Full-stack Quantum Machine Learning for HEP

MCM23

Matteo Robbiati 20 December 2023

DALL-E 2 explaining my title

DALL-E 3 explaining my title

Introductory concepts

ML helps in solving statistical problems, such as data generation, classification, etc.

ML helps in solving statistical problems, such as data generation, classification, etc. Considering the supervised ML approach:

Machine Learning (ML)

ML helps in solving statistical problems, such as data generation, classification, etc. Considering the supervised ML approach:

 Φ we aim to know some hidden law between two variables: y = f(x);

Machine Learning (ML)

ML helps in solving statistical problems, such as data generation, classification, etc. Considering the supervised ML approach:

 Φ we aim to know some hidden law between two variables: y = f(x); **Lul** we define a parameteric model which returns $y_{est} = f_{est}(x; \theta)$; ML helps in solving statistical problems, such as data generation, classification, etc. Considering the supervised ML approach:

• we aim to know some hidden law between two variables: $\mathbf{y} = f(\mathbf{x})$; • we define a parameteric model which returns $\mathbf{y}_{est} = f_{est}(\mathbf{x}; \theta)$; • we define an optimizer, which task is to compute $\operatorname{argmin}_{\theta} [J(\mathbf{y}_{meas}, \mathbf{y}_{est})]$. ML helps in solving statistical problems, such as data generation, classification, etc. Considering the supervised ML approach:

• we aim to know some hidden law between two variables: $\mathbf{y} = f(\mathbf{x})$; we define a parameteric model which returns $\mathbf{y}_{est} = f_{est}(\mathbf{x}; \theta)$; we define an optimizer, which task is to compute $\operatorname{argmin}_{\theta} [J(\mathbf{y}_{meas}, \mathbf{y}_{est})]$.

Qubits (on the Bloch sphere)

Qubits (on the Bloch sphere)

Qubits' states can be used to process information:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
 where $\alpha = \cos \frac{\theta}{2}, \quad \beta = e^{i\phi} \sin \frac{\theta}{2}.$

Qubits (on the Bloch sphere)

Qubits' states can be used to process information:

And this information can be manipulated applying unitaries \mathcal{U} .

 \checkmark Classical bits are replaced by **qubits**: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$;

 \checkmark Classical bits are replaced by **qubits**: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$;

 \clubsuit we modify the qubits state by applying unitaries, which can be parametric $\mathcal{U}(\theta)$.

- \checkmark Classical bits are replaced by **qubits**: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$;
- \clubsuit we modify the qubits state by applying unitaries, which can be parametric $\mathcal{U}(\theta)$.
- we call the unitaries "gates" and many gates together "circuit".

- \checkmark Classical bits are replaced by **qubits**: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$;
- \clubsuit we modify the qubits state by applying unitaries, which can be parametric $\mathcal{U}(\theta)$.
- we call the unitaries "gates" and many gates together "circuit".
- In after executing the circuit, information is accessed computing expectation values of target observables on the new qubits state.

Machine Learning

 \mathcal{M} : model;

 \mathcal{O} : optimizer; \mathcal{J} : loss function. (x, y): data

Quantum Computation

 \mathcal{Q} : qubits;

 \mathcal{S} : superposition;

 \mathcal{E} : entanglement.

(x, y): data

Quantum Machine Learning!

we collect high-dimensional data, which challenge classical models;

- we collect high-dimensional data, which challenge classical models;
- an N-long input variable can be stored in a log N qubits system;

- we collect high-dimensional data, which challenge classical models;
- an N-long input variable can be stored in a log N qubits system;
- \square low power consuption¹;

¹ Are quantum computers really energy efficient?, Sophia Chen, Jun 2023

- we collect high-dimensional data, which challenge classical models;
- \bigotimes an *N*-long input variable can be stored in a log *N* qubits system;
- \checkmark low power consuption¹;
- ℅ can superposition and entanglement be exploited to use less parameters?

¹ Are quantum computers really energy efficient?, Sophia Chen, Jun 2023

- we collect high-dimensional data, which challenge classical models;
- an N-long input variable can be stored in a log N qubits system;
- \square low power consuption¹;
- ℅ can superposition and entanglement be exploited to use less parameters?
- can superposition and entanglement better deal with quantum data?²³

¹ Are quantum computers really energy efficient?, Sophia Chen, Jun 2023

² Quantum Computing for High-Energy Physics: State of the Art and Challenges, A. Di Meglio et al., Jul 2023

³ Quantum anomaly detection in the latent space of proton collision events at the LHC, K. A. Woźniak et al., Jan 2023

- we collect high-dimensional data, which challenge classical models;
- an N-long input variable can be stored in a log N qubits system;
- \checkmark low power consuption¹;
- ℅ can superposition and entanglement be exploited to use less parameters?
- can superposition and entanglement better deal with quantum data?²³

¹ Are quantum computers really energy efficient?, Sophia Chen, Jun 2023

² Quantum Computing for High-Energy Physics: State of the Art and Challenges, A. Di Meglio et al., Jul 2023

