Diboson production at FCC-ee and impact on global fits

Milan Christmas Meeting Università degli Studi di Milano 22 Dicembre 2023

Eugenia Celada University of Manchester

The University of Manchester

EC, T. Han, W. Kilian, N. Kreher, Y. Ma, F. Maltoni, D. Pagani, J. Reuter, T. Striegl, K. Xie [2312.13082]

Diboson FCC-ee 7. Multiboson production at a multi-TeV muon collider Leugenia Celada **①21/12/22, 17:30** MCM22

EC, T. Han, W. Kilian, N. Kreher, Y. Ma, F. Maltoni, D. Pagani, J. Reuter, T. Striegl, K. Xie [2312.13082]

Diboson production at FCC-ee and impact on global fits

Milan Christmas Meeting Università degli Studi di Milano 22 Dicembre 2023

Eugenia Celada University of Manchester

The University of Manchester

The SMEFT

Original fig. by C. Severi, M. Thomas, E. Vryonidou

$$
\mathcal{L}_{\text{EFT}} = \sum_{i} \frac{c_i}{\Lambda^{d-4}} \mathcal{O}_i^{(d)} = \mathcal{L}_{\text{SM}}^{(4)} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots
$$
 SM fields and symmetries

Ultimate goal: bounds on Wilson coefficients **extended to a constraints on UV models**

FCC-ee

• circular electron-positron collider

FCC-ee

- circular electron-positron collider
- to be built at CERN
- four operation energies over a 15-year program \sqrt{s} = 90, 160, 240, 365 GeV

FCC-ee design report [e2019-900045-4]

$$
\alpha_{\text{EW}}(m_Z), \Gamma_Z, A_e, A_\mu, A_\tau, A_b, A_c, \sigma_{\text{had}}^0, R_e, R_\mu, R_\tau, R_b, R_c
$$
\n
$$
A_f = \frac{2g_V^f g_A^f}{\left(g_V^f\right)^2 + \left(g_A^f\right)^2} \qquad \sigma_{\text{had}}^0 = \frac{12\pi}{\hat{m}_Z^2} \frac{\Gamma_e \Gamma_{\text{had}}}{\Gamma_Z^2} \qquad R_f = \frac{\Gamma_f}{\Gamma_{\text{had}}}
$$

Diboson in SMEFT

- probe of the non abelian nature of the EW gauge group
	- *V*

triple gauge couplings (**TGC**) quartic gauge couplings (**QGC**)

• interplay with the Higgs sector

V

• constrain operators that do not enter in EWPOs

V

Warsaw basis

 $\text{EWPOs}: \mathcal{O}_{\phi D},\, \mathcal{O}_{\phi WB}$

Warsaw basis

Warsaw basis

Warsaw basis

 $\text{EWPOs : } [\mathcal{O}_{\phi D}](\mathcal{O}_{\phi WB}]$

 $\text{EWPOs}: \ \mathcal{O}_{\phi\ell_1}^{(1)},\ \mathcal{O}_{\phi\ell_1}^{(3)},\ \mathcal{O}_{\phi\ell_2}^{(3)},\ \mathcal{O}_{\phi e},\ \mathcal{O}_{\phi q}^{(3)},\ \mathcal{O}_{\ell\ell}$

 $\text{EWPOs}: \left[\mathcal{O}_{\phi\ell_1}^{(1)}\right]\left[\mathcal{O}_{\phi\ell_2}^{(3)}\right]\,\mathcal{O}_{\phi\ell_2}^{(3)}, \left[\mathcal{O}_{\phi e}\right]\,\mathcal{O}_{\phi q}^{(3)},\,\mathcal{O}_{\ell\ell}$

 $\text{EWPOs}: \left[\mathcal{O}_{\phi\ell_1}^{(1)}\right]\left[\mathcal{O}_{\phi\ell_2}^{(3)}\right]\left[\mathcal{O}_{\phi\ell_2}^{(3)}\right]\left[\mathcal{O}_{\phi e}\right] \mathcal{O}_{\phi q}^{(3)},\left[\mathcal{O}_{\ell\ell}\right]$

 $\text{EWPOs}: \left[\mathcal{O}_{\phi\ell_1}^{(1)}\right]\left[\mathcal{O}_{\phi\ell_2}^{(3)}\right]\left[\mathcal{O}_{\phi\ell_2}^{(3)}\right]\left[\mathcal{O}_{\phi e}\right]\left[\mathcal{O}_{\phi q}^{(3)}\right]\left[\mathcal{O}_{\ell\ell}\right]$

