

 $gg \rightarrow HZ$

 $g_a(q_a)g_b(q_b) \longrightarrow H(p_H)Z^*(p_Z)$ $Z^*(p_Z) \longrightarrow \ell^+(p_{\ell^+})\ell^-(p_{\ell^-})$

• Loop induced process of order: $\mathcal{O}(\alpha_s^2)$

Milan Christmas Meeting 2023

High gluon

luminosity

Higgsstrahulung

Higgsstrahulung

- Easy to detect (leptonic signature)
- Test for the HV coupling
- Test for the Yukawa coupling
- Test for perturbative QCD
 - Corrections for the total cross section known up to the order N3LO in the qq channel
- ► Starting from NNLO the gg → HZ channel starts contributing

Higgsstrahulung

Higgsstrahlung at NNLLO+NNLO Matched to Parton Showers in GENEVA arXiv:1909.02026v2 [hep-ph] 1 Oct 2019

Simone Alioli, Alessandro Broggio, Stefan Kallweit, Matthew A. Lim, and Luca Rottoli

Milan Christmas Meeting 2023

Ingredients for the NLO predictions

Virtual corrections:

'ZH-production at NLO in QCD'' arXiv:2204.05225v1 [hep-ph] 11 Apr 2022
 Long Chen,a,i Joshua Davies,b Gudrun Heinrich,c Stephen P. Jones,d Matthias Kerner,c,e Go Mishima,f Johannes Schlenkg and Matthias Steinhauserh

Ingredients for the NLO predictions

Real corrections:

Event generator

Physical predictions at the LHC can be obtained combining three different approaches:

FO perturbative expansion

 Resummation and parton shower

Underlying event and Hadronization

GENEVA

- Generation of IR-safe events
- Each M-partonic event shall correspond to an IR-safe N-jet event

•
$$\Phi_M \longrightarrow \Phi_N \longrightarrow \frac{d\sigma_N^{(MC)}}{d\Phi_N}$$
 IR-safe Monte Carlo Cross section

• Φ_M Gets partitioned in different regions with different numbers of resolved emissions

GENEVA – General Aspects

- **)** Resolution variable \mathcal{T}_N
 - Sensitive to the extra emission
 - ▶ IR-safe

$$\mathcal{T}_0 = \frac{2}{Q} \sum_k \min\{\hat{q_a} \cdot p_k, \hat{q_b} \cdot p_k\}$$

Phase space partition

Resummation: SCET

- Describes the propagation of the soft and collinear modes in the presence of an hard (effective) interaction
- The lagrangian is expanded in the soft and collinear limit
- The hard modes are integrated out
- Factorization at the cross section level
 - ▶ Many scales problem → Sequence of single scale problem
- Systematic resummation

Resummation: SCET

Factorization theorem

Resummation: SCET

$$\frac{d\sigma^{\text{res}}}{d\Phi_0 d\mathcal{T}_0} = \frac{d\sigma^{\text{B}}}{d\Phi_0} H(Q^2, \mu_H) U_H(\mu_H, \mu) \int dt_a dt_b$$

$$\times [B_a(t_a, x_a, \mu_B) \otimes U_B(\mu_B, \mu)]$$

$$\times [B_b(t_b, x_b, \mu) \otimes U_B(\mu_B, \mu)]$$

$$\times \left[S(\mathcal{T}_0 - \frac{t_a + t_b}{Q}, \mu_S) \otimes U_S(\mu_S, \mu)\right]$$

GENEVA – Implementation

) Phase space Φ_0

• Phase space Φ_1

 $\frac{d\sigma_{\geq 1}^{\mathrm{MC}}}{d\Phi_1}(\mathcal{T}_0 > \mathcal{T}_0^{\mathrm{cut}}) = \frac{d\sigma_{\geq 1}^{\mathrm{res}}}{d\Phi_0 d\mathcal{T}_0} \mathcal{P}(\Phi_1) \theta(\mathcal{T}_0 > \mathcal{T}_0^{\mathrm{cut}}) + \frac{d\sigma_{\geq 1}^{\mathrm{nons}}}{d\Phi_1}(\mathcal{T}_0 > \mathcal{T}_0^{\mathrm{cut}})$

Built using Altarelli Parisi splitting function

Normalised in such a way that the spectrum is not spoiled

GENEVA – Implementation

RES expansion $\xrightarrow{\mathcal{T}_0 >> Q}$ **FO expansion**

- The resummation is switched off using the RG to evolve all scales at a common non singular scale µ_{NS}
- Smooth transition from RES to FO expansion using profile scale

 $\mu_{\rm NS}(\mathcal{T}_0) = \mu_H$ $\mu_S(\mathcal{T}_0) = \mu_{NS} f_{\rm run}(\mathcal{T}_0/Q)$ $\mu_B(\mathcal{T}_0) = \mu_{NS} \sqrt{f_{\rm run}(\mathcal{T}_0/Q)}$

Preliminar results

Agreement betweem Res and Matched for small value of $\ {\cal T}_0$

- Matching between RES and FO \mathcal{T}_0
- Recovering of the FO results
- Linear beheavour of the non singular term

Preliminar results

Milan Christmas Meeting 2023

Preliminar results

Final result – Parton Shower

• Sizable impact below $T_0 < 2 Gev$

Almost unchanged above

Final results – Hadronizatiom

Sizable effect only at low P_T^{ZH}

No relevant deviation from between the cases with and without MPI