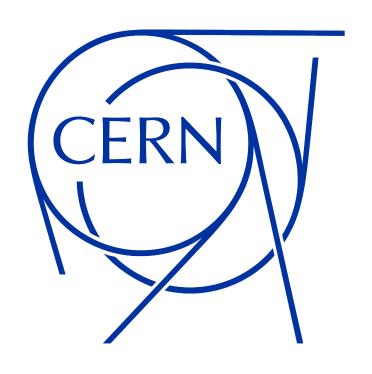
Learning Feynman integrals from differential equations with neural networks

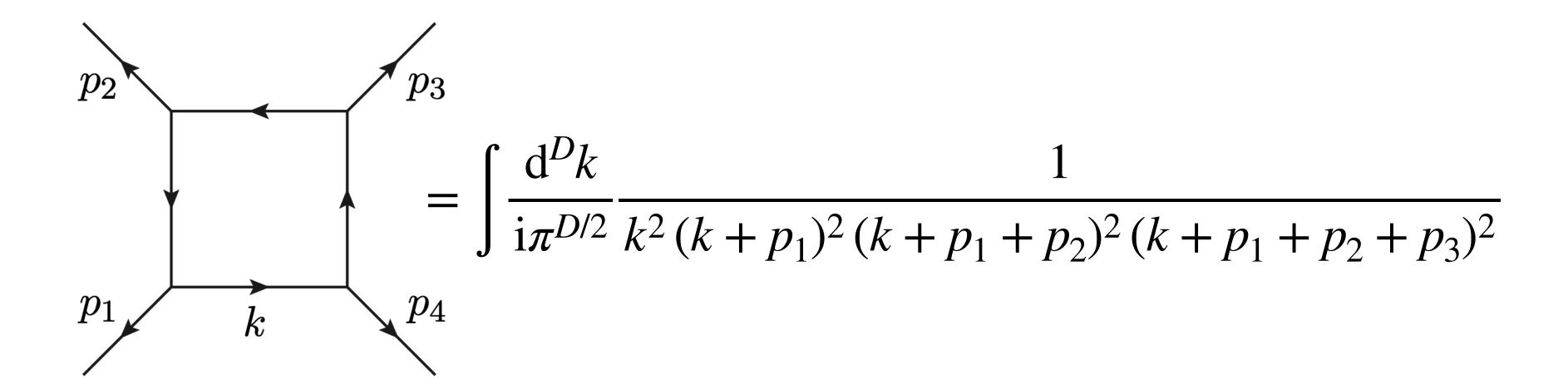
Simone Zoia

Francesco Calisto, Ryan Moodie, SZ (arXiv:2312.02067)



Milan Christmas Meeting, 20th Dec 2023

We need to evaluate Feynman integrals



Essential ingredients of perturbative computations \rightarrow particle phenomenology

Also: gravitational waves, cosmology, statistical mechanics, mathematics...

Many techniques developed over many years, yet they remain a bottleneck

Integrating by differentiating

[Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000; Henn 2013]

View Feynman integrals as solutions to PDEs

$$\frac{\partial}{\partial s_{12}} \overrightarrow{F}(s; \epsilon) = A_{s_{12}}(s; \epsilon) \cdot \overrightarrow{F}(s; \epsilon)$$

Most powerful tool for analytic computation of Feynman integrals

Neat connection with study of special functions

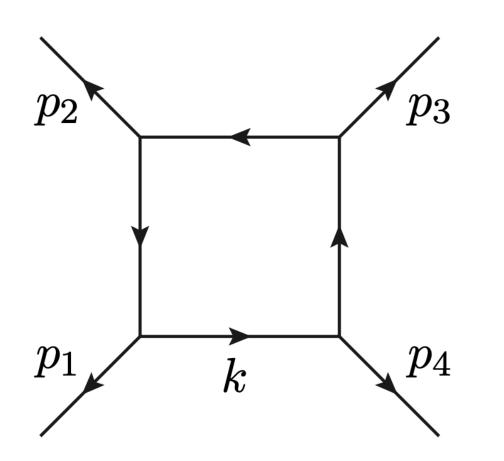
Growing interest for numerical solution

Method of differential equations

$$\frac{\partial}{\partial s_{12}} \overrightarrow{F}(s; \epsilon) = A_{s_{12}}(s; \epsilon) \cdot \overrightarrow{F}(s; \epsilon)$$

Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family



$$I_{\vec{a}}(s,t;\epsilon) = \int \frac{d^D k}{i\pi^{D/2}} \frac{1}{D_1^{a_1}...D_4^{a_4}}$$

$$\{I_{\vec{a}}(s,t;\epsilon) \mid \forall \, \vec{a} \in \mathbb{Z}^4\}$$

$$I_{\vec{a}}(s,t;\epsilon) = \int \frac{d^{D}k}{i\pi^{D/2}} \frac{1}{D_{1}^{a_{1}}...D_{4}^{a_{4}}} \qquad D_{1} = k^{2}$$

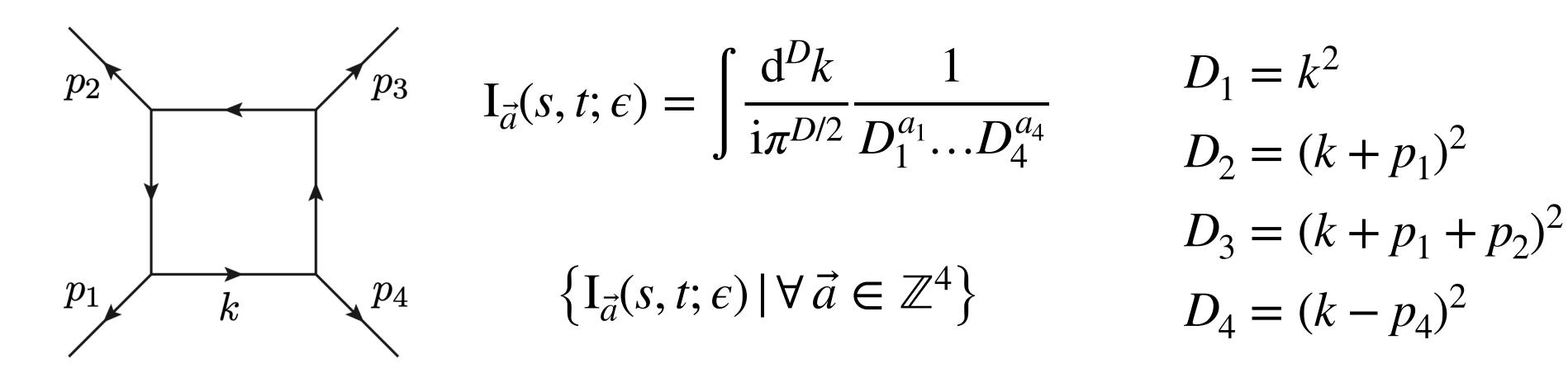
$$D_{2} = (k+p_{1})^{2}$$

$$D_{3} = (k+p_{1}+p_{2})$$

$$D_{4} = (k-p_{4})^{2}$$

Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family



Identities among the $I_{\vec{a}}$'s

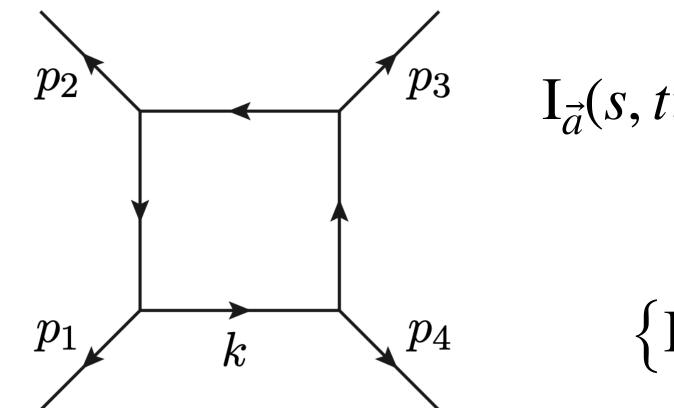
$$\frac{}{p} = \frac{3-D}{p^2} \times - \bigcirc$$

e.g. Integration-By-Parts relations

[Chetyrkin, Tkachov '81; Laporta 2000]

Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family



$$I_{\vec{a}}(s,t;\epsilon) = \int \frac{\mathrm{d}^D k}{\mathrm{i}\pi^{D/2}} \frac{1}{D_1^{a_1}...D_4^{a_4}}$$
 $D_1 = k^2$ $D_2 = (k+p_1)^2$

$$\left\{ \mathbf{I}_{\vec{a}}(s,t;\epsilon) \,|\, \forall\, \vec{a} \in \mathbb{Z}^4 \right\}$$

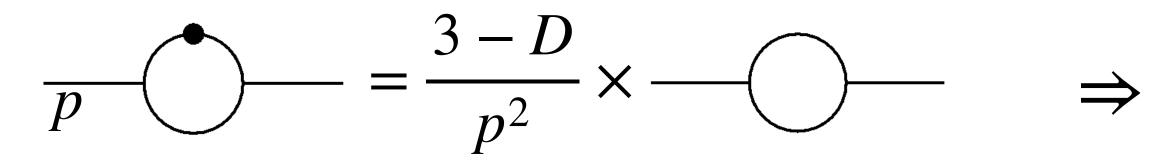
$$D_1 = k^2$$

$$D_2 = (k + p_1)^2$$

$$D_3 = (k + p_1 + p_2)^2$$

$$D_4 = (k - p_4)^2$$

Identities among the $I_{\vec{a}}$'s

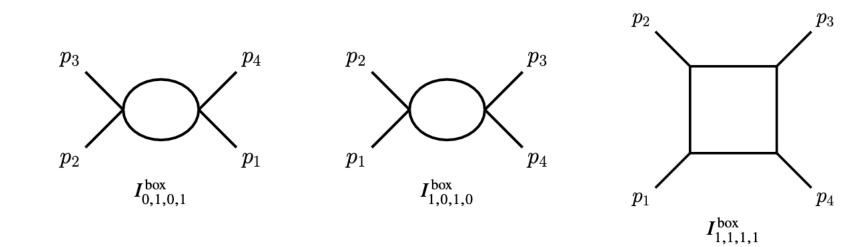


e.g. Integration-By-Parts relations

[Chetyrkin, Tkachov '81; Laporta 2000]

Finite-dimensional basis:

master integrals $\overrightarrow{F}(s, t; \epsilon)$



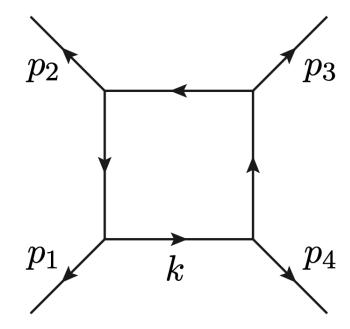
Integrating by differentiating

[Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000]

$$\frac{\partial}{\partial s_{12}} \overrightarrow{F}(s; \epsilon) = \sum_{\vec{a}} c_{\vec{a}} I_{\vec{a}} \qquad \text{IBP reduction} \qquad \frac{\partial}{\partial s} \vec{F}(s, t; \epsilon) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\frac{\epsilon}{s} & 0 \\ \frac{2(2\epsilon - 1)}{st(s + t)} & \frac{2(1 - 2\epsilon)}{s^2(s + t)} & -\frac{s + t + \epsilon t}{s(s + t)} \end{pmatrix} \cdot \vec{F}(s, t; \epsilon)$$

$$= A_{s_{12}}(s; \epsilon) \cdot \overrightarrow{F}(s; \epsilon)$$

 \Rightarrow System of 1st order linear PDEs for the MIs \overrightarrow{F}



How do we solve it?
$$\overrightarrow{F}(s; \epsilon) = \sum_{w \ge w_{\min}} \epsilon^w \overrightarrow{F}^{(w)}(s)$$

Analytic solution not always feasible

Choose MIs such that DEs take canonical form [Henn 2013] No general algorithm!

Best understood cases: solution in terms of multiple polylogarithms 👼

More complicated classes of functions do appear (e.g. elliptic MPLs)

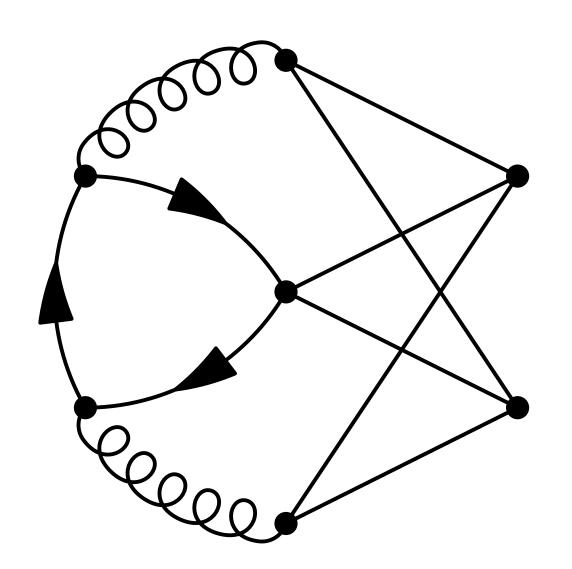
Mathematical technology much less mature 🥯

G. Fontana's talk

Growing interest for semi-numerical solution based on series expansions DiffExp [Hidding 2020], SeaSyde [Armadillo et al. 2022], AMFlow [Ma, Liu 2022] [Moriello 2019]

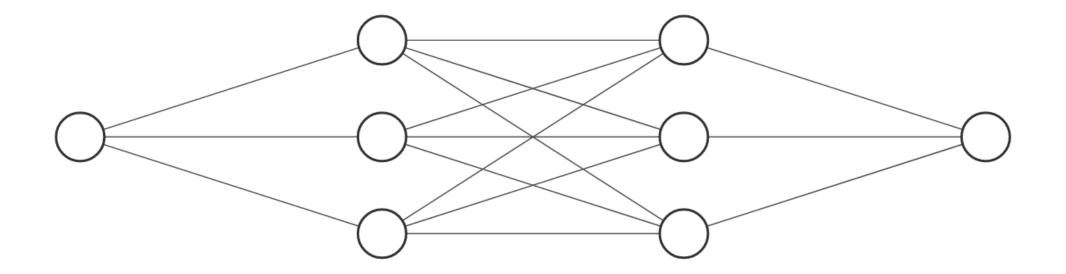
- Very flexible (canonical form not required)
- Long evaluation times

Physics-informed deep learning

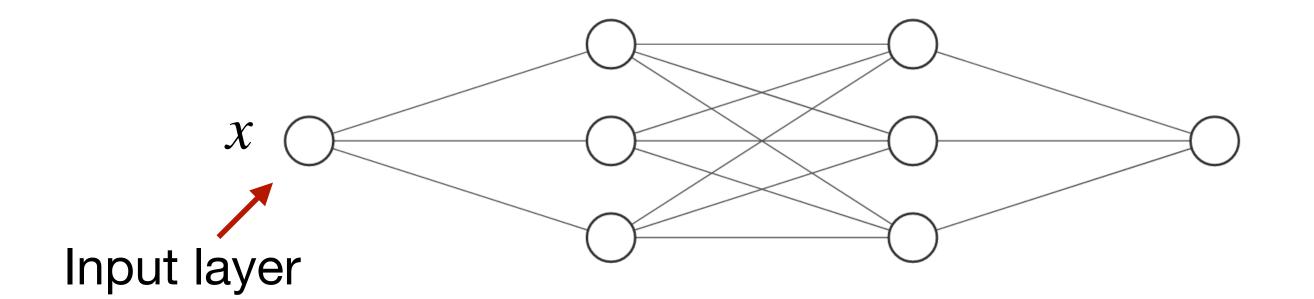


[Hornik, Stinchcombe, White '89]

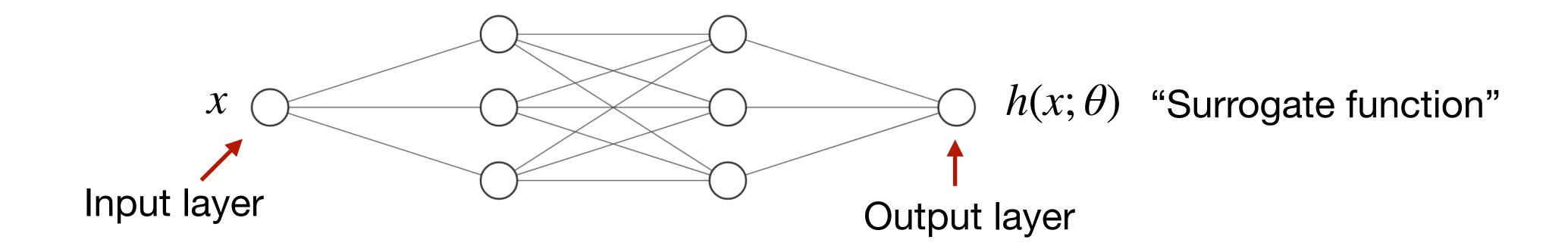
[Hornik, Stinchcombe, White '89]



