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Qubits’ states can be used to process information:

0 i 0
[) = a]0) + B |1) where a=cos, B =¢e'?sin 3

And this information can be manipulated applying unitaries U.
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Parametrized Quantum Circuits

/" Classical bits are replaced by qubits: |¢)) = «|0) + 3 |1);

£ we modify the qubits state by applying unitaries, which can be parametric 1/(8).
& we call the unitaries “gates” and many gates together “circuit”.

@ after executing the circuit, information is accessed computing expectation values

of target observables on the new qubits state.
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Quantum Machine Learning - doing ML using QC

Machine Learning
M: model,

O: optimizer;

J: loss function.
(x,y): data

Quantum Computation
Q: qubits;

S: superposition;

E: entanglement.




Quantum Machine Learning - operating on qubits

M: model;
O: optimizer;
J: loss function.
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Quantum Machine Learning - natural randomness

M: model;
O: optimizer;

J: loss function.

Machine Learning
(x,y): data

Expected values
Yest = (¥'|O[y')

Quantum Computation
Circuit execution

Q: qubits;
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Quantum Machine Learning - encoding the problem

chine Learning
model;
< optimizer;

J: loss function.
(xmata

Quantum Computation
Q: qubits;

S: superposition;

&: entanglement.

Expected values
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Quantum Machine Learning!

Optimizer O
Hybrid-strategy
Machine Learning loss function J

M: model; T (Ymeas, Yest)
O: optimizer;

J: loss function.
(x,y): data

Yest = <w/‘é|'¢'/>

Quantum Computation
O: qubits; Circuit execution
S: superposition;

Expected values ]

&: entanglement.




From ML to QML

Optimizer updates ‘\
parameters

Until convergence

T

Evaluate Loss function
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we collect high-dimensional data,
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PDFs as QML target
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The first (algorithmic) step & arXiv:2011.13934

® Define a circuit U(x; 0) using one
qubit per parton pj;

@ fill gates with both x; and log(x;);
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What if we run on hardware?

€ We take into account the u-quark PDF;
A
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we pre-process it to fit the range [0, 1];

@® we use Qibo, Qibolab and Qibocal to run a gradient descent.
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Quantum error mitigation & arXiv:2005.10189

Q Idea: learning a noise map ¢ and use it to clean expectation values from noise:

(0) =L[{0)

clean noisy}
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Quantum error mitigation & arXiv:2005.10189

Q Idea: learning a noise map ¢ and use it to clean expectation values from noise:

(0) =L[{0)

clean noisy}

Mitigate noise

no Ls'j

Clijford Data Regression

Credits: Frank Zickert.
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Real time quantum error mitigation

We try to mitigate both gradients and predictions at each optimization iteration.

Gradient
i Cost

function @

Until convergence descent step

Gradients

Predictions

Learn noise model ¢

Noise map

when loses reliability

@ these experiments take long execution times (but we have Qibo!);
@ in some regimes, we aim to remove the bounds imposed by noise.
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RTQEM in action

& arXiv:2311.05680

Parameter Niyain Nparams
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MSErtqem  MSEnomit Noise
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1. thanks to the RTQEM procedure, we
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—— Noisy
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reach a good minimum of the cost function;

2. the QEM is not effective if applied to a corrupted scenario (orange curve).
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RTQEM on a superconducting qubit

& arXiv:2311.05680

Parameter Nirain
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RTQEM allows exceeding the natural bound imposed by noise.
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Can RTQEM generalise? & arXiv:2311.05680

We perform a longer training on two different devices (and noises!) using the same
initial conditions of the previous slide but Nepochs = 100.
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Can RTQEM generalise? & arXiv:2311.05680

We perform a longer training on two different devices (and noises!) using the same
initial conditions of the previous slide but Nepochs = 100.

1.0 1

081 - R ]
Z N F

0.6F O ]

:2 04r Exact simulation ]

= 02k — Train on qwbq, exec. on qwbq 1]

Train on igmbq, exec. on qwhq
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We perform a longer training on two different devices (and noises!) using the same
initial conditions of the previous slide but Nepochs = 100.

£+ quwbq from QuantWare and
9 controlled using Qblox instruments;
1 %* igmbq from IQM and controlled
using Zurich Instruments.
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We perform a longer training on two different devices (and noises!) using the same
initial conditions of the previous slide but Nepochs = 100.

£+ quwbq from QuantWare and

1.0F 9 controlled using Qblox instruments;
o0sk 4 1 %% igqmbq from IQM and controlled
. Y using Zurich Instruments.
0.6F O 1 g
:2 04F —— Exact simulation ]
= 2 — Train on qwq, exec. on qwhq ] “Train. Epochs  Pred.  Config.  MSE
Train on igmbq, exec. on qwhq qubq 50 qubq noisy 0.0055
0.0 F —— Train on qw5q, exact simulation ] qubq 50 qubq RTQEM 0.0042
_oob T NNPDF40 ] qusq 100 qvs5q  RTQEM  0.0013
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Can RTQEM generalise? & arXiv:2311.05680

We perform a longer training on two different devices (and noises!) using the same
initial conditions of the previous slide but Nepochs = 100.

£+ quwbq from QuantWare and
9 controlled using Qblox instruments;
1 %* igmbq from IQM and controlled
using Zurich Instruments.

:2 04F —— Exact simulation ]
= 02F Train on qwiq, exec. on qw5q ] Train. Epochs Pred. Config. MSE
Train on igmbq, exec. on qwhq qubq 50 qubq noisy 0.0055
0.0 F —— Train on qw5q, exact simulation ] qubq 50 qubq RTQEM 0.0042
_oob T NNPDF40 ] qusq 100 qvs5q  RTQEM  0.0013
— Qubit’s fidelity f = 0.906 iqmbq 100 qubq RTQEM 0.0037
10‘74 10‘73 10‘72 10‘71 16“ qu5q 100 sim RTQEM 0.0016

All the hardware results are obtained deploying the 64,05y on quwbq.
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