W⁺*W*[−] with Optimal Observables

Doubly resonant 4 fermion production

- fully leptonic
- semileptonic
- hadronic

W⁺*W*[−] with Optimal Observables

Doubly resonant 4 fermion production

- fully leptonic
- semileptonic
- hadronic

If

- linear dependence on Wilson coeffs.
- systematics is negligible

we can define **Optimal Observables**

- retain all the differential information
- maximal sensitivity to the Wilson • coefficients

W⁺*W*[−] with Optimal Observables

Doubly resonant 4 fermion production

- fully leptonic
- semileptonic
- hadronic

If

- linear dependence on Wilson coeffs.
- systematics is negligible

we can define **Optimal Observables**

- retain all the differential information
- maximal sensitivity to the Wilson • coefficients

J. de Blas et al. [1907.04311]

Optimal Observables

• Consider a differential distribution

• The Optimal Observables are defined as

n events $n = \mathcal{L}\sigma$ *n sets of kinematic variables* $\Phi_1, ..., \Phi_n$ $O_i = \frac{1}{n} \sum_{k=1}^{n} \frac{S_i(\Phi_k)}{S_0(\Phi_k)}$ ~ signal / background

M. Diehl and 0. Nachtmann [9402271]

• The χ^2 is defined as

$$
\chi^{2} = \sum_{i} \sum_{j} \left(E[O_{i}] - O_{i}^{\text{meas}} \right) \text{ cov}(O_{i}, O_{j})^{-1} \left(E[O_{j}] - O_{j}^{\text{meas}} \right)
$$

theoretical experimental

Optimal Observables

ASSUMPTIONS

- linear dependence over Wilson coeffs.
- experimental results = SM theory prediction

 $\widetilde{\mathcal{O}}_k=c_k$ observables redefinition:

• The new χ^2 is defined as

$$
\Delta\chi^{2}\left(\boldsymbol{c}\right)=\sum_{k,k'=1}^{n}c_{k}\left(\mathrm{cov}\left(c_{k},c_{k'}\right)\right)^{-1}c_{k'}
$$

• The inverse covariance is given by

$$
cov(c_i, c_j)^{-1} = \mathcal{L}\left(\int \frac{S_i S_j}{S_0} d\Phi - \frac{1}{\sigma_0} \int S_i d\Phi \int S_j d\Phi\right)
$$

Global fits with SMEFIT

- open source python package for global SMEFT fits
	- *T. Giani, G. Magni, J. Rojo [2302.06660]*
- large HEP dataset (LHC Run I and II, LEP EWPOs)
- soon will support future collider projections (HL-LHC, FCC-ee)

EC et al, in preparation

• EWPOs

- EWPOs
- Higgs: $\sigma(ZH)$, $\sigma(ZH) \times BR(H)$, $\sigma(WW \to H) \times BR(H)$ at \sqrt{s} =240, 365 GeV

- EWPOs
- Higgs: $\sigma(ZH)$, $\sigma(ZH) \times BR(H)$, $\sigma(WW \to H) \times BR(H)$ at \sqrt{s} =240, 365 GeV
- Optimal Observables: $e^-e^+ \to W^-W^+ \to \ell^- \bar{\nu}_e \ell^+ \nu_\ell$ at $\sqrt{s} = 240$, 365 GeV

EC et al, in preparation

Conclusions…

• **EWPOs dominate the bounds**

- Higgs measurements constrain $\mathcal{O}_{\phi W} \mathcal{O}_{\phi B} \mathcal{O}_{\phi d}$
- Optimal Observables constrain \mathcal{O}_{WWW}

general improvement of up to 2 orders of magnitude

Conclusions…

• **EWPOs dominate the bounds**

- Higgs measurements constrain $\mathcal{O}_{\phi W}$ $\mathcal{O}_{\phi B}$ $\mathcal{O}_{\phi d}$
- Optimal Observables constrain \mathcal{O}_{WWW}

general improvement of up to 2 orders of magnitude

… & outlook

- include HL-LHC projections
- extend the FCC-ee dataset (top, ...)

Conclusions…

• **EWPOs dominate the bounds**

- Higgs measurements constrain $\mathcal{O}_{\phi W} \mathcal{O}_{\phi B} \mathcal{O}_{\phi d}$
- Optimal Observables constrain \mathcal{O}_{WWW}

general improvement of up to 2 orders of magnitude

… & outlook

- include HL-LHC projections
- extend the FCC-ee dataset (top, ...)

stay tuned for more exciting results