

A consistent resummation of mass and soft logarithms in processes with heavy quarks

Andrea Ghira

Milan Xmas Meeting, 22nd December Based on <u>arXiv:2309.06139</u>, in collaboration with S.Marzani and G.Ridolfi

Introduction

We consider heavy flavour production from the decay of a Higgs boson (colour singlet)

- We want to compute the differential decay rate over $x = \frac{2 p_1 \cdot q}{q^2}$ in the large x limit.
- x tends to 1 for $k \rightarrow 0$ or in the collinear limit.

Massless vs Massive Scheme Approach

Massless Scheme:

- Quark mass used as a regulator
- Cross section computed as a convolution of a coefficient function times a fragmentation function
- Logs of $\xi = \frac{m^2}{q^2}$ resummed through DGLAP

Massive Scheme:

- All mass dependence taken into account
- Kinematics treated correctly at every order
- Large logs spoil the convergence of the series.

Matching resummed scheme with fixed order calculations gives better prediction

in the study of differential decay rate in various regions of ξ :

$$\widetilde{\Gamma}(N,\xi) = \widetilde{\Gamma}_{k}^{(4)}(N,\xi) + \widetilde{\Gamma}_{\ell}^{(5)}(N,\xi) - \text{double counting}$$

$$\zeta = \mathcal{O}(1)$$

$$\xi \ll 1$$

- $\tilde{\Gamma}$ denotes the Mellin tranform of the differential decay rate: $\tilde{\Gamma}(N) = \int_0^1 dx \, x^{N-1} \, \frac{1}{\Gamma_0} \frac{d\Gamma}{dx}$
- In the following we will restrict to the case $\ell = 1$ (M.Cacciari, M. Greco, P. Nason)

Problems with Merging

We want to merge the two different calculations of the differential decay rate resumming logs of N in the large N limit ($x \rightarrow 1$).

Massless Scheme

 Double logs of N with mass independent coefficients (<u>M.Cacciari, S.</u> <u>Catani; F. Maltoni et al, 2022</u>)

Massive Scheme

- Single logs of *N* with mass dependent coefficient
- If we perform the limit $\xi \to 0$ after the large N limit, we do not recover the massless case

Different logarithmic structure of the bremsstrahlung radiation in the two cases, in the threshold limit

Example at Fixed order

If we compute the process with one emission at fixed order in the small mass and soft limit we find (<u>G.Corcella, A. Mitov</u>; <u>D.Gaggero et al</u>)

Massive Scheme

Massless Scheme

The two limits do not commute, comparing the accuracy of the soft logs can be confusing

Problem with merging

The soft resummation formula in the massive scheme is the product of a coefficient function times a soft function (E. Laenen, G. Oderda, G. Sterman)

$$\widetilde{\Gamma}(N,\xi) = C(\xi,\alpha_{\rm s})e^{-2\int_0^1 \mathrm{d}x \frac{x^{N-1}-1}{1-x}\gamma_{\rm soft}\left(\beta,\alpha_{\rm s}\left((1-x)^2q^2\right)\right)}$$

where γ_{soft} is the soft anomalous dimension.

If we perform the massless limit of the first order coefficient we find:

$$C^{(1)}(\xi) = C_{\rm F}\left(\frac{1}{2}\log^2 \xi + \log \xi + \frac{\pi^2}{2} + \mathcal{O}(\xi)\right)$$

This term is not predicted by DGLAP!

Our strategy

In the same spirit of FONLL, we would like to define a matching scheme merging togheter:

$$\widetilde{\Gamma}^{(4)}(N,\xi) = \widetilde{\Gamma}_{k}^{(4)}(N,\xi) + \widetilde{\Gamma}_{\ell_{1}}^{(4,\text{res})}(N,\xi) - \text{double counting,}$$
$$\widetilde{\Gamma}^{(5)}(N,\xi) = \widetilde{\Gamma}_{\ell}^{(5)}(N,\xi) + \widetilde{\Gamma}_{\ell\ell_{2}}^{(5,\text{res})}(N,\xi) - \text{double counting.}$$

- We cannot identify an all-order subtraction term.
- We start from the resummed massless scheme expression taking into account mass effects in the regime in which $1 x \ll \xi$.

The origin of the problem

At NLL one can see the threshold resumed expression in the massless framework as a product of two independent jet functions:

In the measured leg the double logarithmic structure cancel between the quark jet function and the fragmentation function.

Towards a Solution

- The tagged jet function is computed considering the b massless above the 5/4 flavor threshold, and massive below below double logs cancel.
- The recoiling jet function exhibit double logs. In the massless approach, the \overline{b} is always retained to be massless.

