

Gaia For with Thoma

2

Universität Zürich^{UZH}

Milan Christmas meeting 2023, Università degli Studi di Milano, 20/12/2023

Gaia Fontana (University of Zürich)

with Thomas Gehrmann & Kay Schönwald

2.5

Recipe for a theoretical prediction

- hard scattering

• PDFs to describe the proton structure

• radiation and evolution to hadronic states

BUILDING A N^3LO , *n*—**PARTONS FINAL STATE**

- perturbation theory: series expansion in power of $\alpha_{\rm S}$
- *n*-partons final state
- contribution from all matrix elements of the same order in α_S

we need several ingredients:

- *n*-partons @ 3-loops $\rightarrow VVV$
- (n+1)—partons @ 2-loops $\rightarrow \mathbb{R} \vee \mathbb{V}$
- (n+2)—partons @ 1-loop $\rightarrow \mathbb{R}\mathbb{R}V$
- (n+3)—partons @ tree lvl. $\rightarrow \mathbb{R}\mathbb{R}\mathbb{R}$

- when partons become **soft** or **collinear**
- subtraction schemes

IR divergencies

Antenna subtraction See Matteo Marcoli's talk!

initial — final antennae

- known but required a lot of hands-on labour
- go higher in the transcendental weight [N3LO]
- develop a more automated workflow

- Hard radiators both in the **initial**—**state** and **final**—**state** partons
 - rederivation of NNLO $2 \rightarrow 3, 2 \rightarrow 2$ IF antennae

Daleo, Gehrmann-De Ridder. Gehrmann, Luisoni (2009)

IF antennae building blocks: phase space integrals for DIS

NNLO DIS kinematics

kinematics

•
$$q_2^2 = -Q^2 < 0$$

• $q_1^2 = 0$
• $p_i^2 = 0$, $i = 1,2,3$

$$Q^2 = 1$$

invariants

•
$$s = (q_1 + q_2)^2$$

• $z = \frac{1}{2q_1q_2} \longrightarrow s = \frac{(1-z)}{z}$ P

$q_1 + q_2 \rightarrow p_1 + p_2 + (p_3)$

Ve're interested in: whase space ints for $2 \rightarrow 2$ and $2 \rightarrow 3$ DIS

Reverse Unitarity

• integration over *n*-particles phase space

• reverse unitarity: Anastasiou, Melnikov (2002)

de la

phase space \rightarrow (cut) loops

via the following identification

$$-2\pi i\delta^+(p_i^+) = \frac{1}{p_i^2 + i0} - \frac{1}{p_i^2 - i0} = \frac{1}{[p^2]_{cut}}$$

$$(p_i^2)\,\delta^d \Big(q_1 + q_2 - \sum_i^n p_i\Big)$$

loop—calculations tools!

- Find physical cuts

• write all integrals as a function of a minimal, linearly

• Write down the forward DIS scattering process at NNLO

• 2 cuts \rightarrow phase space 2 \rightarrow 2 @ 1loop

• 3 cuts \rightarrow phase space 2 \rightarrow 3 @ tree level

independent set of master integrals using IBP identities

RR master integrals families

Canonical DE & solution in terms of HPLs

RV master integrals families

Computation of MIs

Can be done

- analytically in terms of special functions (MPLs, elliptic functions, ...) numerically (Sector decomposition, AMFlow)

• derivative of MIs with respect to external invariants and/or internal masses

 $\partial_{\overline{g}}\vec{g} = M\cdot\vec{g}$

- reduce it again to MIs
- obtain a system of DEs for the MIs

most effective method is **Differential Equations (DE)**

DEs for master integrals

- How to solve a differential equation:
- Generic solution
- Boundary condition
- **Henn (2013)** ϵ -dependence is factored out
- Can be put in canonical form: $\partial_{7}\vec{g} = \epsilon A \cdot \vec{g}$
- System of DEs for the master integrals • Generic solution in terms of iterated integrals • In our calculations: only HPLs!