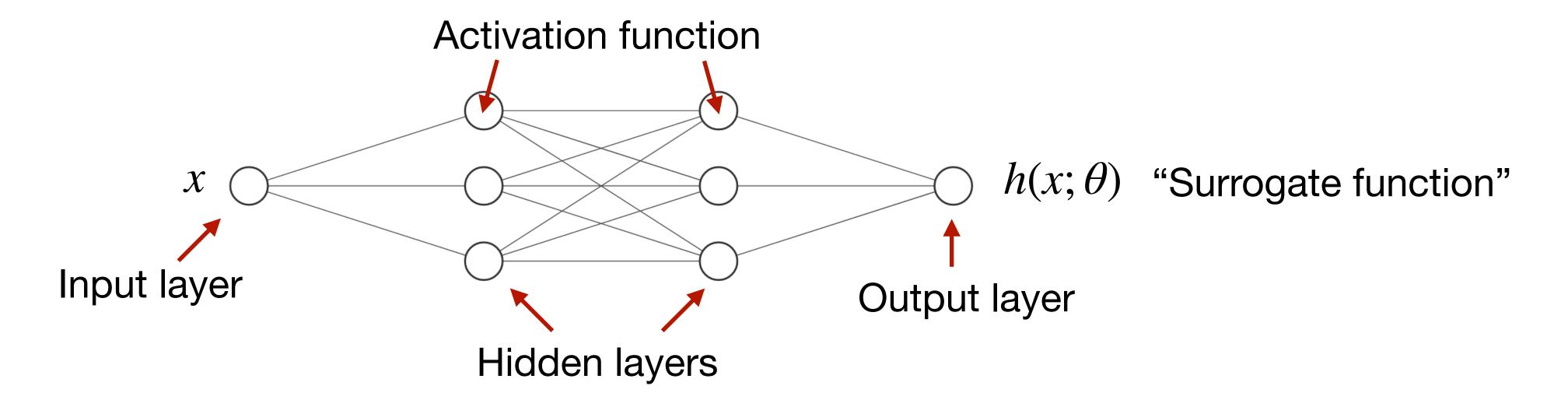
[Hornik, Stinchcombe, White '89]



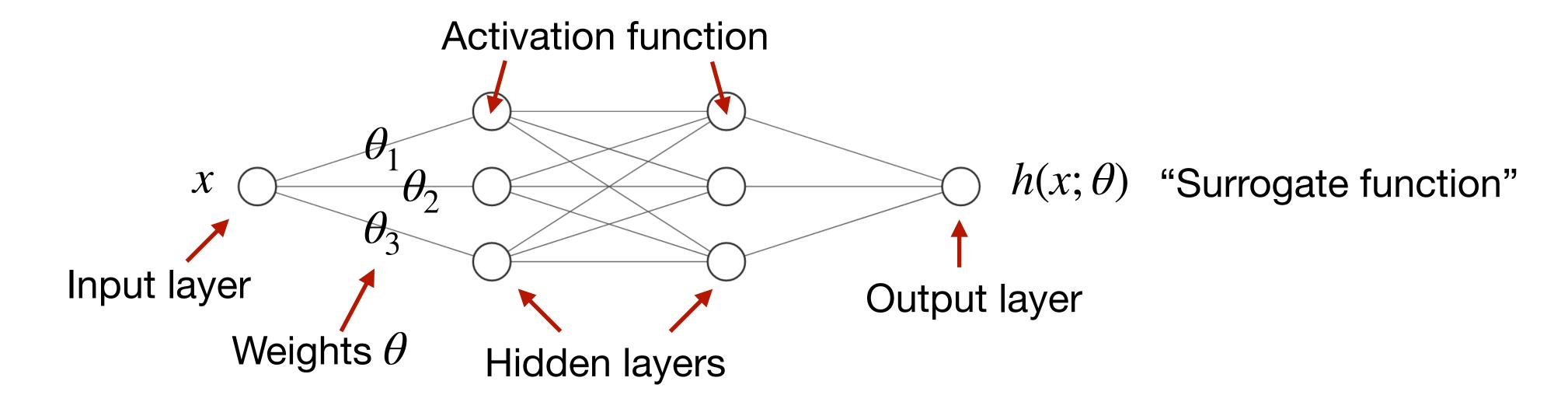
[Hornik, Stinchcombe, White '89]



[Hornik, Stinchcombe, White '89]

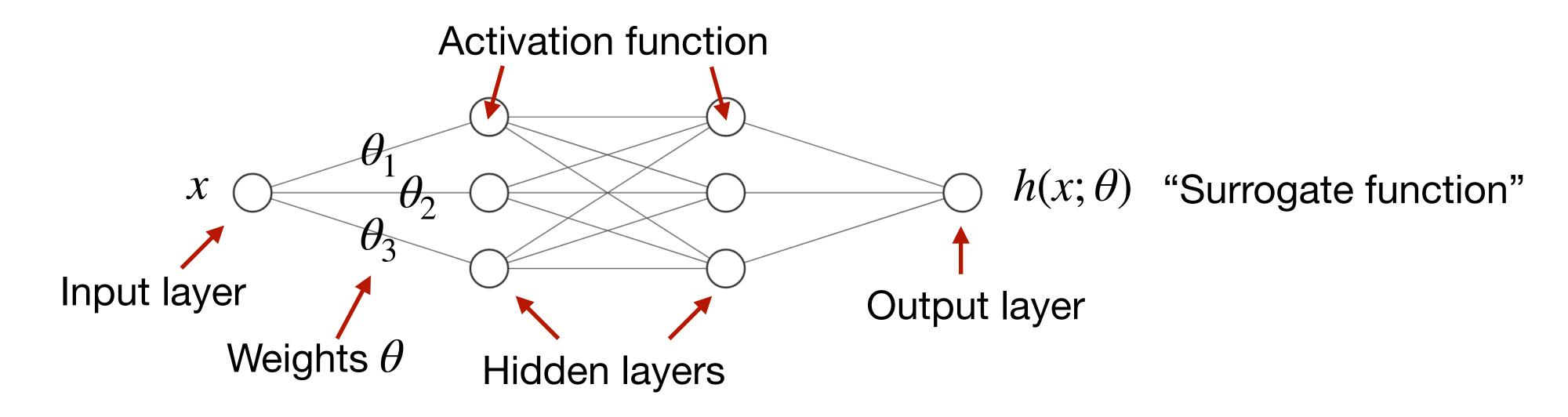


[Hornik, Stinchcombe, White '89]



[Hornik, Stinchcombe, White '89]

Typical problem: approximate function f(x) from large dataset of values $f(x_i)$



Optimisation problem: find weights θ such that a **loss function** is minimised

$$L(D; \theta) = \frac{1}{N} \sum_{i=1}^{N} [f(x_i) - h(x_i; \theta)]^2$$

We don't have a large dataset...

