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Recipe for a theoretical prediction
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many ingredients 
• PDFs to describe the proton structure 

• hard scattering 

• radiation and evolution to hadronic states



• perturbation theory: series expansion in power of  
• -partons final state 
• contribution from all matrix elements of the same order in 

αS
n

αS

BUILDING A  , —PARTONS FINAL STATEN3LO n

we need several ingredients:  
• —partons @ -loops  V V V 
• —partons @ -loops  R V V 
• —partons @ -loop  R R V 
• —partons @ tree lvl.  R R R

n 3 →
(n + 1) 2 →
(n + 2) 1 →
(n + 3) →
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IR divergencies 
• when partons become soft or collinear 
• subtraction schemes



Hard radiators both in the initial—state and final—state partons

rederivation of NNLO ,  IF antennae 

• known but required a lot of hands-on labour 

• go higher in the transcendental weight [N3LO] 

• develop a more automated workflow 

2 → 3 2 → 2

initial — final antennae
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Daleo, Gehrmann-De Ridder, 
Gehrmann, Luisoni (2009)

IF antennae building blocks: 
phase space integrals for DIS 

Antenna subtraction
See Matteo Marcoli’s talk!



kinematics 
•  

•  

•

q2
2 = − Q2 < 0

q2
1 = 0

p2
i = 0, i = 1,2,3

 DIS kinematicsNNLO
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invariants 

•  

•

s = (q1 + q2)2

z = 1
2q1q2

⟶ s = (1 − z)
z

Q2 = 1

q1 + q2 → p1 + p2 + (p3)

We’re interested in:  
phase space ints for  and  DIS 2 → 2 2 → 3

2 → 22 → 3
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Reverse Unitarity
• integration over -particles phase space 

 

• reverse unitarity: 

phase space  (cut) loops 
via the following identification 

 

n

dΠn =
n

∏
i=1

ddpi

(2π)d δ+(p2
i ) δd(q1 + q2 −

n

∑
i

pi)

→

−2πiδ+(p+
i ) = 1

p2
i + i0 − 1

p2
i − i0 = 1

[p2]cut

Anastasiou, Melnikov (2002)

loop—calculations tools!
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• Write down the forward DIS scattering process at NNLO 

• Find physical cuts 

•  cuts  phase space  @ 1loop 

•  cuts  phase space  @ tree level 

• write all integrals as a function of a minimal, linearly 
independent set of master integrals using IBP identities

2 → 2 → 2

3 → 2 → 3



RR master integrals families
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2 → 3

Canonical DE & solution in terms of HPLs



RV master integrals families
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2 → 2

Canonical DE & solution in terms of HPLs
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Computation of MIs
Can be done  

• analytically in terms of special functions (MPLs, elliptic functions, … ) 
• numerically (Sector decomposition, AMFlow)

most effective method is Differential Equations (DE)

• derivative of MIs with respect to external invariants and/or internal masses 

• reduce it again to MIs 

• obtain a system of DEs for the MIs

∂z ⃗g = M ⋅ ⃗g
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DEs for master integrals 

-dependence 
is factored out
ϵ

• System of DEs for the master integrals 

• Can be put in canonical form:  

• Generic solution in terms of iterated integrals 

• In our calculations: only HPLs!

∂z ⃗g = ϵA ⋅ ⃗g

How to solve a differential equation: 

• Generic solution  

• Boundary condition

Henn (2013)
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Boundary conditions
we look at the kinematic limit  (soft limit)z → 1 ⇒ s → 0

• extract the leading behavior of the MIs  

• rescaling the integrals w.r.t. their leading behavior  regularity 

• imposing that in this limit the terms  and poles in  vanish  

• relations between boundaries of different MIs

→
log(1 − z) (1 − z)

• extract the leading behavior of the MIs by 

RV

RR
IRR
i ∼ (1 − z)ni−2ϵ ∑

j
cj(ϵ)(1 − z) j, ni ∈ ℤ

IRV
i ∼ (1 − z)mi−2ϵ ∑

j
dj(ϵ)(1 − z) j + (1 − z)li−ϵ ∑

j
ej(ϵ)(1 − z) j, mi, li ∈ ℤ
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• extract the leading behavior of the MIs  

