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We need to evaluate Feynman integrals
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Essential iIngredients of perturbative computations — particle phenomenology
Also: gravitational waves, cosmology, statistical mechanics, mathematics...

Many technigues developed over many years, yet they remain a bottleneck



Integrating by differentiating

[Barucchi, Ponzano '73; Kotikov °91; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000; Henn 2013]

View Feynman integrals as solutions to PDES
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Most powertul tool for analytic computation of Feynman integrals
Neat connection with study of special functions

Growing interest for numerical solution



Method of differential equations
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Integral families and master integrals

Scalar
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-eynman integrals with the same propagator structure = integral family
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Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family
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e.g. Integration-By-Parts relations
[Chetyrkin, Tkachov ’81; Laporta 2000]



Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family

D
D9 ) D3 I—>(S " 6) _ I d“k 1 Dl = k2
17zD/2 Dfl...Df“ D, = (k _|_p1)2
D3 = (k + D +p2)2
> . - 4
D1 L P4 {Ic_i(s’ t; €) ‘ Vae”/ } D4 = (k _p4)2
dentities among the 17's Finite-dimensional basis:
3-D master integrals F (s, ¢
N w ) N aster integrals F (s, 7; €)
p U pz U P2 ps
e.g. Integration-By-Parts relations >O< >Q<
[Chetyrkin, Tkachov '81; Laporta 2000] b e SR



Integrating by differentiating

[Barucchi, Ponzano ’73; Kotikov ’91; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000]
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Analytic solution not always feasible

y
Choose Mls such that DEs take canonical form [Henn 2013]

No general algorithm!
Best understood cases: solution in terms of multiple polylogarithms &

More complicated classes of functions do appear (e.qg. elliptic MPLSs)

k> Mathematical technology much less mature @@  G. Fontana’s talk
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Growing interest for semi-numerical solution based on series expansions
DiffExp [Hidding 2020], SeaSyde [Armadillo et al. 2022], AMFlow [Ma, Liu 2022]  [Moriello 2079]

& Very flexible (canonical form not required) & Long evaluation times



Physics-informed deep learning




Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]

Typical problem: approximate function f(x) from large dataset of values f(x;)
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Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]
Typical problem: approximate function f(x) from large dataset of values f(x;)

Activation function
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Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]

Typical problem: approximate function f(x) from large dataset of values f(x;)

Activation function

h(x; 0) “Surrogate function”

Input layer

/ "\ Y Output layer

Weights € Hidden layers

Optimisation problem: find weights @ such that a loss function is minimised

1 N
L(D: 0) =~ ' [f0s) = hoz 0)]
=1
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We don’t have a large dataset...

What we have:

® Small dataset of values (at least 1), obtained numerically in other ways

E.g. AMFlow [Liu, Ma 2022] — EXpensive evaluation, but very flexible

e Differential equations: d];(;c) = A(x) f(x)
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Physics-informed deep learning

[Raissi, Perdikaris, Karniadakis 2017]

. ldea:; iInclude the DEs In the loss function

dh(x 0)

2
L(D;0) = Z [h(xl, o) — f(x; )] + 2 —A(x;) h(xj; «9)]

/ N

Small “boundary” dataset Infinite dimensional “DE” dataset

Derivatives of the NN computed with automatic differentiation [Griewank, Walther 2008]

Input: few boundary values + the analytic DEs
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The canonical form of the DEs i1s nhot needed

We make mild assumptions to simplify the problem:

a_F({}; e)=A,(V;e)- F(vie) Vi=1,..n V : kinematic variables
V; l
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Separate Re/Im parts, only
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The canonical form of the DEs i1s nhot needed

We make mild assumptions to simplify the problem:

a_F({}; e)=A,(V;e)- F(vie) Vi=1,..n V : kinematic variables
V; l

Separate Re/Im parts, only

1. The matrices A., (v; €) are rational function |
e matrices Vi(v, ¢) are rational functions = el with real nUMbers

k

max

2. The matrices Av,(\_/); €)arefinteate =0, A, (Vie)= Z e Aél.k)(?)
k=0

Wmax

= Simplifies the € expansion of the solution ~ F (¥ €) = ¢ 2 e F (%)

w=0
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Architecture
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INn the examples we considered: 3/4 hidden layers, 32 —256 nodes per layer

13



Heavy crossed box

)25 3 kinematic variables, 36 Mls

Pi Subsectors involve elliptic functions

v=As=(p, +p)*, t=(p, —p3)*, m*}

Canonical DEs / analytic solution unavailable

[von Manteuffel, Tancredi 2017]