What we have:

Small dataset of values (at least 1), obtained numerically in other ways

E.g. AMFlow [Liu, Ma 2022] \rightarrow Expensive evaluation, but very flexible

• Differential equations: $\frac{\mathrm{d}f(x)}{\mathrm{d}x} = A(x)f(x)$

Physics-informed deep learning

[Raissi, Perdikaris, Karniadakis 2017]

ldea: include the DEs in the loss function

$$L(D; \theta) = \overline{\sum_{i}} \left[h(x_i; \theta) - f(x_i) \right]^2 + \overline{\sum_{j}} \left[\frac{\mathrm{d}h(x; \theta)}{\mathrm{d}x} \Big|_{x=x_j} - A(x_j) h(x_j; \theta) \right]^2$$

Small "boundary" dataset

Infinite dimensional "DE" dataset

Derivatives of the NN computed with automatic differentiation [Griewank, Walther 2008]

Input: few boundary values + the analytic DEs

The canonical form of the DEs is not needed

We make mild assumptions to simplify the problem:

$$\frac{\partial}{\partial v_i} \overrightarrow{F}(\overrightarrow{v}; \epsilon) = A_{v_i}(\overrightarrow{v}; \epsilon) \cdot \overrightarrow{F}(\overrightarrow{v}; \epsilon) \quad \forall i = 1, ..., n_v \qquad \overrightarrow{v} : \text{kinematic variables}$$

The canonical form of the DEs is not needed

We make mild assumptions to simplify the problem:

$$\frac{\partial}{\partial v_i} \overrightarrow{F}(\overrightarrow{v}; \epsilon) = A_{v_i}(\overrightarrow{v}; \epsilon) \cdot \overrightarrow{F}(\overrightarrow{v}; \epsilon) \quad \forall i = 1, ..., n_v \qquad \overrightarrow{v} : \text{kinematic variables}$$

1. The matrices $A_{v_i}(\vec{v};\epsilon)$ are rational functions \Rightarrow Separate Re/Im parts, only deal with real numbers

The canonical form of the DEs is not needed

We make mild assumptions to simplify the problem:

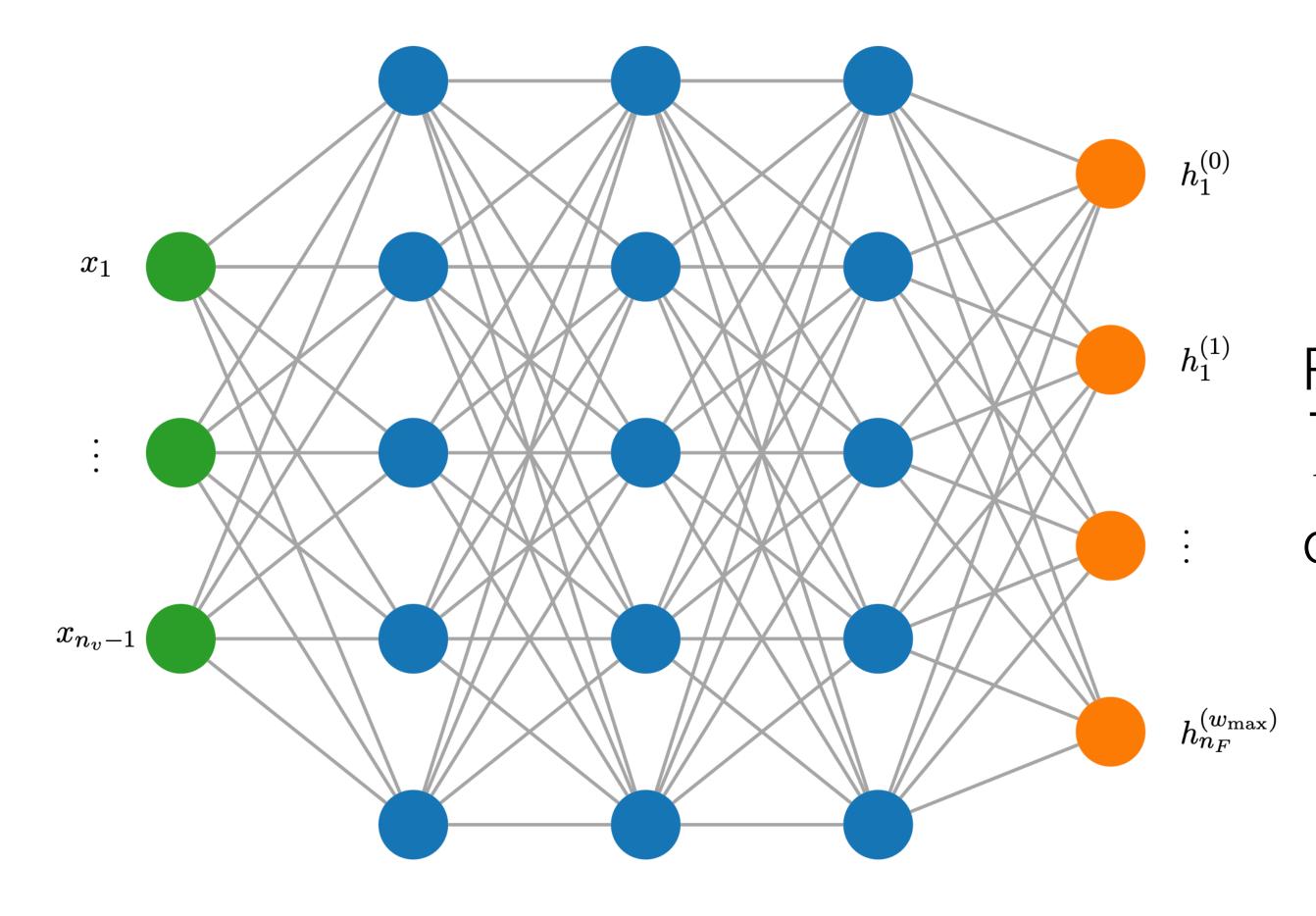
$$\frac{\partial}{\partial v_i} \overrightarrow{F}(\overrightarrow{v}; \epsilon) = A_{v_i}(\overrightarrow{v}; \epsilon) \cdot \overrightarrow{F}(\overrightarrow{v}; \epsilon) \quad \forall i = 1, ..., n_v \qquad \overrightarrow{v} : \text{kinematic variables}$$

- 1. The matrices $A_{v_i}(\vec{v}; \epsilon)$ are rational functions \Rightarrow Separate Re/Im parts, only deal with real numbers
- 2. The matrices $A_{v_i}(\vec{v}; \epsilon)$ are finite at $\epsilon = 0$, $A_{v_i}(\vec{v}; \epsilon) = \sum_{k=0}^{k_{\text{max}}} \epsilon^k A_{v_i}^{(k)}(\vec{v})$
 - \Rightarrow Simplifies the ϵ expansion of the solution $\overrightarrow{F}(\overrightarrow{v};\epsilon) = \epsilon^{w^*} \sum_{i=0}^{w_{\text{max}}} \epsilon^{w_i} \overrightarrow{F}^{(w)}(\overrightarrow{v})$