• rescaling the integrals w.r.t. their leading behavior  regularity 

• imposing that in this limit the terms  vanish  

• relations between boundaries of different MIs

→
log(1 − z)

• extract the leading behavior of the MIs by 

RV

IRR
i ∼ (1 − z)ni−2ϵ ∑

j
cj(ϵ)(1 − z) j, ni ∈ ℤ

IRV
i ∼ (1 − z)mi−2ϵ ∑

j
dj(ϵ)(1 − z) j + (1 − z)li−ϵ ∑

j
ej(ϵ)(1 − z) j, mi, li ∈ ℤ
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Now we need to fix the 
remaining boundaries!

• Analytic boundaries 

• General algorithm to obtain them
Wishlist:

IRV
i ∼ (1 − z)mi−2ϵ ∑

j
dj(ϵ)(1 − z) j + (1 − z)li−ϵ ∑

j
ej(ϵ)(1 − z) j, mi, li ∈ ℤ

IRR
i ∼ (1 − z)ni−2ϵ ∑

j
cj(ϵ)(1 − z)j, ni ∈ ℤ We need c0(ϵ)

We need d0(ϵ), e0(ϵ)



• Fully numerical 

• Evaluate FI at any loop order in a non-singular point

Iphys(ϵ, ⃗z) → Iaux(ϵ, ⃗z, η2)
• Add aux mass  to some propagators  auxiliary family  

• Derive DE with respect to the mass 

 

• “Flow”  for physical solution:  

• All implemented in a MATHEMATICA package

η2 →

∂η2 ⃗Iaux = Aη ⋅ ⃗Iaux

η2 → 0 lim
η2→0

Iaux = Iphys

Outline:

AMFlow framework
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Liu, Ma (2022)
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AAMFlow
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Outline:
• Fully analytical  can be used near singular points→

• Add aux mass   to chosen propagators: 

• limits in kinematical variable and  need to commute 

• Derive DE with respect to  & solve it 

• Fix constants of integration in  limit (easy!) 

• “Flow” to  for physical solution: 

• method of regions to extract the physical solution

η2

η2

η2

η2 → ∞
η2 → 0

GF, Gehrmann, Schönwald (to appear)



✴ choose a family for which to calculate the boundaries 

✴ choose propagators to which add an auxiliary mass 

✴ derive DE with respect to  

✴ fix constants of integration in   

✴ limit   & disentangle regions 

✴ extract physical region

u = 1/η2

lim u → 0

η2 → 0

RECIPE:  
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We look at the boundaries in : kinematical endpoint singularityz → 1



• We need  of this top sector:c0(ϵ)

Proof of concept
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IRR
i ∼ (1 − z)ni−2ϵ ∑

j
cj(ϵ)(1 − z)j, ni ∈ ℤ

• Add auxiliary mass  auxiliary topology

• Differential equation wrt  for the 

→
u = 1/η2 c0(ϵ)  master integrals8



• Depends on scaling of loop moms 

soft  or large  

• SOFT propagators: 

 

• LARGE propagators: 

k ∼ -(1) k ∼ -(η)

1
(k + p)2 − η2 ∼ − 1

η2

1
(k + p)2 − κη2 ∼ − 1

k2 − η2 , κ ∈ {0,1}

Intermezzo: large mass limit
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Beneke, Smirnov (1997)



• Loop momentum scales only soft 

• “Pinch” propagators with auxiliary mass 

• Example of boundaries

Large mass limit: RR ints
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Integrated  phase space 2 → 3

+ topologies reducible to it! 



• Loop momentum scales soft or large 

• We have two regions 

lim
η2→∞

⃗Iaux
RV = lim

η2→∞,k∼SOFT
⃗Iaux
RV + lim

η2→∞,k∼LARGE
⃗Iaux
RV

Large mass limit: RV ints
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k ∼ SOFT k ∼ LARGE

• Most complicated soft region 
•  depends only on kinematicsDj

• All large regions are massive tadpoles



c0(η, ϵ) = d0(ϵ) + η−ϵd1(ϵ) + η−2ϵd2(ϵ) + -(η)