- extract the **leading behavior** of the MIs
- rescaling the integrals w.r.t. their leading behavior \rightarrow regularity
- imposing that in this limit the terms log(1 z) and poles in (1 z) vanish
- relations between boundaries of different MIs

Boundary conditions

we look at the kinematic limit $z \to 1 \Rightarrow s \to 0$ (soft limit)

 $I_i^{RR} \sim (1-z)^{n_i - 2\epsilon} \sum c_j(\epsilon) (1-z)^j, \quad n_i \in \mathbb{Z}$

$I_i^{RV} \sim (1-z)^{m_i - 2\epsilon} \sum_j d_j(\epsilon) (1-z)^j + (1-z)^{l_i - \epsilon} \sum_j e_j(\epsilon) (1-z)^j, \quad m_i, l_i \in \mathbb{Z}$

- extract the leading behavior of the MIs
- rescaling the integrals w.r.t. their leading behavior \rightarrow regularity
- imposing that in this limit the terms log(1 z) vanish
- relations between boundaries of different MIs

Now we need to fix the remaining boundaries!

 $I_i^{RV} \sim (1-z)^{m_i - 2\epsilon} \sum_i d_i(\epsilon) (1-z)^j$

- Analytic boundaries Wishlist:

$$+ (1-z)^{l_i-\epsilon} \sum_{j} e_j(\epsilon) (1-z)^j, \quad m_i, l_i \in \mathbb{Z}$$

We need $d_0(\epsilon), e_0(\epsilon)$

• General algorithm to obtain them

AMFIOW framework Liu, Ma (2022)

- Fully numerical
- Evaluate FI at any loop order in a **non-singular** point
 - Add aux mass η^2 to some propagators \rightarrow auxiliary family $I^{phys}(\epsilon, \vec{z}) \to I^{aux}(\epsilon, \vec{z}, \eta^2)$
 - Derive DE with respect to the mass

$$\partial_{\eta^2} \vec{I}^{aux} = A_\eta \cdot$$

• All implemented in a MATHEMATICA package

Outline:

• "Flow" $\eta^2 \to 0$ for physical solution: $\lim_{\eta^2 \to 0} I^{aux} = I^{phys}$

AAMFlow

- Fully analytical \rightarrow can be used near singular points
- Add aux mass η^2 to **chosen** propagators:
 - limits in kinematical variable and η^2 need to **commute**
- Derive DE with respect to η^2 & solve it
- Fix constants of integration in $\eta^2 \rightarrow \infty$ limit (easy!)
- "Flow" to $\eta^2 \rightarrow 0$ for physical solution:
 - method of regions to extract the physical solution

GF, Gehrmann, Schönwald (to appear)

Outline:

We look at the boundaries in $z \rightarrow 1$: kinematical endpoint singularity **RECIPE:**

- * choose a family for which to calculate the boundaries
- * choose propagators to which add an auxiliary mass
- \star derive DE with respect to $u = 1/\eta^2$
- # fix constants of integration in $\lim u \to 0$
- ***** limit $\eta^2 \rightarrow 0$ & disentangle regions
- extract physical region

Proof of concept

$$I_i^{RR} \sim (1-z)^{n_i-2\epsilon}$$

• We need $c_0(\epsilon)$ of this top sector:

- Add auxiliary mass \rightarrow auxiliary topology
- Differential equation wrt $u = 1/\eta^2$ for the $c_0(\epsilon)$

$\sum c_j(\epsilon)(1-z)^j, \quad n_i \in \mathbb{Z}$

Intermezzo: large mass limit

- Depends on scaling of loop moms
 - soft $k \sim \mathcal{O}(1)$ or large $k \sim \mathcal{O}(\eta)$
- **SOFT** propagators: $\frac{1}{(k+p)^2 - \eta^2} \sim -\frac{1}{\eta^2}$
- LARGE propagators:
- $\frac{1}{(k+p)^2 \kappa \eta^2} \sim -$

Beneke, Smirnov (1997)

$$-\frac{1}{k^2 - \eta^2}, \quad \kappa \in \{0,1\}$$

Large mass limit: RR ints

- Loop momentum scales only soft
- Example of boundaries

• "Pinch" propagators with auxiliary mass

+ topologies reducible to it!

Large mass limit: RV ints

- Loop momentum scales soft or large
- We have two regions

- Most complicated soft region
- D_i depends only on kinematics

• All large regions are massive tadpoles

Flow to vanishing auxiliary mass

We have the solution of I^{aux}

$$c_0(\eta, \epsilon) = \sum_{k=min}^{\infty} \epsilon^k \left[r_{k,0} + \sum_{m=1}^k r_{k,m} \log^m(\eta) \right] \qquad r_{k,m} \text{ known!}$$

But we also know the analytic structure of the limit

$$c_0(\eta,\epsilon) = d_0(\epsilon) + \eta^{-\epsilon}d_1(\epsilon) + \eta^{-2\epsilon}d_2(\epsilon) + \mathcal{O}(\eta)$$