Full computation only recently, using generalised power series expansions (

DIffEXP)

[Becchetti, Bonciani, Cieri, Coro, Ripani 2023] [Hidding 2020]

(A :
Mls stripped of square roots — A, (V;€) = Z X AJV()
k=0
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Heavy crossed box: architecture

®
-+ @ ® - Mls (Re or Im)
2 input variables y " \
fix m? = 1) @ ® 36 X 5\: 180 outputs
@ ® € orders
piame) - o o
o O © F(¥e) = gz_‘ge F()

3 hidden layers, 256 neurons each
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Heavy crossed box: kinematic region

Never leave the chosen domain of

schannel: s > —t>0 A m*>0 —» analyticity domain, so analytic

—0.5 -

—1.0 A

—1.5 -

—2.0 A

—2.5 1
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continuation is not required
We choose s < 4/ 10

Singularities of the solution

/

Cut near boundaries:

10 % of largest value (/ 10)

Boundary values at 10 random points,
obtained with AMFlow [Liu, Ma 2022]




Loss

Heavy crossed box: training
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25

50

75

100
Epoch

125

150

17

175

Ensemble of 10 NINs

terations: 7.9 X 10*

Time to train 1 NN: 75 min
(on a good laptop, GPU)

Use trainl
validatior
-

loss fur

random

100N
SalT]

Nng metric for
, as Inputs for DE

are dynamically
pled



Heavy crossed box: model performance

Comparison against testing dataset of 100 points (AMFlow) € orfers
Mean absolute difference: 1.6 X 107> . i v
1
Mean magnitude of rel. diff.: 7.3 X 107> 215 %
Evaluation time ~ 1 — 10 us glo' ] jg]:j
5 - AH (T e

o#ﬁgz;fﬁ . %% i

10-7 107° 10— 10% 1073 1072 107! 10° 10!
Magnitude of relative difference
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General comments

Flatness of the performance with respect to

e Analytic complexity (€ orders, Ml) within the same family

® Across different families

Instantaneous evaluation times &3
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Conclusion

New method to evaluate numerically Feynman integrals satistying generic
DEs using physics informed deep learning

Proof-of-concept implementation can reach 1% accuracy in cutting-edge
2-loop examples

Much room for improvement!

Francesco Calisto, Ryan Moodie, SZ
(arXiv:2312.02067)
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Solution made simple by the canonical form

[Henn 2013]
Choose MIs such that the DEs take the canonical form
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| \ Letters: algebraic functions
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e.g. {s,t, 5+ t} for the box
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Solution made simple by the canonical form

[Henn 2013]
Choose MIs such that the DEs take the canonical form

dF (s:e) = e dA(s)- F (s:€)

In the best understood cases (= most of the integrals computed so far):

A(s)= ) a;log W(s)

| \ Letters: algebraic functions
. of kinematics
Constant matrices

e.g. {s,t, 5+ t} for the box

Best-case scenario! &3
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Proof-of-concept implementation

Py forch

GELU activation function (nonzero and continuous 2nd-order derivatives)
Train with stochastic gradient descent (Adam optimiser)

Mini-batch training: iterations organised into epochs composed of small batches,
taking a dynamic random sample of the inputs for each batch

\ e No need for regularisation to avoid overfitting
® \/alidation can be done on the training dataset
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Loss function

Lpe(DpE, 0) =
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Integral family
Inputs
Hidden layers
Outputs
Learning rate
Batch size
Boundary points

Cn,

Scale bound
Physical cut (%)
Spurious cut (%)

box one-mass double box

heavy crossed box

Summary of hyperparameters

top double box

2
4 x 128
99
10~
256
20
m? =
S12 < O
10

1




Integral family Final loss Iterations Time (minutes)

box 2.7x 107" 2.5 x 10° 16

one-mass double box 3.4 x 107% 1.1 x 10° 03

heavy crossed box 1.4 x 1072 7.9 x 104 75

top double box 7.1%x107* 5.2 x 10 32

Training statistics
Integral family MEU MDE MAD MMRD MLR Size
box 2.8x107° 36x107% 29x10™° 22x10° 39x10~" 10°
oneemass DB 8.1x107% 1.1x1072 20x107% 1.1x107%2 —-28x10"% 10°
heavy CB 2.8x107% 28x107% 16x10™° 73x107° —45x107* 10?
top DB 1.9x107* 1.7x107% 9.0x10* 39x10° 1.8x10* 107
Uncertainty and testing errors




