Learning Feynman integrals from
differential equations with neural networks

Simone Zoia

Francesco Calisto, Ryan Moodie, SZ (arXiv:2312.02067)

Milan Christmas Meeting, 20t Dec 2023

w

https://arxiv.org/abs/2312.02067

We need to evaluate Feynman integrals

P2 P3

J dPk 1
Y A p—
i7P’2 k2 (k + py)? (kK + py + py)? (k + py + py + p3)?

P4

Yy

P1

Essential iIngredients of perturbative computations — particle phenomenology
Also: gravitational waves, cosmology, statistical mechanics, mathematics...

Many technigues developed over many years, yet they remain a bottleneck

Integrating by differentiating

[Barucchi, Ponzano '73; Kotikov °91; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000; Henn 2013]

View Feynman integrals as solutions to PDES

a — —
F(s;e) =A; (s;¢)- F (s;5¢)
0S12 12

Most powertul tool for analytic computation of Feynman integrals
Neat connection with study of special functions

Growing interest for numerical solution

Method of differential equations

a —> —>
F(s;e) =A; (s;¢)- F (s;5¢)
aslz 12

Integral families and master integrals

Scalar

P2

P1

-eynman integrals with the same propagator structure = integral family
d’k 1 = k?
§ p3 Ic_i(s’ t: 6) — I — - Dl k
17~ DDy D, = (k +p1)2

Dy = (k+p; + p,)°
P4 {Iis. ;) |Vd € Z*} D = (k- py)°

Y

Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family

d’k 1 = k?
p2) Py I (s,1;€) = I . D, =k
izP/2 Dfl...Df“ D, = (k _|_p1)2
D3 = (k +p1 +p2)2
2 i P4 {I(s,1;¢)|Vd € Z*} D, = (k —)

[dentities among the 1>’

00 W Ve
P T T\

e.g. Integration-By-Parts relations
[Chetyrkin, Tkachov ’81; Laporta 2000]

Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family

D
D9) D3 I—>(S " 6) _ I d“k 1 Dl = k2
17zD/2 Dfl...Df“ D, = (k _|_p1)2
D3 = (k + D +p2)2
> . - 4
D1 L P4 {Ic_i(s’ t; €) ‘ Vae”/ } D4 = (k _p4)2
dentities among the 17's Finite-dimensional basis:
3-D master integrals F (s, ¢
N w) N aster integrals F (s, 7; €)
p U pz U P2 ps
e.g. Integration-By-Parts relations >O< >Q<
[Chetyrkin, Tkachov '81; Laporta 2000] b e SR

Integrating by differentiating

[Barucchi, Ponzano ’73; Kotikov ’91; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000]

0 ? . B I | 0 0 0
(s5€) = Z Cala BP reduction 9g, 0= o ¢ o
Os F(s,t;€) S
12 C_Z) 88 2(26—1) 2(1—26) s+t+et
N st(s+t) s2?(s+t) s(s+t)
= AS12 (s;¢)- F (s;¢€)
p2 5 p3
] _> '
= System of 1st order linear PDEs for the Mis F o L,
1 k 4

How do we solve it? F(s;e) = Z e F W(s)

szmin

) .

il

(s,t;5€)

Analytic solution not always feasible

y
Choose Mls such that DEs take canonical form [Henn 2013]

No general algorithm!
Best understood cases: solution in terms of multiple polylogarithms &

More complicated classes of functions do appear (e.qg. elliptic MPLSs)

k> Mathematical technology much less mature @@ G. Fontana’s talk

7

Growing interest for semi-numerical solution based on series expansions
DiffExp [Hidding 2020], SeaSyde [Armadillo et al. 2022], AMFlow [Ma, Liu 2022] [Moriello 2079]

& Very flexible (canonical form not required) & Long evaluation times

Physics-informed deep learning

Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]

Typical problem: approximate function f(x) from large dataset of values f(x;)

Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]

Typical problem: approximate function f(x) from large dataset of values f(x;)

Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]

Typical problem: approximate function f(x) from large dataset of values f(x;)

X

/

Input layer

Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]

Typical problem: approximate function f(x) from large dataset of values f(x;)

X h(x; 0) “Surrogate function”

/" 1

Input layer Output layer

Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]
Typical problem: approximate function f(x) from large dataset of values f(x;)

Activation function

X h(x; 0) “Surrogate function”
/ 1
Input layer L Y Output layer

Hidden layers

Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]

Typical problem: approximate function f(x) from large dataset of values f(x;)

Activation function

h(x; 0) “Surrogate function”

Input layer

/ "\ Va Output layer

Weights € Hidden layers

Neural networks are universal function approximators

[Hornik, Stinchcombe, White '89]

Typical problem: approximate function f(x) from large dataset of values f(x;)

Activation function

h(x; 0) “Surrogate function”

Input layer

/ "\ Y Output layer

Weights € Hidden layers

Optimisation problem: find weights @ such that a loss function is minimised

1 N
L(D: 0) =~ ' [f0s) = hoz 0)]
=1

9

We don’t have a large dataset...