Architecture

PyTorch

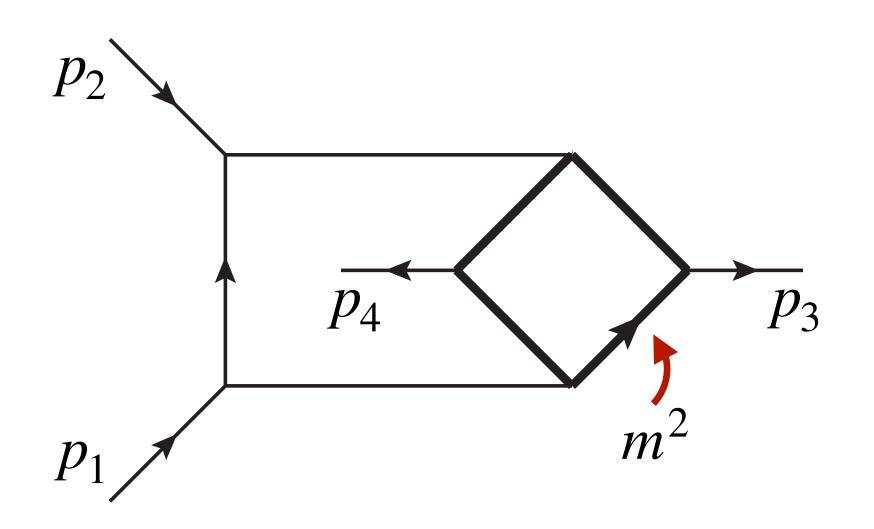
Dimensionless kinematic variables



Re or Im part of $\overrightarrow{F}^{(w)}$ up to a certain order in ϵ

In the examples we considered: 3/4 hidden layers, 32-256 nodes per layer

Heavy crossed box



3 kinematic variables, 36 MIs

$$\vec{v} = \{ s = (p_1 + p_2)^2, t = (p_1 - p_3)^2, m^2 \}$$

Canonical DEs / analytic solution unavailable

Subsectors involve elliptic functions

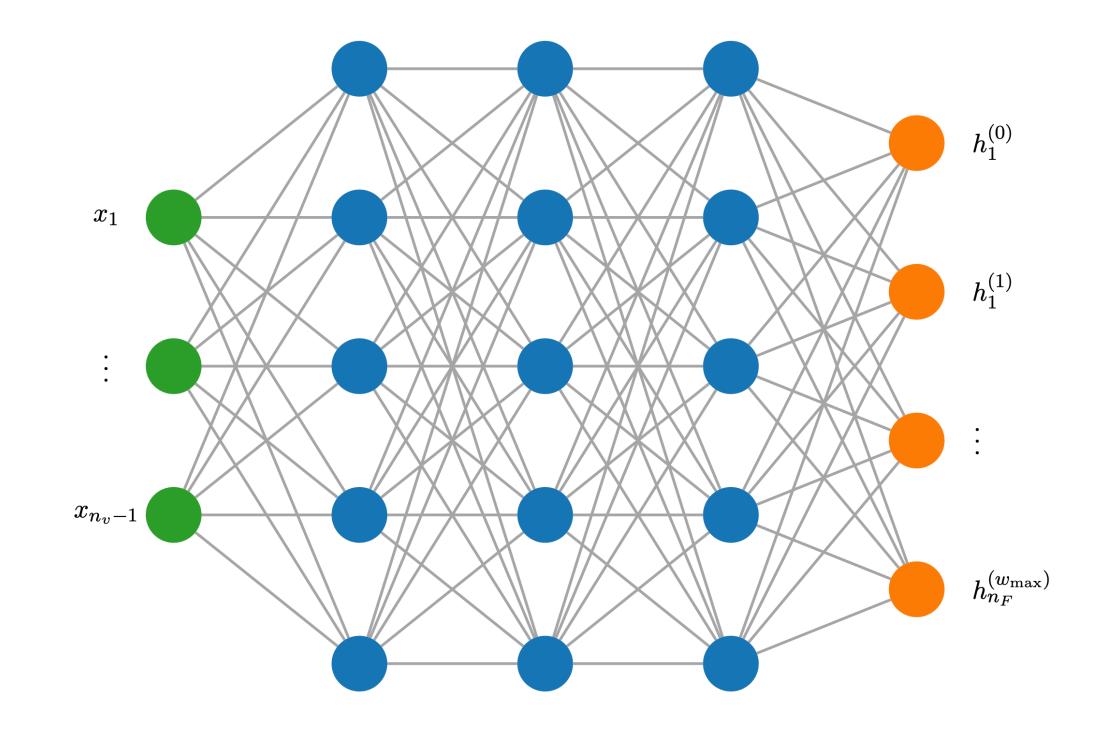
[von Manteuffel, Tancredi 2017]

Full computation only recently, using generalised power series expansions (DiffExp) [Becchetti, Bonciani, Cieri, Coro, Ripani 2023]

Mls stripped of square roots
$$\longrightarrow A_{v_i}(\vec{v};\epsilon) = \sum_{k=0}^{2} \epsilon^k A_{v_i}^{(k)}(\vec{v})$$

Heavy crossed box: architecture

2 input variables (fix $m^2 = 1$)



3 hidden layers, 256 neurons each

MIs (Re or Im)

36 x 5 = 180 outputs

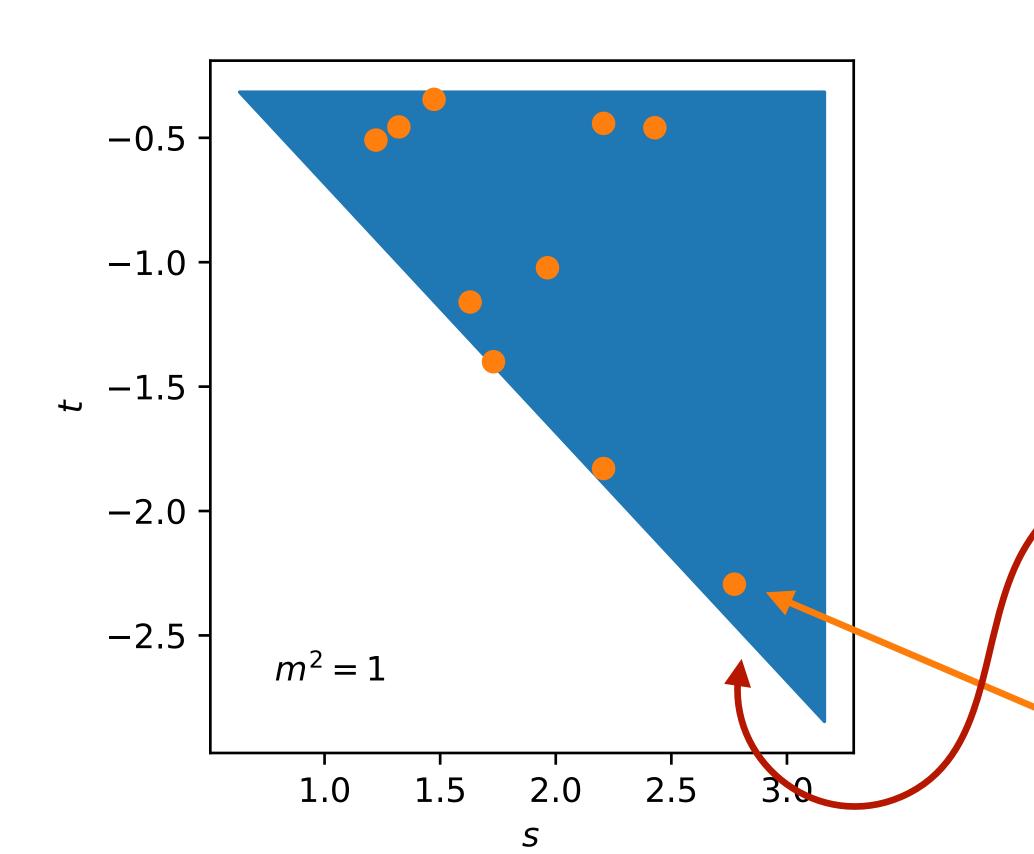
$$\epsilon$$
 orders

 $\vec{F}(\vec{v}; \epsilon) = \frac{1}{\epsilon^4} \sum_{w=0}^4 \epsilon^w \, \vec{F}^{(w)}(\vec{v})$

Heavy crossed box: kinematic region

s channel:
$$s > -t > 0 \land m^2 > 0$$
 analyticity domain, so analytic

Never leave the chosen domain of analyticity domain, so analytic continuation is not required