We have to consider also the recoiling jet function in the quasi-collinear limit so that:

- 1. When $1 x \gg \xi$ we recover <u>Cacciari-Catani</u> formula.
- 2. When $1 x \ll \xi$ we recover the resummed calculation made by <u>Laenen-Oderda-Sterman</u>

Resummation of the cumulative distribution in momentum space

- The resummation of the cumulative distribution related to the observable x coincide with the computation of the jet functions provided that we identify $1 x = \frac{1}{N e^{\gamma_E}}$.
- We employ the quasi-collinear limit keeping $\xi \simeq \theta^2$.

$$j(1-x,\xi) = -\int_0^1 \mathrm{d}z_1 \int_{z_1^2 m^2}^{q^2} \frac{\mathrm{d}k_t^2}{k_t^2} \frac{\alpha_\mathrm{s}^{\mathrm{CMW}}(k_t^2)}{2\pi} P_{gb}(z_1,k_t^2 - z_1^2 m^2) \Theta\left(\eta_1\right) \Theta\left(z_1 - (1-x)\right),$$

$$\bar{j}(1-x,\xi) = -\int_0^1 \mathrm{d}z_2 \int_{z_2^2 m^2}^{q^2} \frac{\mathrm{d}k_t^2}{k_t^2} \frac{\alpha_\mathrm{s}^{\mathrm{CMW}}(k_t^2)}{2\pi} P_{gb}(z_2,k_t^2 - z_2^2 m^2) \Theta\left(\eta_2\right) \Theta\left(\frac{k_t^2}{q^2 z_2} - (1-x)\right).$$

• Decoupling scheme is employed for the running coupling.

Emission quasi collinear to the \overline{b}

Emission quasi

Lund Plane

The observable 1 - x has two different parametrization in the two collinear regions: $V = z_1$ (gluon energy fraction), $\overline{V} = z_2 \overline{\theta}^2$ (jet invariant mass).

Region 1: $1 - x > \sqrt{\xi}$

• We find 3 different regions, depending on the hierarchy between $1 - x, \sqrt{\xi}, \xi$.

• When $1 - x > \sqrt{\xi}$, we recover the massless calculation

Region 2: $\sqrt{\xi} > 1 - x > \xi$

- When √ξ > 1 − x > ξ we enter a transition region that interpolates the 4 flavor calculation with the 5 flavor one.
- Mass effects starts to become relevant also in the coefficient function.

Region 3: $\xi > 1 - x$

 When 1 - x < ξ we recover the massive calculation with the mass logs exponentiated.

• At
$$\mathcal{O}(\alpha_S)$$
: $\overline{J}^{(3)} = \frac{\alpha_S C_F}{2\pi} \log^2 \xi + \cdots$

Resummed formula

The full resumed calculation is given by:

$$\frac{1}{\Gamma_0} \frac{\mathrm{d}\Gamma}{\mathrm{d}x} = \int_{c-i\infty}^{c+i\infty} \frac{\mathrm{d}N}{2\pi i} x^{-N} \begin{cases} \widetilde{\Gamma}^{(1)}(N,\xi), & \text{if } 1-x > \sqrt{\xi}, \\ \widetilde{\Gamma}^{(2)}(N,\xi), & \text{if } \xi < 1-x < \sqrt{\xi}, \\ \widetilde{\Gamma}^{(3)}(N,\xi), & \text{if } 1-x < \xi, \end{cases}$$

- The matching conditions for $\tilde{\Gamma}^{(1)}$, $\tilde{\Gamma}^{(3)}$ are determined by comparing our result with the massless and massive scheme calculations.
- Arbitrariness for the overall constant of $\tilde{\Gamma}^{(2)}$ (see also <u>U. Aglietti- G. Ferrera</u>).

Plots & Results

- Plot for real values of *N*, solid lines refers to the corresponding region in momentum space.
- Landau singularity at $N\simeq 20$ shadows the role of $\widetilde{\Gamma}^{(3)}$.
- Work in progress for DIS, for which we have a wider Q^2 range.

Heavy flavor jet substructure: $\boldsymbol{\theta}_g$ and \boldsymbol{z}_g distributions

- We can use the formalism developed to compute jet substructure observables.
- We analyze heavy-flavour initiated jets groomed with the Soft-Drop procedure (<u>A. Larkoski, S. Marzani, G. Soyez, J. Thaler</u>). For details see backup slides.

 θ_g : angular opening of the groomed jet (access to the dead-cone)

 z_g : allows us to probe the heavy quark splitting function

Recent measurement by <u>ALICE</u> of the SD observables on c-jets.

Results for θ_g and z_g

- Good agreement with Monte Carlo simulation @ $p_T = 50 \ GeV$ and $\beta = 0$
- Simulations done with Herwig (Leading order matrix element+ Parton Shower).

Conclusions and Outlook

- The merging of the massive and massless calculation is far from trivial because of the fact that the massless and soft limit do not commute.
- We build a joint resummation in such a way that if we are in the regime in which if $1 x < \xi$ we recover the massive scheme resummation and if $1 x > \xi$ we have the resummed expression obtained by <u>M.Cacciari, S. Catani</u> at NLL accuracy.
- Our formalism can be applied for jet substructure calculations with heavy flavors (<u>S. Caletti, A.G., S. Marzani</u>).
- Studies for DIS processes (in preparation).

Thanks for your attention!!

Backup: Plots for $q = 125, 25 \ GeV$

Backup: The Soft Drop Procedure

The SD algorithm removes consistently soft emission at large angle

After the declustering procedure, the jet constituents are re-clustered according to C/A.

Backup: Definition of the observables

The first branching that passes the soft-drop procedure defines the groomed jet radius θ_g and the groomed fraction of momentum Z_g

$$\theta_g = \frac{\Delta_{(12)(3)}}{R_0}, \qquad z_g = \frac{\min\left(p_{t(12)}, p_{t(3)}\right)}{p_{t(12)} + p_{t(3)}}$$

- The θ_g distribution is IRC safe both for massive and massless particles.
- The z_g distribution is IRC safe for massless particles only for $\beta < 0$. Conversely, it is always IRC safe for massive particles.

Backup: plot for c and light jet @ $p_T = 50 \ GeV$