But we also know the analytic structure of the limit

We have the solution of Iaux(η2) lim
η2→0

Iaux = Iphys

Hard region = physical region

Flow to vanishing auxiliary mass

c0(η, ϵ) =
∞

∑
k=min

ϵk[rk,0 +
k

∑
m=1

rk,m logm(η)]
We can take naively the limit  in our solution and obtain this expansion:η2 → 0

 known!rk,m
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rk,0 = d(l),k
ij,0 + d(l),k

ij,1 + d(l),k
ij,2

−d(l),k
ij,1 − 2d(l),k

ij,2 = rk+1,1,
d(l),k

ij,1 /2 + 2d(l),k
ij,2 = rk+2,2,

d(l),k
ij,0 + d(l),k

ij,1 + d(l),k
ij,2 = rk,0

lim
z→1

I = (1 − z)−1+2ϵ{ − 1
ϵ3 + 5π2

6ϵ
+ 38ζ3

3 + 7π4

72 ϵ + (562ζ5
5 − 74π2ζ3

9 )ϵ2 + (155π6

1008 − 191ζ2
3

9 )ϵ3 + -(ϵ4)} + -(y0)

c(l)
ij = d(0)

0 + d(0)
1 + d(0)

2

+ ϵ (d(1)
0 + (−d(0)

1 − 2d(0)
2 ) log(η) + d(1)

1 + d(1)
2 )

+ ϵ2 (d(2)
0 + d(2)

1 + d(2)
2 + 1

2 (d(0)
1 + 4d(0)

2 ) log2(η) + (−d(1)
1 − 2d(1)

2 ) log(η))
+ -(ϵ3)

c0(η, ϵ) = d0(ϵ) + η−ϵd1(ϵ) + η−2ϵd2(ϵ) + -(η)

Compare this with 

expansion gives:ϵ−
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c0(η, ϵ) =
∞

∑
k=min

ϵk[rk,0 +
k

∑
m=1

rk,m logm(η)]
 extract hard region: all the  ⇒ d(k)

0

dR =
∞

∑
k=min

ϵkd(k)
R , R = 0,1,2
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rk,0 = d(l),k
ij,0 + d(l),k

ij,1 + d(l),k
ij,2

−d(0)
1 − 2d(0)

2 = r1,1,
d(0)

1 /2 + 2d(0)
2 = r2,2,

d(0)
0 + d(0)

1 + d(0)
2 = r0,0

c0(η, ϵ) = d(0)
0 + d(0)

1 + d(0)
2

+ ϵ (d(1)
0 + (−d(0)

1 − 2d(0)
2 ) log(η) + d(1)

1 + d(1)
2 )

+ ϵ2 (d(2)
0 + d(2)

1 + d(2)
2 + 1

2 (d(0)
1 + 4d(0)

2 ) log2(η) + (−d(1)
1 − 2d(1)

2 ) log(η))
+ -(ϵ3)

We can obtain e.g.  by comparing the two limitsd(0)
0

c0(η, ϵ) = r0,0 + … + ϵr1,1 log(η) + … + ϵ2r2,2 log2(η)  known!r0,0, r1,1, r2,2

Set up this system of eq.s 
to obtain d(0)

0



• Analogous system for all 


• Fixed all expansion of hard region:

d(k)
0

ϵ−

IRR
i ∼ (1 − z)ni−2ϵ ∑

j
cj(ϵ)(1 − z)j, ni ∈ ℤ

lim
z→1

I = (1 − z)−1+2ϵ{ − 1
ϵ3 + 5π2

6ϵ
+ 38ζ3

3 + 7π4

72 ϵ

+(562ζ5
5 − 74π2ζ3

9 )ϵ2 + (155π6

1008 − 191ζ2
3

9 )ϵ3

+-(ϵ4)} + -((1 − z)0)
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• Procedure applied to fix all nontrivial RR and RV boundaries 

• Required the following auxiliary topologies: 

• Results used to derive IF antennae functions at higher epsilon order

Results
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• Analytical extension of auxiliary-mass-flow method 

• Feasible to study integrals near singular kinematical points 

• Automated procedure  

• Extension to 3 loop integrals

& Outlook

Conclusion
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Thank you 
for your 

attention!
Fig.1 Practical way to 
add auxiliary mass


