Towards efficient N3LO predictions: Power Corrections for 0-jettiness Subtractions at N3LO

Gherardo Vita

Milan Christmas Meeting - UNIMI, 21 December 2023 Based on:

> "N3LO Power Corrections for 0-jettiness Subtractions With Fiducial Cuts"

[to appear]

GV

Testing the SM at Percent Level Accuracy

Astonishing level of precision in experimental measurements of $\rightarrow \gamma \gamma, \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}, m_{\mu} = 125.09 \text{ GeV}$ ATLAS Preliminary ^{_p}_{90.8} γα key benchmark processes. uminosit Higgs measurements Correction factor Signal extraction Example: normalized differential distributions in Drell-Yan 0.6 at the moment are 0.5 measured with few per-mille level accuracy 0.4 limited by statistics 0.3 ATLAS [pb/GeV] lyl < 0.4 (x 10⁹) 0.2 ATLAS Preliminary √s=13 TeV, 36.1 fb 10² 0.4 < |v| < 0.8 (x 10⁻¹) Z/y*→ee (normalized ▲ 0.8 < lyl < 1.2 (× 10⁻²) 10 do/dp 1.2 < |y| < 1.6 (x 10⁻⁹) Statistical Upr ○ 1.6 < |y| < 2.0 (x 10⁻⁶) Lepton Efficiencie 2.0 < IVI < 2.4 (x 10⁻⁶ 50 100 1/0 ∧ 2.4 < |y| < 2.8 (× 10⁶) Model Und 2.8 < |y| < 3.6 (x 10⁻⁷) stat. ⊕ sys ...but statistics will improve dramatically with HL LHC... - Total Uncertainty 0.8 ATLAS 0.6 Collaboration 10-10-10⁻⁹ g10 $pp \rightarrow Z$ 10-1 8 TeV, 20.2 fb 10 15 20 25 30 100 300 900 5 ATLAS Preliminary ATLAS Preliminary p [GeV] 10 Projection from Run 2 data Projection from Run 2 data ÷ ÷ 10 10³ vs=14TeV, 3000 fb⁻¹ p_ [GeV] $\sqrt{s}=14$ TeV, 3000 fb⁻¹ H $\rightarrow \gamma \gamma \gamma + H \rightarrow ZZ \rightarrow 4I$ $H \rightarrow \gamma \gamma + H \rightarrow ZZ \rightarrow 4I$ CIVID 35.9 m (13 lev) 35.9 fb⁻¹ (13 TeV) CMS 2 Ap/0.14 1/م مم/م/ (%) HL-LHC No Sys HL-LHC No Sys Total uncertainty u⁺u⁻ sample Data 👬 HL-LHC Svs. + Stat HL-LHC Svs. + Stat ····· Unfolding - aMC@NLO Uncertainty in $1/\sigma \ d\sigma/dy^Z$ $\rightarrow \mu^+\mu^-$, e⁺e⁻ Momentum resolution - POWHEG Background Ratio - FEWZ 3 Identification & trigger 0 10 350 1000 p^H [GeV] ----- Reconstruction 20 30 80 120 200 --- Statistical 0.08 Total ATLAS and CMS 2 With percent level - Statistical **CMS** Collaboration HL-LHC Projection - Experimental 0.06 - Theory [1909.04133] measurement of Higgs |η| < 2.4, p_ > 25 GeV 0.04 σ_{gg} distributions, theory errors 0.02 σ_{VBF} are projected to be a major owH . 0.0 0.5 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 1.0 limiting factor for Higgs σ_{ZH}

precision program

...and plethora of very precise differential distributions from LEP, future EIC measurements, possible future colliders, etc...

0.02

0.06 0.08 Uncertainty [%]

Tot Stat Exp Th

1.6 0.7 0.8 1.2

3.1 1.8 1.3 2.1

5.7 3.3 2.4 4.0

4.2 2.6 1.3 3.1

43 13 18 33

0.12 0.14

 p_{τ}^{300} [GeV]

Standard Model Phenomenology at percent level

We should aim at comparable precision from the theory side!

$$\hat{\sigma}_{ab\to X} = \underbrace{\sigma_0}_{\text{LO}} + \underbrace{\alpha_s \sigma_1}_{\text{NLO}} + \underbrace{\alpha_s^2 \sigma_2}_{\text{NNLO}} + \underbrace{\alpha_s^3 \sigma_3}_{\text{N^3LO}} + \dots$$

N3LO corrections (or at least good estimates of them) will be **necessary for percent level** phenomenology

> *"The Path Forward to N3LO"* Snowmass Whitepaper [Caola, Chen, Duhr, Liu, Mistlberger, Petriello, GV, Weinzierl]

CAVEAT!