³ Quantum anomaly detection in the latent space of proton collision events at the LHC, K. A. Woźniak et al., Jan 2023

Qubits control and calibration

PDFs as QML target

- Define a circuit U(x; θ) using one qubit per parton p_i;
- fill gates with both x_i and $log(x_i)$;
- Compute PDF_i prediction using expectation of Z_i = ⊗ⁿ_{j=0} Z^{δij} :

$$\mathsf{qPDF}_{i}(x_{i}; Q_{0}, \theta) = \frac{1 - \langle 0 | \mathcal{U}^{\dagger} Z_{i} \mathcal{U} | 0 \rangle}{1 + \langle 0 | \mathcal{U}^{\dagger} Z_{i} \mathcal{U} | 0 \rangle}$$

- Define a circuit U(x; θ) using one qubit per parton p_i;
- fill gates with both x_i and $log(x_i)$;
- Compute PDF_i prediction using expectation of Z_i = ⊗ⁿ_{j=0} Z^{δij} :

$$\mathsf{qPDF}_i(x_i; Q_0, \boldsymbol{\theta}) = \frac{1 - \langle 0 | \mathcal{U}^{\dagger} Z_i \mathcal{U} | 0 \rangle}{1 + \langle 0 | \mathcal{U}^{\dagger} Z_i \mathcal{U} | 0 \rangle}$$

 \clubsuit We take into account the *u*-quark PDF;

- \clubsuit We take into account the *u*-quark PDF;
- \checkmark we pre-process it to fit the range [0, 1];

- \clubsuit We take into account the *u*-quark PDF;
- \checkmark we pre-process it to fit the range [0, 1];
- 😎 we use Qibo, Qibolab and Qibocal to run a gradient descent.

- \clubsuit We take into account the *u*-quark PDF;
- \checkmark we pre-process it to fit the range [0, 1];
- 😎 we use Qibo, Qibolab and Qibocal to run a gradient descent.

- \clubsuit We take into account the *u*-quark PDF;
- \checkmark we pre-process it to fit the range [0, 1];
- 😎 we use Qibo, Qibolab and Qibocal to run a gradient descent.

- \clubsuit We take into account the *u*-quark PDF;
- \checkmark we pre-process it to fit the range [0, 1];
- 😎 we use Qibo, Qibolab and Qibocal to run a gradient descent.

 ${\bf \mathbb{V}}$ Idea: learning a noise map ℓ and use it to clean expectation values from noise:

$$\left\langle \mathcal{O} \right\rangle_{\text{clean}} = \ell \left[\left\langle \mathcal{O} \right\rangle_{\text{noisy}} \right]$$

 $\$ Idea: learning a noise map ℓ and use it to clean expectation values from noise:

$$\left\langle \mathcal{O} \right\rangle_{\text{clean}} = \ell \left[\left\langle \mathcal{O} \right\rangle_{\text{noisy}} \right]$$

Credits: Frank Zickert.

• these experiments take long execution times (but we have Qibo!);

O these experiments take long execution times (but we have Qibo!);
 ✓ in some regimes, we aim to remove the bounds imposed by noise.

Parameter	$N_{ m train}$	$N_{\rm params}$	$N_{ m shots}$	MSE_{rtqem}	MSE_{nomit}	Noise
Value	30	16	10 ⁴	0.008	0.018	local Pauli

- 1. thanks to the RTQEM procedure, we reach a good minimum of the cost function;
- 2. the QEM is not effective if applied to a corrupted scenario (orange curve).

Parameter	$N_{ m train}$	$N_{ m params}$	$N_{ m shots}$	MSE_{rtqem}	MSE_{nomit}	Noise
Value	15	16	500	0.0042	0.0055	real noise

RTQEM allows exceeding the natural bound imposed by noise.

- qw5q from QuantWare and controlled using Qblox instruments;
- iqm5q from IQM and controlled using Zurich Instruments.

- qw5q from QuantWare and controlled using Qblox instruments;
- iqm5q from IQM and controlled using Zurich Instruments.

Train.	Epochs	Pred.	Config.	MSE
qw5q	50	qw5q	noisy	0.0055
qw5q	50	qw5q	RTQEM	0.0042
qw5q	100	qw5q	RTQEM	0.0013
iqm5q	100	qw5q	RTQEM	0.0037
qw5q	100	sim	RTQEM	0.0016

- qw5q from QuantWare and controlled using Qblox instruments;
- iqm5q from IQM and controlled using Zurich Instruments.

Train.	Epochs	Pred.	Config.	MSE
qw5q	50	qw5q	noisy	0.0055
qw5q	50	qw5q	RTQEM	0.0042
qw5q	100	qw5q	RTQEM	0.0013
iqm5q	100	qw5q	RTQEM	0.0037
qw5q	100	sim	RTQEM	0.0016

All the hardware results are obtained deploying the θ_{best} on qw5q.