We choose
$$s < \sqrt{10}$$

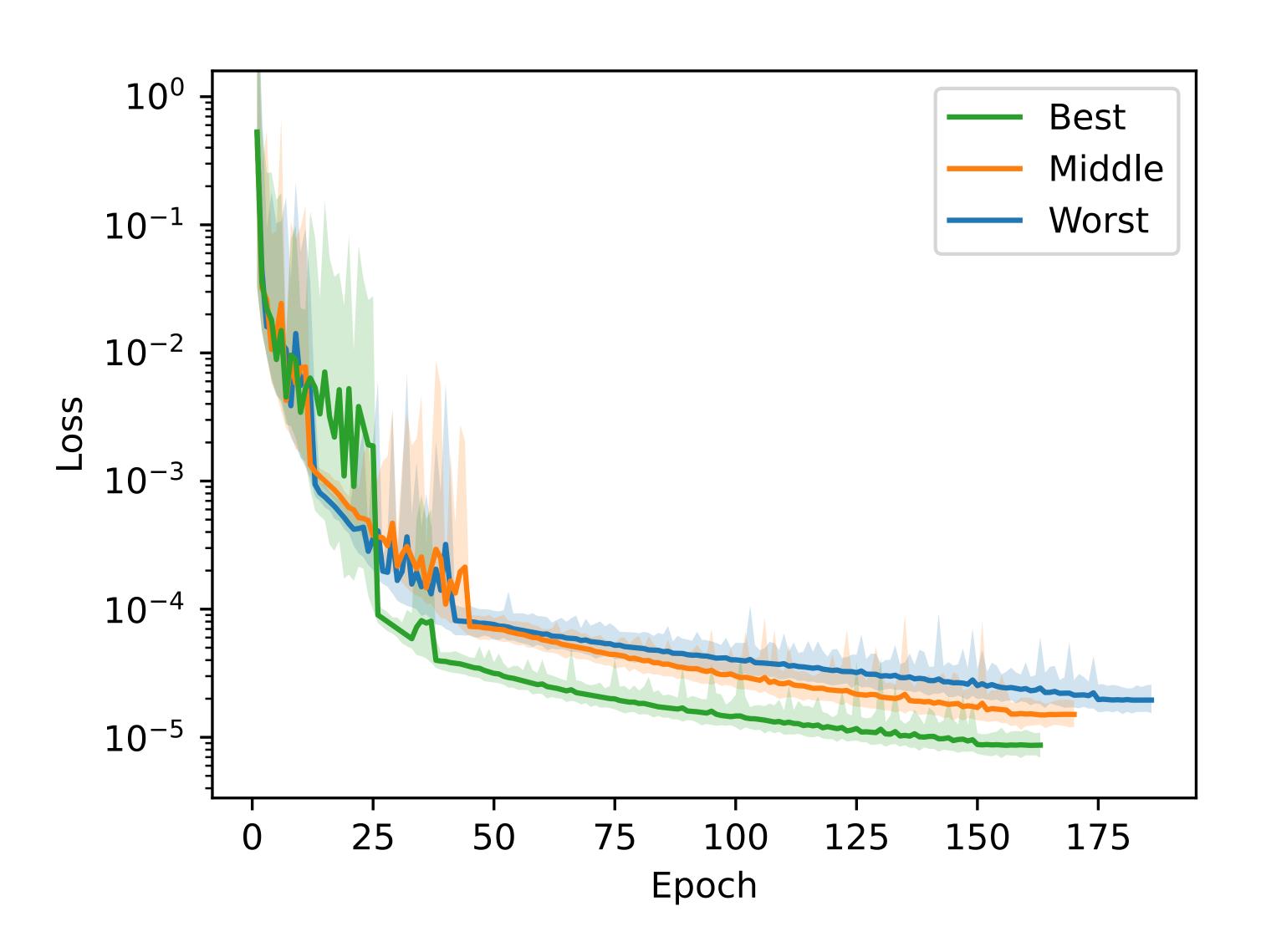
Singularities of the solution

Cut near boundaries:

10% of largest value ($\sqrt{10}$)

Boundary values at 10 random points, obtained with AMFlow [Liu, Ma 2022]

Heavy crossed box: training



Ensemble of 10 NNs

Iterations: 7.9×10^4

Time to train 1 NN: 75 min (on a good laptop, GPU)

Use training metric for validation, as inputs for DE loss function are dynamically random sampled

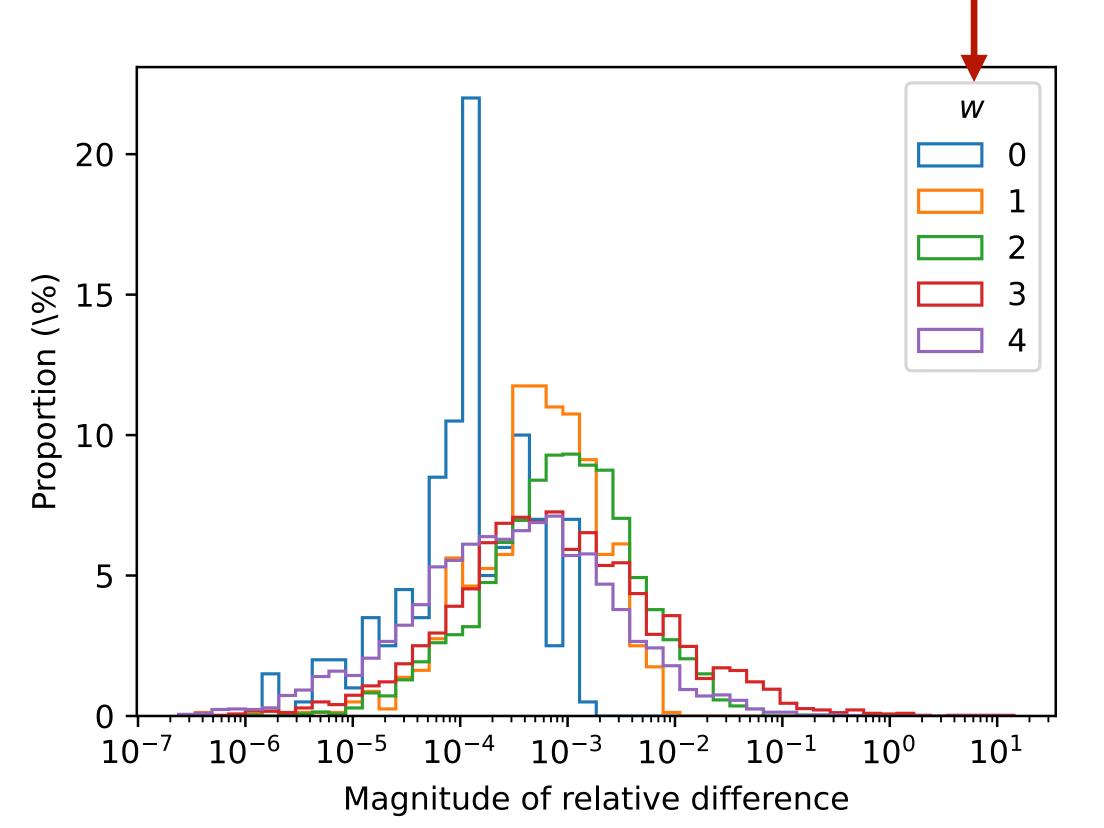
Heavy crossed box: model performance

Comparison against testing dataset of 100 points (AMFlow)

Mean absolute difference: 1.6×10^{-3}

Mean magnitude of rel. diff.: 7.3×10^{-3}

Evaluation time $\sim 1-10 \ \mu s$

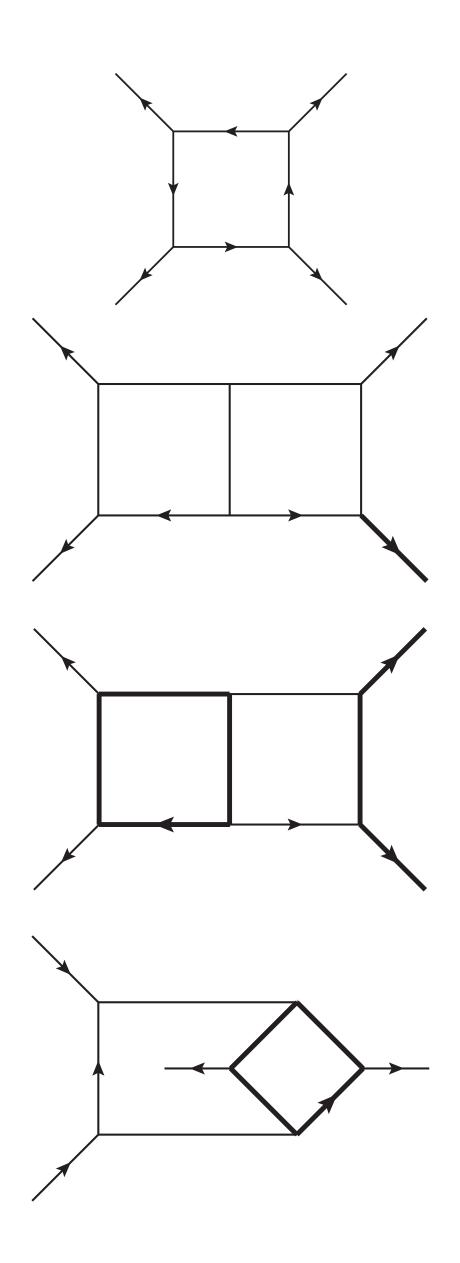


 ϵ orders

Flatness of the performance with respect to

- ullet Analytic complexity (ϵ orders, MI) within the same family
- Across different families

