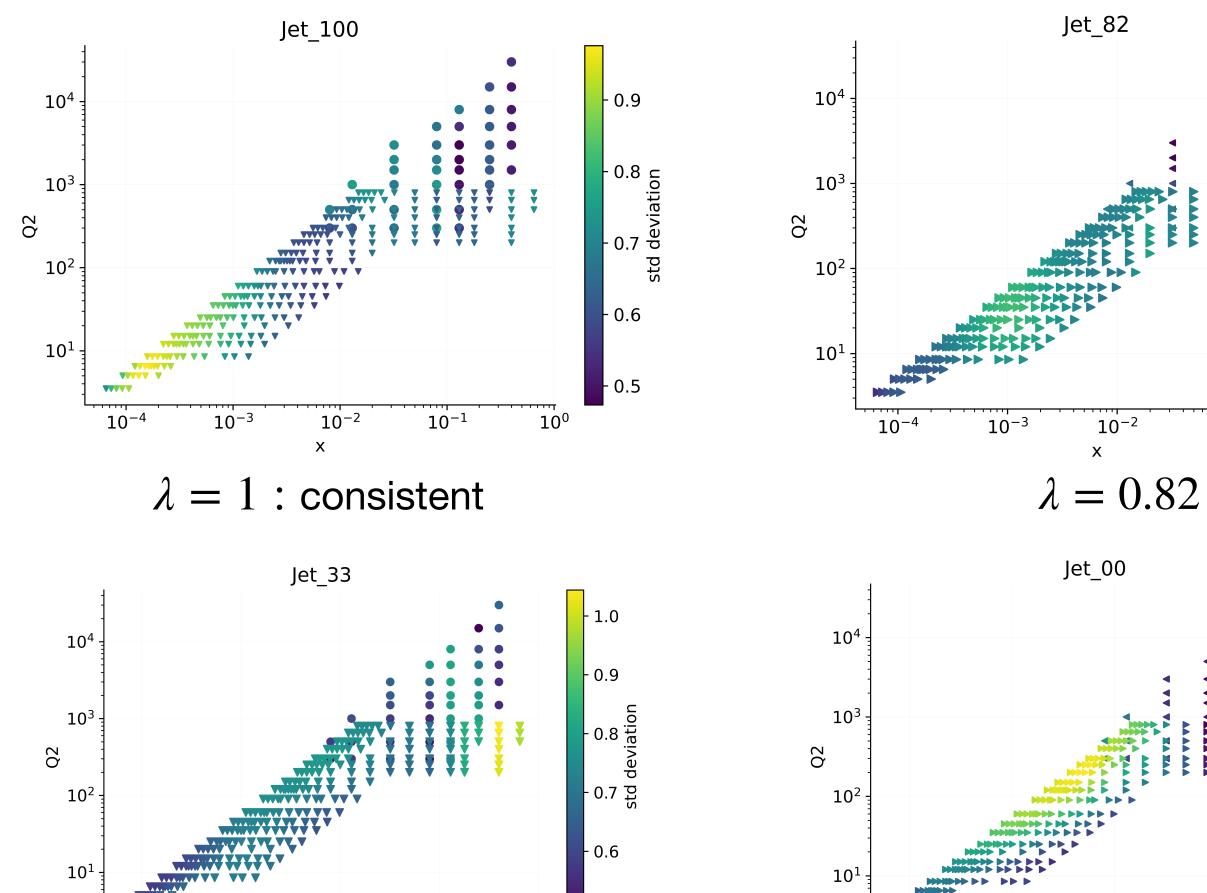


Backup slides Output correlations

- What said up until now does not take into account correlations
- Correlations arise from the forward map itself since PDFs points are correlated
- Possible solution: estimate C_{rep} and use as figure of merit:
 - $\chi^2(C_{rep}) :=$
 - C_{rep} ill-defined matrix! Regularization procedures like PCA need to keep into account tension between information loss/well-definition of C_{rep}

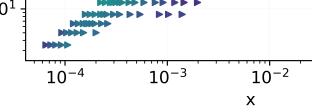
$$\Delta^T C_{rep}^{-1} \Delta$$

Backup results TESTING DS: DIS OBS (HERACC HERANC)



- 0.5

10⁰



 $\lambda = 0.33$

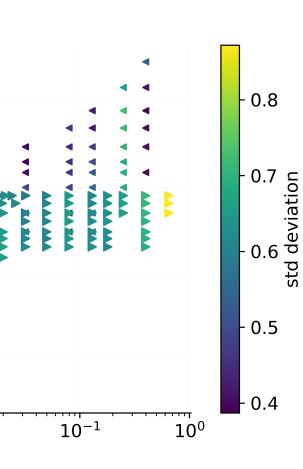
10⁻²

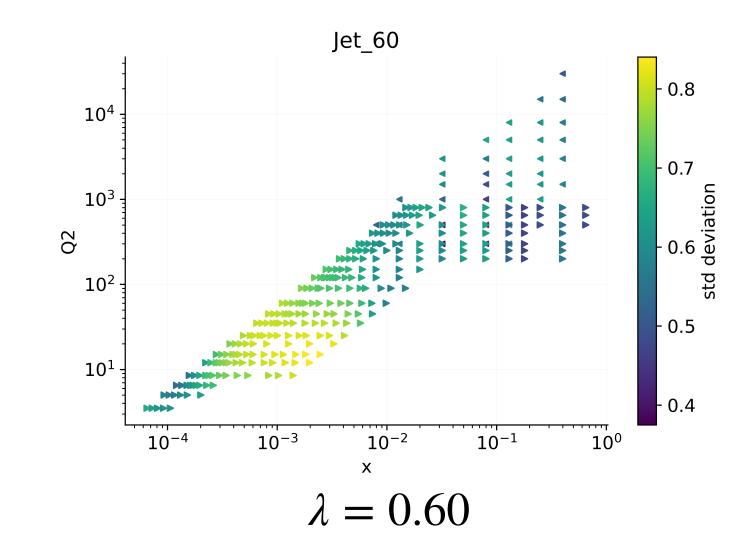
Х

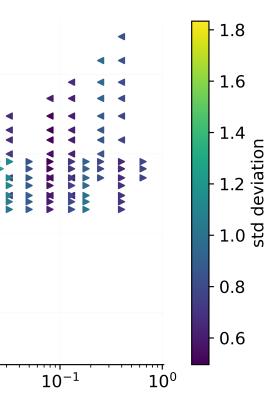
 10^{-1}

 10^{-3}

 10^{-4}







- Output is evaluated on **DIS observables**
- Input inconsistency again ATLAS JET dataset

16