Often times convergence turns out to be slower than naive estimate

=> N3L0 gives few <u>percent</u> (not per-mille) shift

	Q [GeV]	$\delta \sigma^{\rm N^3LO}$	$\delta\sigma^{\rm NNLO}$
$gg \rightarrow \text{Higgs}$	m_H	3.5%	30%
$b\bar{b} \rightarrow \text{Higgs}$	m_H	-2.3%	2.1%
NCDY	30	-4.8%	-0.34%
	100	-2.1%	-2.3%
$\operatorname{CCDY}(W^+)$	30	-4.7%	-0.1%
	150	-2.0%	-0.1%
$\operatorname{CCDY}(W^{-})$	30	-5.0%	-0.1%
	150	-2.1%	-0.6%

n3loxs [Baglio, Duhr, Mistlberger, Szafron '22]

Predictions for Differential Cross Sections at higher order

• Cross sections require integration over phase space

$$\sigma = f_1 \circ f_2 \circ \int d\Phi |M|^2$$

- Complexity of infrared singularities grows with loop order
- Extremely challenging to systematize their treatment order by order
- Use EFT methods to systematize study of collinear and soft radiation at the cross section level
- Used to derived first results at N3LO using q_T subtraction

Precision Standard Model Phenomenology at N3LO

- N3L0 TMDPDF were last missing ingredient for q_{τ} slicing at N3L0
- Enabled N3LO predictions for differential and fiducial Drell-Yan and Higgs production

Precision Standard Model Phenomenology at N3LO

- \bullet N3L0 TMDPDF were last missing ingredient for $q_{\rm T}$ slicing at N3L0
- Enabled N3LO predictions for differential and fiducial Drell-Yan and Higgs production

However...

- Numerical (slicing) error of these methods very difficult to control at this order
- Extreme push of NNLO+j predictions well into the IR needed (NNLOjet pushed to $q_T = 0.5 \text{ GeV}$)
- Calculations take O(10 million) CPU hours
- Almost any change will require to run everything from scratch
- Other results use O(100k) CPU hours and stop at 5 GeV ... this requires wild extrapolation to 0 to obtain finite results.
- Going forward, these facts pose issues for the practical usability of these predictions 6

In short, starting to think about how to move from

making N3LO predictions possible,

to

making N3LO predictions (more) efficient, stable, and usable

(at least for some color singlet processes...which may also turn out to be a necessary stepping

stone to make other processes possible at N3LO)

Differential color singlet production at N3LO

• To do this, let's start by looking at how to get N3LO predictions for color singlet

N3LO in full kinematics)

• **Cons:** numerically challenging

Differential color singlet production at N3LO

• To do this, let's start by looking at how to get N3LO predictions for color singlet

Improving non-local subtraction methods: General Setup

$$\sigma = \int_{0}^{\tau_{\rm cut}} \mathrm{d}\tau \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} + \int_{\tau_{\rm cut}}^{\tau_{\rm max}} \mathrm{d}\tau \frac{\mathrm{d}\sigma}{\mathrm{d}\tau}$$
$$= \int_{0}^{\tau_{\rm cut}} \mathrm{d}\tau \left[\frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}\tau} + \sum_{i>0} \frac{\mathrm{d}\sigma^{(i)}}{\mathrm{d}\tau} \right] + \int_{\tau_{\rm cut}}^{\tau_{\rm max}} \mathrm{d}\tau \frac{\mathrm{d}\sigma}{\mathrm{d}\tau}$$
$$= \sigma_{\rm sub}(\tau_{\rm cut}) + \Delta\sigma(\tau_{\rm cut}) + \int_{\tau_{\rm cut}}^{\tau_{\rm max}} \mathrm{d}\tau \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} .$$

Below the cut region:

- Singular distribution
- Contains most complicated cancellation of IR div.
- Control it analytically via factorization theorems

$$\sigma_{\rm sub}(\tau_{\rm cut}) = \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \frac{\mathrm{d}\sigma^{\rm sub}}{\mathrm{d}\tau},$$

Above the cut result

- Resolved extra radiation
- No events in Born configuration
- Lower number of loops
- Calculate numerically with lower order subtraction schemes

Residual/slicing error:

- Non singular terms from below the cut
- Reducing this requires pushing cut parameter to very small values
- Can be improved analytically by calculation next to leading power distribution

$$\Delta \sigma(\tau_{\rm cut}) = \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} - \frac{\mathrm{d}\sigma^{\rm sub}}{\mathrm{d}\tau}\right]$$

$$\Delta \sigma(\tau_{\rm cut}) = \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} - \frac{\mathrm{d}\sigma^{\rm sub}}{\mathrm{d}\tau} \right]$$