Instantaneous evaluation times 😜



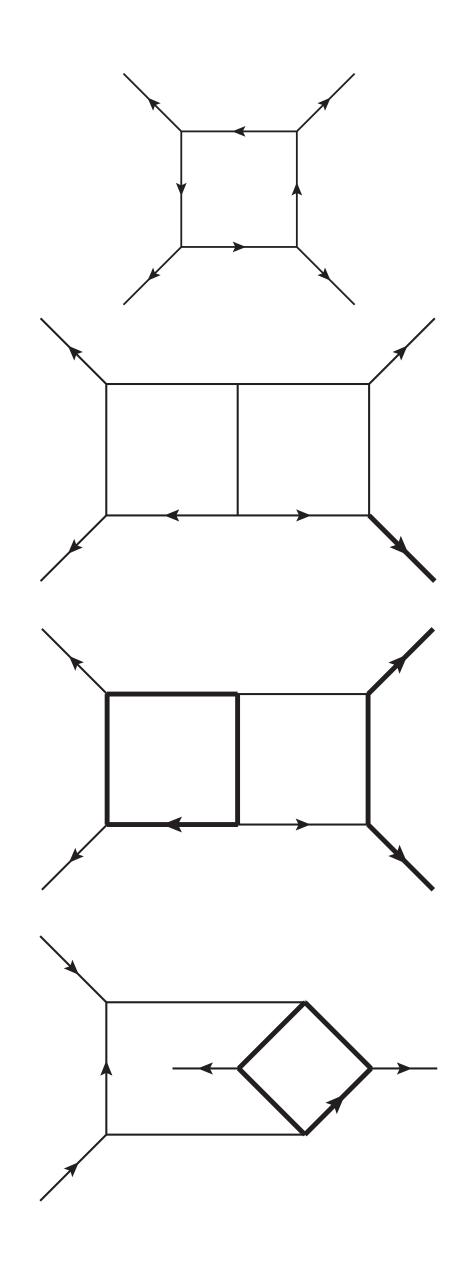
Flatness of the performance with respect to

- ullet Analytic complexity (ϵ orders, MI) within the same family
- Across different families

Instantaneous evaluation times 👼

As of now, low control over accuracy 22

We can estimate it (ensemble uncertainty, differential error...), but unclear how to increase it arbitrarily



Flatness of the performance with respect to

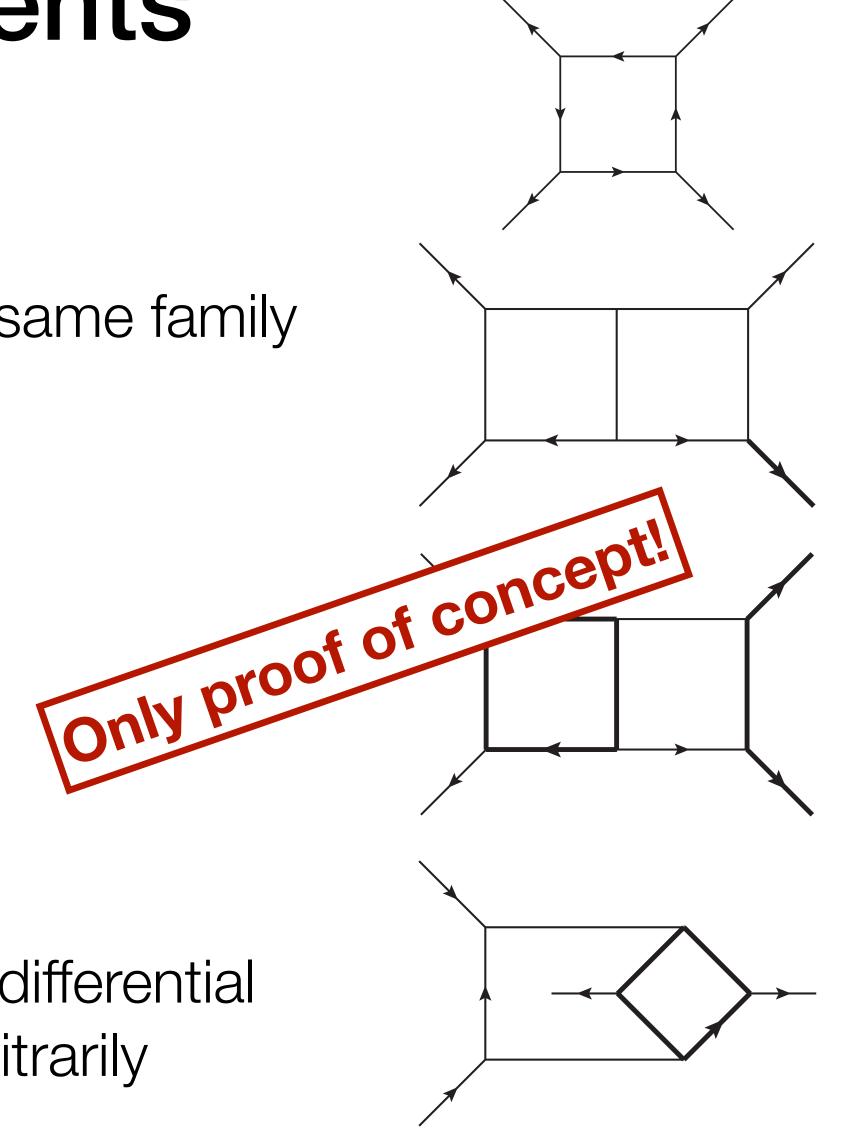
ullet Analytic complexity (ϵ orders, MI) within the same family

Across different families

Instantaneous evaluation times 🤯

As of now, low control over accuracy (2)

We can estimate it (ensemble uncertainty, differential error...), but unclear how to increase it arbitrarily



Flatness of the performance with respect to

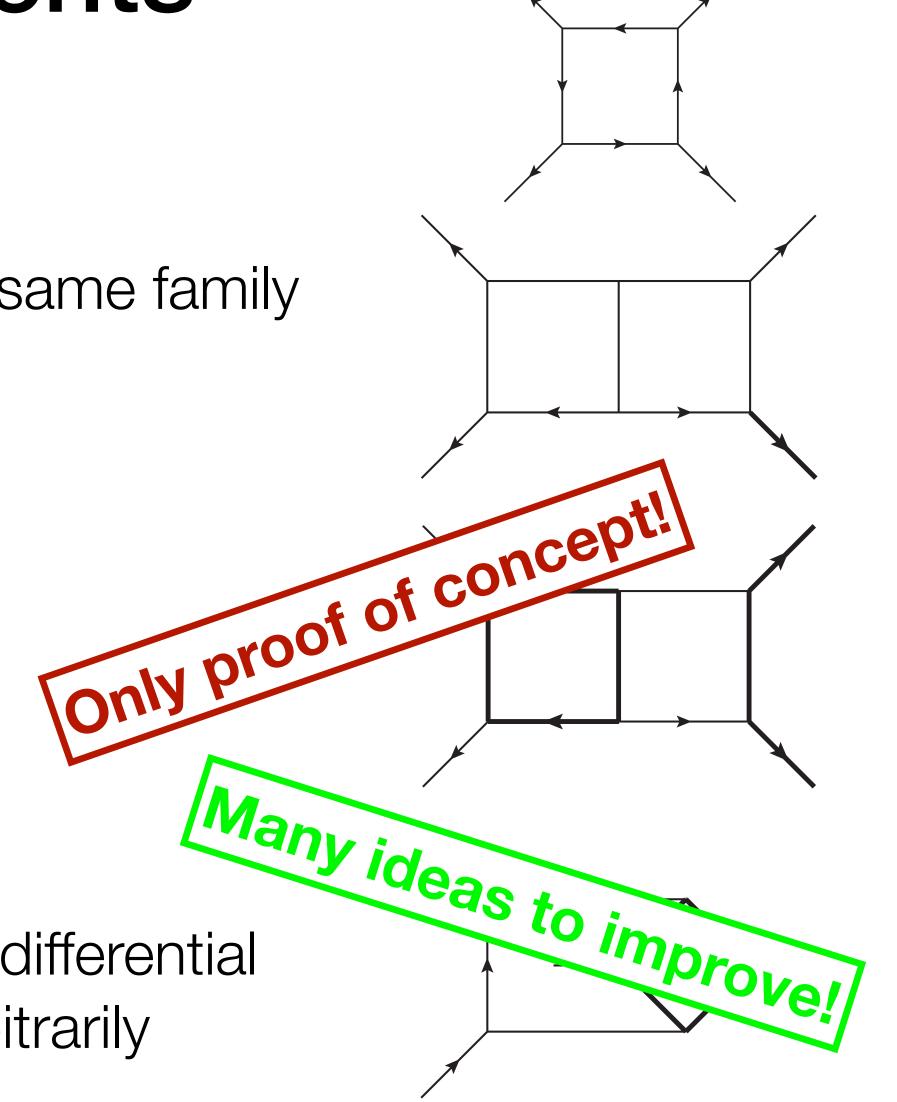
ullet Analytic complexity (ϵ orders, MI) within the same family

Across different families

Instantaneous evaluation times 🤯

As of now, low control over accuracy (2)

We can estimate it (ensemble uncertainty, differential error...), but unclear how to increase it arbitrarily



Conclusion

New method to evaluate numerically Feynman integrals satisfying generic DEs using physics informed deep learning

Proof-of-concept implementation can reach 1% accuracy in cutting-edge 2-loop examples

Much room for improvement!