What we have:

® Small dataset of values (at least 1), obtained numerically in other ways

E.g. AMFlow [Liu, Ma 2022] — EXpensive evaluation, but very flexible

e Differential equations: d];(;c) = A(x) f(x)

10

Physics-informed deep learning

[Raissi, Perdikaris, Karniadakis 2017]

. ldea:; iInclude the DEs In the loss function

dh(x 0)

2
L(D;0) = Z [h(xl, o) — f(x;)] + 2 —A(x;) h(xj; «9)]

/ N

Small “boundary” dataset Infinite dimensional “DE” dataset

Derivatives of the NN computed with automatic differentiation [Griewank, Walther 2008]

Input: few boundary values + the analytic DEs

11

The canonical form of the DEs i1s nhot needed

We make mild assumptions to simplify the problem:

a_F({}; e)=A,(V;e)- F(vie) Vi=1,..n V : kinematic variables
V; l

12

The canonical form of the DEs i1s nhot needed

We make mild assumptions to simplify the problem:

a_F({}; e)=A,(V;e)- F(vie) Vi=1,..n V : kinematic variables
V; l

Separate Re/Im parts, only

1. The matrices A. (V: €) are rational function .
Vi(’) ctions = deal with real numbers

12

The canonical form of the DEs i1s nhot needed

We make mild assumptions to simplify the problem:

a_F({}; e)=A,(V;e)- F(vie) Vi=1,..n V : kinematic variables
V; l

Separate Re/Im parts, only

1. The matrices A., (v; €) are rational function |
e matrices Vi(v, ¢) are rational functions = el with real nUMbers

k

max

2. The matrices Av,(_/); €)arefinteate =0, A, (Vie)= Z e Aél.k)(?)
k=0

Wmax

= Simplifies the € expansion of the solution ~ F (¥ €) = ¢ 2 e F (%)

w=0

12

Architecture

¢\\0//‘\\{{A\\\

PyTorch

(/
: Vs algts 2 0954

VAN
Dimensionless k’/‘kﬁ%‘o{.}‘%‘i‘o{‘}&%‘é ca Re or Im part of
cinematic ; w‘ S suie 940 F o to a
variables /}é\'/; Ug&’\\'/;@@’\\ "{‘%\' - certain order in €

RGE®
Sy

;
vy

INn the examples we considered: 3/4 hidden layers, 32 —256 nodes per layer

13

Heavy crossed box

)25 3 kinematic variables, 36 Mls

Pi Subsectors involve elliptic functions

v=As=(p, +p)*, t=(p, —p3)*, m*}

Canonical DEs / analytic solution unavailable

[von Manteuffel, Tancredi 2017]

Full computation only recently, using generalised power series expansions (

DIffEXP)

[Becchetti, Bonciani, Cieri, Coro, Ripani 2023] [Hidding 2020]

(A :
Mls stripped of square roots — A, (V;€) = Z X AJV()
k=0

14

Heavy crossed box: architecture

®
-+ @ ® - Mls (Re or Im)
2 input variables y " \
fix m? = 1) @ ® 36 X 5\: 180 outputs
@ ® € orders
piame) - o o
o O © F(¥e) = gz_‘ge F()

3 hidden layers, 256 neurons each

15

Heavy crossed box: kinematic region

Never leave the chosen domain of

schannel: s > —t>0 A m*>0 —» analyticity domain, so analytic

—0.5 -

—1.0 A

—1.5 -

—2.0 A

—2.5 1

10

continuation is not required
We choose s < 4/ 10

Singularities of the solution

/

Cut near boundaries:

10 % of largest value (/ 10)

Boundary values at 10 random points,
obtained with AMFlow [Liu, Ma 2022]

Loss

Heavy crossed box: training

Best
Middle

— \\orst

25

50

75

100
Epoch

125

150

17

175

Ensemble of 10 NINs

terations: 7.9 X 10*

Time to train 1 NN: 75 min
(on a good laptop, GPU)

Use trainl
validatior
-

loss fur

random

100N
SalT]