- At N3LO power corrections start with **5th power of log**
- Taking τ_{cut} small reduces single power, but increases size of log => very slow convergence
- Each order in the log equivalent to \sim a 50 fold reduction in $\tau_{\rm cut}$

 $au_{ ext{cut}}$

$$\Delta \sigma^{N3LO}(\tau_{\rm cut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left(c_{3,5}^{\rm NLP} \ln^5 \tau + c_{3,4}^{\rm NLP} \ln^4 \tau + c_{3,3}^{\rm NLP} \ln^3 \tau + \dots\right)_{1}$$

A word on linear vs quadratic power corrections

0-jettiness:
$$\Delta \sigma^{N3LO}(\tau_{\rm cut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left(c_{3,5}^{\rm NLP} \ln^5 \tau + c_{3,4}^{\rm NLP} \ln^4 \tau + c_{3,3}^{\rm NLP} \ln^3 \tau + \dots\right)$$

 $q_T: \Delta \sigma^{N3LO}(q_{Tcut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{q_{Tcut}^2/Q^2} \mathrm{d}r \left(d_{3,5}^{\rm NLP} \ln^5 r + d_{3,4}^{\rm NLP} \ln^4 r + d_{3,3}^{\rm NLP} \ln^3 r + \dots\right)^{-1}$

- Scaling in q_T of the slicing param. may lead to the impression that q_T subtraction has *quadratic* power corrections, while jettiness has *linear* power corrections.
- But it all comes down to how one decides to treat the angle dependence

$$\tau = \frac{q_T}{Q} e^{-|Y|} \sim \begin{cases} \frac{q_T}{Q} \\ \frac{q_T}{Q^2} \end{cases}$$

soft emissions

collinear emissions

• In practice, key point is what is more challenging numerically for the above the cut code:

 \circ 0-jettiness: better suppression of collinear emissions $\circ q_{\pi}$: better suppression of wide angle soft emissions

Note: fiducial p.c. generating *linear* terms in q_T , go as $\sqrt{\tau_{cut}}$ in the case of 0-jettiness

$$\Delta \sigma(\tau_{\rm cut}) = \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} - \frac{\mathrm{d}\sigma^{\rm sub}}{\mathrm{d}\tau} \right]$$

- At N3LO power corrections start with **5th power of log**
- Taking τ_{cut} small reduces single power, but increases size of log => very slow convergence
- Each order in the log equivalent to \sim a 50 fold reduction in $\tau_{\rm cut}$

$$au_{
m cut}$$

$$\Delta \sigma^{N3LO}(\tau_{\rm cut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left(c_{3,5}^{\rm NLP} \ln^5 \tau + c_{3,4}^{\rm NLP} \ln^4 \tau + c_{3,3}^{\rm NLP} \ln^3 \tau + \dots\right)$$

Improving non-local subtraction methods: Power corrections

0-Jettiness Power Corrections at N3LO

$$\Delta \sigma^{N3LO}(\tau_{\rm cut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left(c_{3,5}^{\rm NLP} \ln^5 \tau\right) + c_{3,4}^{\rm NLP} \ln^4 \tau + c_{3,3}^{\rm NLP} \ln^3 \tau + \dots\right)$$

- For O-jettiness, use consistency relations to relate full LL to RVV correction in collinear limit. [Moult, Rothen, Stewart, Tackmann, Zhu '16] [Moult, Stewart, GV, Zhu '19]
- Focus on Drell-Yan and Higgs production. Single collinear emission fully differential in rapidity:

$$\frac{\mathrm{d}\sigma_{n}^{\mathrm{NLP}}}{\mathrm{d}Q^{2}\mathrm{d}Y\mathrm{d}\mathcal{T}} \sim \int_{x_{a}}^{1} \frac{\mathrm{d}z_{a}}{z_{a}} \frac{(Q^{2}\tau)^{-\epsilon}}{(1-z_{a})^{\epsilon}} \left\{ \tau \underline{A^{(0)}(\tau, z_{a}, \epsilon)} \left[-f_{a}\left(\frac{x_{a}}{z_{a}}\right) f_{b}(x_{b}) + f_{a}\left(\frac{x_{a}}{z_{a}}\right) x_{b}f_{b}'(x_{b}) \right] \right\} \\ \xrightarrow{[\text{Ebert, Moult, Stewart, Tackmann, GV, Zhu '18]}} + f_{a}\left(\frac{x_{a}}{z_{a}}\right) f_{b}(x_{b}) \underline{A^{(2)}(\tau, z_{a}, \epsilon)} \\ \xrightarrow{\text{LP Phase Space}} \right\} \\ \xrightarrow{\text{LP Phase Space}} \left\{ \tau \underline{A^{(0)}(\tau, z_{a}, \epsilon)} \right\} \\ \xrightarrow{\text{LP Phase Space}} \left\{ \tau \underline{A^{(0)}(\tau, z_{a}, \epsilon)} \right\} \\ \xrightarrow{n} \\ \xrightarrow{n} \\ \xrightarrow{n} \\ \mathcal{O}^{(1)} \\ \mathcal{O}^{(1)} \\ \mathcal{O}^{(1)} \\ \mathcal{O}^{(1)} \\ \mathcal{R} \\ \overline{n} \\ \mathcal{R} \\ \mathcal{R} \\ \mathcal{O}^{(1)} \\ \mathcal{R} \\ \mathcal$$

