Dark Matter annihilation

quasi-bound states

Milan

Christmas Meeting 2023

22/12/2023

M. Beneke, T. Binder,

L. De Ros, M. Garny

MAX-PLANCK-INSTITUT FÜR PHYSIK

Outline

- Dark Matter annihilation
- Sommerfeld enhancement
- S-wave
- P-wave

Model

Cold Dark Matter

Heavy Fermion χ

Dark Interaction

 $g\phi\bar{\chi}\chi$, $g\bar{\chi}\gamma^{\mu}\chi\phi_{\mu}$, ...

Annihilation process $\bar{\chi}\chi \rightarrow \phi^{(\mu)}\phi^{(\mu)} \rightarrow SM$

Mixed with SM

Mixed with Higgs, Dark U(1) mixed with U(1)_Y

DM annihilation

Annihilation process

$$\bar{\chi}\chi
ightarrow \phi^{(\mu)}\phi^{(\mu)}
ightarrow SM$$

Heavy Dark Matter

Non-relativistic limit of annihilation cross section

Classical analogy

Classical analogy

[N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, N. Weiner, 1502.01281]

Classical analogy

Classical analogy

[N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, N. Weiner, 1502.01281]

Slow object

With gravitational attraction

 $\sigma = \sigma_0 (1 + v_{esc}^2 / v^2)$

The cross section is enhanced at low velocity

Non-relativistic annihilation

Diagrammatic approach

Bethe-Salpeter equation

[R. lengo, 0902.0688][S. Cassel, 0903.5307]

$$|A^{\ell}|^{2} = |A_{0}^{\ell}|^{2} S^{\ell}(v_{rel})$$

Sommerfeld factor

$$S^{(\ell)}(v_{rel}) = |u^{(\ell)}(0)|^2$$

Schrödinger equation

 $-u''(r)+V^{\ell}(r)u(r)=Eu(r)$

NREFT approach

 $\chi^{(3)} \delta(\sigma) \bar{\chi} \chi^{(3)} \delta(\sigma) \bar{\chi} = {}^{9}O$

$$S^{\ell} \sim \langle \bar{\chi}\chi | O^{\ell} | \bar{\chi}\chi \rangle \sim | u^{(\ell)}(0) |^2$$

Yukawa potential

 $V^{\ell=0}(r) = -\alpha e^{-m\phi r}/r$

Finite number of bound-states

 $-u''(r)+V^{\ell=0}(r)u(r) = E u(r)$

Yukawa potential

 $V^{\ell=0}(r) = -\alpha e^{-m\phi r}/r$

Finite number of bound-states

Critical values of ε_{ϕ} threshold for the appearance of a new bound-state

 $-u''(r)+V^{\ell=0}(r)u(r) = E u(r)$

Yukawa potential

 $V^{\ell=0}(r) = -\alpha e^{-m\phi r}/r$

Finite number of bound-states

Critical values of ε_φ threshold for the appearance of a new bound-state

 $1/v_{rel}^2$ scaling close to critical ϵ_{ϕ}

 $-u''(r)+V^{\ell}(r)u(r) = E u(r)$

Yukawa potential

 $V^{\ell}(r) = -\alpha e^{-m\phi r}/r + \ell(\ell+1)/r^2$

DM annihilation & quasi-bound states

 $-u''(r)+V^{\ell}(r)u(r) = E u(r)$

Yukawa potential

 $V^{\ell}(r) = -\alpha e^{-m\varphi r}/r + \ell(\ell+1)/r^2$

Finite number of bound-states

 $-u''(r)+V^{\ell}(r)u(r) = E u(r)$

Yukawa potential

 $V^{\ell}(r) = -\alpha e^{-m\varphi r}/r + \ell(\ell+1)/r^2$

Finite number of bound-states

 $-u''(r)+V^{\ell}(r)u(r) = E u(r)$

Yukawa potential

 $V^{\ell}(r) = -\alpha e^{-m\varphi r}/r + \ell(\ell+1)/r^2$

Finite number of bound-states & Centrifugal barrier

 $-u''(r)+V^{\ell}(r)u(r) = E u(r)$

Yukawa potential

 $V^{\ell}(r) = -\alpha e^{-m\varphi r}/r + \ell(\ell+1)/r^2$

Finite number of bound-states & Centrifugal barrier

Yukawa potential

 $V^{\ell}(r) = -\alpha e^{-m\phi r}/r + \ell(\ell+1)/r^2$

Finite number of bound-states & Centrifugal barrier

Resonances corresponding to *quasi*-bound states

 $-u''(r)+V^{\ell}(r)u(r) = E u(r)$

WKB estimates

$$S_l \approx \frac{[(2l+1)!!]^2 e^{2I_b}}{(l+1/2)\epsilon_v^{2l+1}} \frac{(\Gamma_{nl}/2)^2}{(\epsilon_v^2 - \gamma_{nl})^2 + (\Gamma_{nl}/2)^2} \times \exp\left\{2\int_0^{x_1} dx' \ln(x') \frac{d}{dx'} [x'p(x')]\right\}$$

DM annihilation & quasi-bound states

Wino limit of MSSM

Indirect Detection

Preliminary

Conclusion

- Explanation for spiky P-wave Sommerfeld factor
- Wino quasi-bound states
- Impact on indirect detection

Thank you and Merry Christmas!

DM annihilation & quasi-bound states Lorenzo De Ros TUM

Chargino potential

Core-cusp problem

Similar issues are observed also for galaxy clusters

Dwarf galaxy: $v_{rel} \approx 10^{-4} \text{ km/s}, \quad \sigma_{sc}/m_{DM} \approx 1 \text{ cm}^2/\text{g}$ **Galaxy Cluster:** $v_{rel} \approx 10^{-2} \text{ km/s}$, $\sigma_{sc}/m_{DM} \approx 0.1 \text{ cm}^2/\text{g}$

But the required cross section

is different

 $\sigma_{sc}(v_{rel})$

velocity-dependent

cross section

DM-DM scattering

[S. Tulin, H. Yu, K. M. Zuerk, 1302.3898]