Flavor Phenomenology from Lattice QCD

Elvira Gámiz

Fermi National Accelerator

Laboratory

Universidad de Granada

Flavor Physics & CP Violation 2011

· Kibbutz Maale Hachamisha, Israel, 27 May 2011 ·

Outline

- 1. Introduction
- 2. Light quark matrix elements
 - 2.1. f_K/f_π : Determination of $|V_{us}|$ and test of unitarity
 - 2.2. $K \to \pi l \nu$: Determination of $|V_{us}|$ and test of unitarity
 - **2.3.** $K^0 \bar{K}^0$ mixing
- 3. Heavy quark phenomenology
 - 3.1. D and D_s decay constants
 - 3.2. B and B_s decay constants
 - 3.3. $B \to \pi l \nu$: Exclusive determination of $|V_{ub}|$
 - **3.4.** *D* semileptonic decays
 - 3.5. Neutral B-meson mixing
 - 3.6. Neutral meson mixing BSM
- 4. Conclusions and outlook

Lattice QCD can be used to

- * Determine fundamental parameters of the SM: quark masses, CKM matrix elements (tensions in inclus.-exclus. determinations of $|V_{ub}|$, $|V_{cb}|$).
- * Provide the non-perturbative input for the study of some theory-experiment discrepancies in UT analyses $(\hat{B}_K, f_B, f_B\sqrt{B_B}, \xi ...)$, processes involving $B_{d,s}^0 \bar{B}_{d,s}^0$ mixing (like-sign dimuon charge asymmetry), heavy-light decay constants ...

relying only on first principles.

Lattice QCD can be used to

- * Determine fundamental parameters of the SM: quark masses, CKM matrix elements (tensions in inclus.-exclus. determinations of $|V_{ub}|$, $|V_{cb}|$).
- * Provide the non-perturbative input for the study of some theory-experiment discrepancies in UT analyses $(\hat{B}_K, f_B, f_B\sqrt{B_B}, \xi ...)$, processes involving $B_{d,s}^0 \bar{B}_{d,s}^0$ mixing (like-sign dimuon charge asymmetry), heavy-light decay constants ...

relying only on first principles.

Goal: Precise calculations ($\sim 5\%$ error)

Lattice QCD can be used to

- * Determine fundamental parameters of the SM: quark masses, CKM matrix elements (tensions in inclus.-exclus. determinations of $|V_{ub}|$, $|V_{cb}|$).
- * Provide the non-perturbative input for the study of some theory-experiment discrepancies in UT analyses $(\hat{B}_K, f_B, f_B\sqrt{B_B}, \xi ...)$, processes involving $B_{d,s}^0 \bar{B}_{d,s}^0$ mixing (like-sign dimuon charge asymmetry), heavy-light decay constants ...

relying only on first principles.

Goal: Precise calculations ($\sim 5\%$ error)

- # Gold-platted quantities: For stable (or almost stable) hadron, masses and amplitudes with no more then one initial (final) state hadron.
 - Dificult to study on the lattice: scattering processes, including charmoniun production, inclusive processes, and multihadronic decays
- # Control over systematic errors: including chiral extrapolation, discretization (continuum limit), renormalization, finite volume ...

- # Unquenched calculations
 - * Quenching the strange quark could have an error as large as 5% and need a $N_f=2+1$ to have an estimate \rightarrow want $N_f=2+1$
 - * Neglecting sea charm has effects $\mathcal{O}(1\%)$ (can be estimated with HQET). Starting to need sea charm effects.

Overview of simulations parameters today

C. Hoelbling,

Lattice 2010, 1102.0410

MILC
$$N_f = 2 + 1 + 1$$

Some ensembles still in production

1.1. Introduction: Averaging lattice QCD results

J. Laiho, E. Lunghi, and R. Van de Water (LLV)

Phys.Rev.D81:034503,2010, most updated results in www.latticeaverages.org

- * Hadronic weak matrix element relevant for phenomenological analyses.
- * Include only $N_f = 2 + 1$.
- ullet Only published results (including proceedings).

Flavianet Lattice Average group:

arXiv:1011.4408, most updated results in http://itpwiki.unibe.ch/flag

- * K and π physics, including LEC's.
- * Include separate averages for $N_f=2$ and $N_f=2+1$.
- * Only published results with the exception of update proceedings.

Averages agree in between them when they use the same inputs.