0-Jettiness Power Corrections at N3LO: Results for DY

• By the size of LL NLP: 0-jettiness with standard setup (only LP in subtraction term) would require $\tau_{\rm cut} \sim 10^{-5}$ or even smaller.

• Off-diagonal channel has large power corrections (in line with empirical observation in q_T slicing at N3LO)

0-Jettiness P.C. at N3LO: Estimate of residual error for DY

- Leading logarithm calculated $\Delta \sigma^{N3L}$ Can remove it from error and add to analytic subtraction term
- Estimate residual slicing error removing LL NLP
- Assume same size as LL coefficient (in line with what seen at previous orders) for subleading logs and powers
- Slicing error significantly reduced. O(x50) larger cut allowed.
- May save millions of CPU hours and allow for better convergence studies

$$\begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\mathrm{cut}}} \mathrm{d}\tau \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{3,4}^{\mathrm{NLP}} \ln^4 \tau + c_{3,3}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\mathrm{cut}}} \mathrm{d}\tau \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{3,4}^{\mathrm{NLP}} \ln^4 \tau + c_{3,3}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\mathrm{cut}}} \mathrm{d}\tau \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{3,4}^{\mathrm{NLP}} \ln^4 \tau + c_{3,3}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^4 \tau + c_{3,3}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^4 \tau + c_{3,3}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{NLP}} \ln^3 \tau + \dots\right) \\ \end{array} \\ \begin{array}{c} \mathcal{L}O(\tau_{\mathrm{cut}}) \sim \left(\frac{\sigma_{\mathrm{cut}}}{2\pi} + c_{\mathrm{cut}}^{\mathrm{Cut}} + c_{\mathrm{$$

17

0-Jettiness Power Corrections at N3LO: Results for Higgs

18

 \boldsymbol{Y}

0-Jettiness P.C. at N3LO: Estimate of residual error for Higgs

- Play the same game for estimating residual slicing error after the inclusion of LL NLP in the subtraction term:
- Assume same size as LL coefficient (in line with what seen at previous orders) for subleading logs and powers
- Slicing error significantly reduced. O(x50) larger cut allowed.
- May become not so far from running time of P2B method

$$\Delta \sigma^{N3LO}(\tau_{\rm cut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left(c_{5,5}^{\rm NLP} \ln^5 \tau + c_{3,4}^{\rm NLP} \ln^4 \tau + c_{3,3}^{\rm NLP} \ln^3 \tau + \dots\right)$$

Conclusion

Size of p.c. / error (a.u.) $r_{
m cut}=10^{-3}$ \succ Discussed challenges of N3L0 $d\tau \ln^5(\tau)$ $au > r_{
m cut}$ calculations and slicing methods $d\tau \ln^4(\tau)$ $d\tau \ln^5(\tau)$ $\ln \frac{k_T}{Q}$ 10 10^{-5} 10^{-4} 10^{-3} $au_{
m cut}$ \succ Presented the calculation of the LL NLP Y term at N3LO for 0-jettiness fully $V)|/\sigma^{\rm L0}(Y)|$ 10^{-1} $pp
ightarrow \gamma^*$ (13.6 TeV $\Delta \sigma$ estimate after differential in the Born kinematics removal of LL NLP all channels N³LO ale Variation Uncertainty 2107 09085 $H_{=\bar{=}}^{\rm N3LO}(Q)$ 10^{-1} $au_{
m cut} = 10^{-3}$ \succ Illustrated impact on slicing error for 10^{-10} $T_{\rm cut} = 10$ $au_{
m cut} = 10^{\circ}$ Drell-Yan and Higgs production 10 $\mathcal{O}^{(1)}$ 2 3 20

Backup

Log behaviour at NLP NLO

[1807.10764]

Log behaviour at NLP NNLO

[1612.00450]

[1710.03227]