Nng metric for
, as Inputs for DE

are dynamically
pled

Heavy crossed box: model performance

Comparison against testing dataset of 100 points (AMFlow) € orfers
Mean absolute difference: 1.6 X 107> . i v
1
Mean magnitude of rel. diff.: 7.3 X 107> 215 %
Evaluation time ~ 1 — 10 us glo'] jg]:j
5 - AH (T e

o#ﬁgz;fﬁ . %% i

10-7 107° 10— 10% 1073 1072 107! 10° 10!
Magnitude of relative difference

18

General comments

Flatness of the performance with respect to

e Analytic complexity (€ orders, Ml) within the same family

® Across different families

Instantaneous evaluation times &3

19

General comments

Flatness of the performance with respect to

e Analytic complexity (€ orders, Ml) within the same family

® Across different families
Instantaneous evaluation times &3

As of now, low control over accuracy &

C We can estimate it (ensemble uncertainty, differential
error...), but unclear how to increase it arbitrarily

19

General comments

Flatness of the performance with respect to

e Analytic complexity (€ orders, Ml) within the same family

® Across different families

Instantaneous evaluation times &&

As of now, low control over accuracy &

C We can estimate it (ensemble uncertainty, differential \ {}

error...), but unclear how to increase it arbitrarily

19

General comments

Flatness of the performance with respect to

e Analytic complexity (€ orders, Ml) within the same family

® Across different families

Instantaneous evaluation times &

As of now, low control over accuracy &

C We can estimate it (ensemble uncertainty, differential T :
error...), but unclear how to increase it arbitrarily Y AV

19

Conclusion

New method to evaluate numerically Feynman integrals satistying generic
DEs using physics informed deep learning

Proof-of-concept implementation can reach 1% accuracy in cutting-edge
2-loop examples

Much room for improvement!

Francesco Calisto, Ryan Moodie, SZ
(arXiv:2312.02067)

20

https://arxiv.org/abs/2312.02067

Conclusion

New method to evaluate numerically Feynman integrals satistying generic
DEs using physics informed deep learning

Proof-of-concept implementation can reach 1% accuracy in cutting-edge
2-loop examples

Much room for improvement!

Francesco Calisto, Ryan Moodie, SZ
(arXiv:2312.02067)

%@m /

20

https://arxiv.org/abs/2312.02067

Solution made simple by the canonical form

[Henn 2013]
Choose MIs such that the DEs take the canonical form

22

Solution made simple by the canonical form

[Henn 2013]
Choose MIs such that the DEs take the canonical form

In the best understood cases (= most of the integrals computed so far):

A(s)=) a;log W(s)

| \ Letters: algebraic functions
. of kinematics
Constant matrices

e.g. {s,t, 5+ t} for the box

22

Solution made simple by the canonical form

[Henn 2013]
Choose MIs such that the DEs take the canonical form

dF (s:e) = e dA(s)- F (s:€)

In the best understood cases (= most of the integrals computed so far):

A(s)=) a;log W(s)

| \ Letters: algebraic functions
. of kinematics
Constant matrices

e.g. {s,t, 5+ t} for the box

Best-case scenario! &3

22

Proof-of-concept implementation

Py forch

GELU activation function (nonzero and continuous 2nd-order derivatives)
Train with stochastic gradient descent (Adam optimiser)

Mini-batch training: iterations organised into epochs composed of small batches,
taking a dynamic random sample of the inputs for each batch

\ e No need for regularisation to avoid overfitting
® \/alidation can be done on the training dataset

23

Loss function

Lpe(DpE, 0) =

NE Moy— -
F Moy —lWmax min(w,kmax) ng

3183 95 ol NS CEU RIS Sl o NCU IR

7 eDpg J=1 =1 w=0 L

NEF Wmax

Do) = S 3% _h§w) (#9;6) — g (a—;'(i)):

7(#) eDy, J=1 w=0

Integral family
Inputs
Hidden layers
Outputs
Learning rate
Batch size
Boundary points

Cn,

Scale bound
Physical cut (%)
Spurious cut (%)

box one-mass double box

heavy crossed box

Summary of hyperparameters

top double box

2
4 x 128
99
10~
256
20
m? =
S12 < O
10

1

Integral family Final loss Iterations Time (minutes)

box 2.7x 107" 2.5 x 10° 16

one-mass double box 3.4 x 107% 1.1 x 10° 03

heavy crossed box 1.4 x 1072 7.9 x 104 75

top double box 7.1%x107* 5.2 x 10 32

Training statistics
Integral family MEU MDE MAD MMRD MLR Size
box 2.8x107° 36x107% 29x10™° 22x10° 39x10~" 10°
oneemass DB 8.1x107% 1.1x1072 20x107% 1.1x107%2 —-28x10"% 10°
heavy CB 2.8x107% 28x107% 16x10™° 73x107° —45x107* 10?
top DB 1.9x107* 1.7x107% 9.0x10* 39x10° 1.8x10* 107
Uncertainty and testing errors