Francesco Calisto, Ryan Moodie, SZ (arXiv:2312.02067)

Conclusion

New method to evaluate numerically Feynman integrals satisfying generic DEs using physics informed deep learning

Proof-of-concept implementation can reach 1% accuracy in cutting-edge 2-loop examples

Much room for improvement!

Francesco Calisto, Ryan Moodie, SZ (arXiv:2312.02067)

Solution made simple by the canonical form

[Henn 2013]

Choose MIs such that the DEs take the canonical form

$$\overrightarrow{dF}(s;\epsilon) = \epsilon \ d\widetilde{A}(s) \cdot \overrightarrow{F}(s;\epsilon)$$

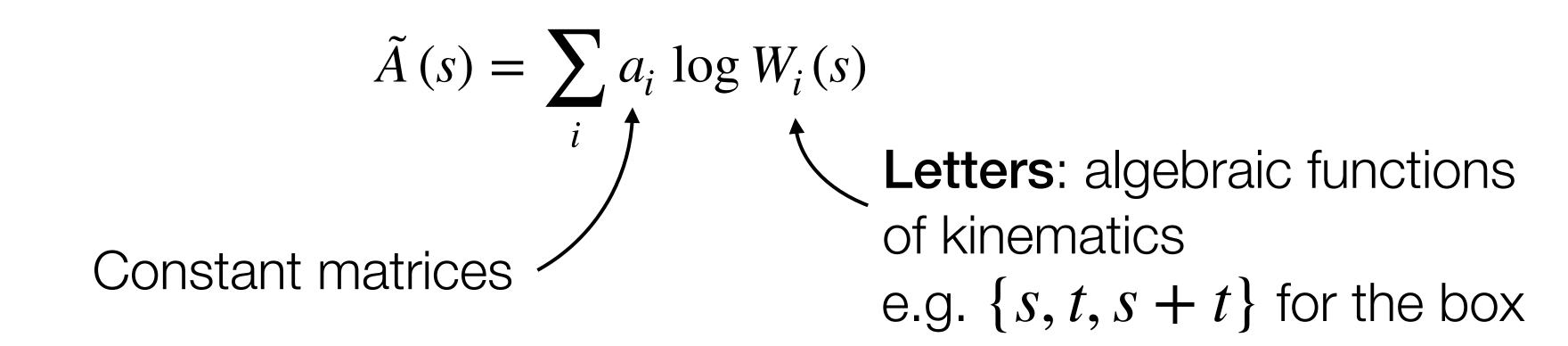
Solution made simple by the canonical form

[Henn 2013]

Choose MIs such that the DEs take the canonical form

$$\overrightarrow{dF}(s;\epsilon) = \epsilon \ d\widetilde{A}(s) \cdot \overrightarrow{F}(s;\epsilon)$$

In the best understood cases (= most of the integrals computed so far):



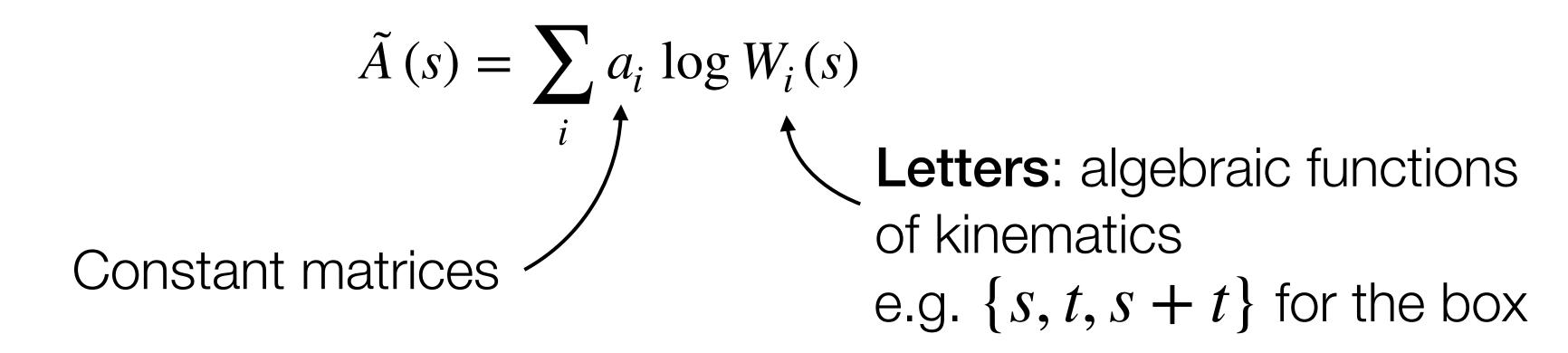
Solution made simple by the canonical form

[Henn 2013]

Choose MIs such that the DEs take the canonical form

$$\overrightarrow{dF}(s;\epsilon) = \epsilon \ d\widetilde{A}(s) \cdot \overrightarrow{F}(s;\epsilon)$$

In the best understood cases (= most of the integrals computed so far):



Best-case scenario!

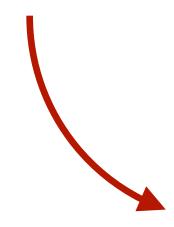
Proof-of-concept implementation

PyTorch

GELU activation function (nonzero and continuous 2nd-order derivatives)

Train with stochastic gradient descent (Adam optimiser)

Mini-batch training: iterations organised into epochs composed of small batches, taking a dynamic random sample of the inputs for each batch



- No need for regularisation to avoid overfitting
- Validation can be done on the training dataset

Loss function

$$L_{\text{DE}}(D_{\text{DE}}, \theta) = \frac{\sum_{\vec{x}^{(i)} \in D_{\text{DE}}} \sum_{j=1}^{n_F} \sum_{l=1}^{n_v - 1} \sum_{w=0}^{w_{\text{max}}} \left[\partial_{x_l} h_j^{(w)}(\vec{x}^{(i)}; \theta) - \sum_{k=0}^{\min(w, k_{\text{max}})} \sum_{r=1}^{n_F} A_{x_l, jr}^{(k)}(\vec{x}^{(i)}) h_r^{(w-k)}(\vec{x}^{(i)}; \theta) \right]^2}$$

$$L_{\rm b}({\rm D_b},\theta) = \sum_{\vec{x}^{(i)} \in {\rm D_b}} \sum_{j=1}^{n_F} \sum_{w=0}^{w_{\rm max}} \left[h_j^{(w)} (\vec{x}^{(i)};\theta) - g_j^{(w)} (\vec{x}^{(i)}) \right]^2$$

Integral family	box	one-mass double box	heavy crossed box	top double box
Inputs	1	2	2	2
Hidden layers	3×32	3 imes 256	3×256	4×128
Outputs	15	90	180	99
Learning rate	10^{-2}	10^{-3}	10^{-3}	10^{-3}
Batch size	64	256	256	256
Boundary points	2	6	10	20
c_{n_v}	s = 10	$s_{12}=2.5$	$m^2 = 1$	$m_{ m t}^2 = 1$
Scale bound			$s \le \sqrt{10}$	$s_{12} \le 5$
Physical cut (%)	10	10	10	10
Spurious cut (%)	0	0	0	1

Summary of hyperparameters

Integral family	Final loss	Iterations	Time (minutes)
box	2.7×10^{-7}	$2.5 imes 10^5$	16
one-mass double box	3.4×10^{-4}	1.1×10^5	53
heavy crossed box	1.4×10^{-5}	$7.9 imes 10^4$	75
top double box	7.1×10^{-4}	5.2×10^4	32

Training statistics

Integral family	MEU	MDE	MAD	MMRD	MLR	Size
box	2.8×10^{-5}	3.6×10^{-4}	2.9×10^{-5}	2.2×10^{-5}	3.9×10^{-7}	10^{5}
one-mass DB	8.1×10^{-4}	1.1×10^{-2}	2.0×10^{-3}	1.1×10^{-2}	-2.8×10^{-4}	10^{5}
heavy CB	2.8×10^{-4}	2.8×10^{-3}	1.6×10^{-3}	$7.3 imes 10^{-3}$	-4.5×10^{-4}	10^{2}
top DB	1.9×10^{-4}	1.7×10^{-3}	9.0×10^{-4}	3.9×10^{-3}	1.8×10^{-4}	10^{2}

Uncertainty and testing errors