Hard region = physical region

$$x(\eta^2) \quad \lim_{\eta^2 \to 0} I^{aux} = I^{phys}$$

We can take naively the limit $\eta^2 \rightarrow 0$ in our solution and obtain this expansion:

 ϵ -expansion gives:

$$\begin{split} c_{ij}^{(l)} &= \ d_0^{(0)} + d_1^{(0)} + d_2^{(0)} \\ &+ \epsilon \left(d_0^{(1)} + \left(-d_1^{(0)} - 2d_2^{(0)} \right) \log(\eta) + d_1^{(1)} + d_2^{(1)} \right) \\ &+ \epsilon^2 \left(d_0^{(2)} + d_1^{(2)} + d_2^{(2)} + \frac{1}{2} \left(d_1^{(0)} + 4d_2^{(0)} \right) \log^2(\eta) + \left(+ \mathcal{O}(\epsilon^3) \right) \end{split}$$

Compare this with

 $d_R = \sum_{k=min}^{\infty} \epsilon^k d_R^{(k)}, \quad R = 0, 1, 2$

 $() + 4d_2^{(0)})\log^2(\eta) + \left(-d_1^{(1)} - 2d_2^{(1)}\right)\log(\eta)$

 $c_0(\eta, \epsilon) = \sum_{k-min}^{\infty} \epsilon^k \left[r_{k,0} + \sum_{m=1}^{\kappa} r_{k,m} \log^m(\eta) \right]$

 \Rightarrow extract hard region: all the $d_0^{(k)}$

 $c_0(\eta, \epsilon) = r_{0,0} + \dots + \epsilon r_{1,1} \log(\eta) + \dots + \epsilon^2 r_{2,2} \log^2(\eta) \qquad r_{0,0}, r_{1,1}, r_{2,2} \text{ known!}$ $c_0(\eta,\epsilon) = d_0^{(0)} + d_1^{(0)} + d_2^{(0)}$ + $\epsilon \left(d_0^{(1)} + \left(-d_1^{(0)} - 2d_2^{(0)} \right) \log \right)$ $+ \epsilon^2 \left(d_0^{(2)} + d_1^{(2)} + d_2^{(2)} + \frac{1}{2} \left(d_1^{(2)} + d_2^{(2)} + \frac{1}{2} \right) \right) + \epsilon^2 \left(d_1^{(2)} + d_2^{(2)} + \frac{1}{2} \right) \left(d_1$ $+ \mathcal{O}(\epsilon^3)$

Set up this system of eq.s to obtain $d_0^{(0)}$

$$\begin{cases} -d_1^{(0)} - 2d_2^{(0)} = r_{1,1}, \\ d_1^{(0)}/2 + 2d_2^{(0)} = r_{2,2}, \\ d_0^{(0)} + d_1^{(0)} + d_2^{(0)} = r_{0,0} \end{cases}$$

We can obtain e.g. $d_0^{(0)}$ by comparing the two limits

$$g(\eta) + d_1^{(1)} + d_2^{(1)}$$

$$\binom{(0)}{1} + 4d_2^{(0)} \log^2(\eta) + \left(-d_1^{(1)} - 2d_2^{(1)}\right)\log(\eta)$$

- Analogous system for all $d_0^{(k)}$
- Fixed all ϵ -expansion of hard region:

$$\lim_{z \to 1} I = (1 - z)^{-1 + 2\epsilon} \left\{ -\frac{1}{\epsilon^3} + \frac{4}{\epsilon^3} + \frac{4}{\epsilon^3} + \left(\frac{562\zeta_5}{5} + O(\epsilon^4) \right) + O(\epsilon^4) \right\} + O(\epsilon^4) \right\}$$

 $\frac{5\pi^2}{6\epsilon} + \frac{38\zeta_3}{3} + \frac{7\pi^4}{72}\epsilon$ $-\frac{74\pi^2\zeta_3}{9}\epsilon^2 + \left(\frac{155\pi^6}{1008} - \frac{191\zeta_3^2}{9}\right)\epsilon^3$ $+ \mathcal{O}\Big((1-z)^0\Big)$

- Procedure applied to fix all nontrivial RR and RV boundaries
- Required the following auxiliary topologies:

Results used to derive IF antennae functions at higher epsilon order

Conclusion

- Analytical extension of auxiliary-mass-flow method
- Feasible to study integrals near singular kinematical points
- Automated procedure

• Extension to 3 loop integrals

& Outlook

Thank you for your attention!

Fig.1 Practical way to add auxiliary mass