2. Light quarks matrix elements

- **2.1.** f_K/f_π : Determination of $|V_{us}|$ and test of unitarity
- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle=if_Pp_\mu$ \rightarrow precise calculations
 - * Even higher precision for ratios due to cancellation of statistics and systematics uncertainties

2. Light quarks matrix elements

- **2.1.** f_K/f_π : Determination of $|V_{us}|$ and test of unitarity
- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle=if_Pp_\mu$ \rightarrow precise calculations
 - * Even higher precision for ratios due to cancellation of statistics and systematics uncertainties (0.6-2% errors)
- # Many $N_f = 2 + 1$ lattice calculations \rightarrow good test of lattice QCD

$$f_K/f_{\pi}^{\mathbf{LLV}} = 1.1931 \pm 0.0053$$

2. Light quarks matrix elements

- **2.1.** f_K/f_π : Determination of $|V_{us}|$ and test of unitarity
- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle=if_Pp_\mu$ \rightarrow precise calculations
 - * Even higher precision for ratios due to cancellation of statistics and systematics uncertainties (0.6-2% errors)
- # Many $N_f = 2 + 1$ lattice calculations \rightarrow good test of lattice QCD

$$f_K/f_{\pi}^{\mathbf{LLV}} = 1.1931 \pm 0.0053$$

Marciano 2004
$$\frac{|V_{us}|^2}{|V_{ud}|^2} imes \frac{f_K^2}{f_\pi^2} \propto \frac{\Gamma(K o \mu \bar{\nu}_\mu(\gamma))}{\Gamma(\pi o \mu \bar{\nu}_\mu(\gamma))}$$

$$\implies |V_{us}| = 0.2252(11)^*$$

$$(|V_{us}|^{unitarity} = 0.22545(22))$$

M. Antonelli et al., 1005.2323

* Using $|V_{us}|/|V_{ud}| \times f_K/f_\pi = 0.2758(5)$ M. Antonelli et al., 1005.2323 and $|V_{ud}| = 0.97425(22)$ Hardy and Towner, PRC79(2009)

 $\# |V_{us}|$ can also be extracted from K_{l3} decay rates via

$$\Gamma[K \to \pi l \nu_l(\gamma)] = \frac{G_F^2}{192\pi^3} C^2 I_K^l S_{EW} (1 + \delta_K^l) |V_{us}|^2 f_+^2(0)$$

$$\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}\frac{f_{+}(t)}{f_{+}(t)} + (p-p')_{\mu}f_{-}(t)$$

$|V_{us}|$ can also be extracted from K_{l3} decay rates via

$$\Gamma[K \to \pi l \nu_l(\gamma)] = \frac{G_F^2}{192\pi^3} C^2 I_K^l S_{EW} (1 + \delta_K^l) |V_{us}|^2 f_+^2(0)$$

$$\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}\frac{f_{+}(t)}{f_{+}(t)} + (p-p')_{\mu}f_{-}(t)$$

$$f_{+}(0)^{\text{LLV}} = 0.9584 \pm 0.0044$$

 $\# |V_{us}|$ can also be extracted from K_{l3} decay rates via

$$\Gamma[K \to \pi l \nu_l(\gamma)] = \frac{G_F^2}{192\pi^3} C^2 I_K^l S_{EW} (1 + \delta_K^l) |V_{us}|^2 f_+^2(0)$$

$$\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}\frac{f_{+}(t)}{f_{+}(t)} + (p-p')_{\mu}f_{-}(t)$$

$$f_{+}(0)^{LLV} = 0.9584 \pm 0.0044$$

$$|V_{us}| = 0.2257(12)$$

- * LLV average $N_f=2$ ETMC result because they include the known quenching effects at NLO in ChPT and an estimate of NNLO effects
 - ** Extrapolation to $q^2=0$ using pole dominance and quadratic polynomial
 - ** Extrapolation to physical masses using NLO SU(2) and SU(3) ChPT.
 - ** Two lattice spacings analyzed \rightarrow extrapolation to the continuum

$|V_{us}|$ can also be extracted from K_{l3} decay rates via

$$\Gamma[K \to \pi l \nu_l(\gamma)] = \frac{G_F^2}{192\pi^3} C^2 I_K^l S_{EW} (1 + \delta_K^l) |V_{us}|^2 f_+^2(0)$$

$$\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}\frac{f_{+}(t)}{f_{+}(t)} + (p-p')_{\mu}f_{-}(t)$$

$$f_{+}(0)^{LLV} = 0.9584 \pm 0.0044$$

$$|V_{us}| = 0.2257(12)$$

- * RBC/UKQCD uses twisted boundary conditions to simulate at $q^2 \simeq 0$.
 - ** Extrapolation to physical masses using NLO ChPT.
 - ** Two lattice spacings → extrapolation to the continuum

$|V_{us}|$ can also be extracted from K_{l3} decay rates via

$$\Gamma[K \to \pi l \nu_l(\gamma)] = \frac{G_F^2}{192\pi^3} C^2 I_K^l S_{EW} (1 + \delta_K^l) |V_{us}|^2 f_+^2(0)$$

$$\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}\frac{f_{+}(t)}{f_{+}(t)} + (p-p')_{\mu}f_{-}(t)$$

$$f_{+}(0)^{\text{LLV}} = 0.9584 \pm 0.0044$$

$$|V_{us}| = 0.2257(12)$$

- * RBC/UKQCD uses twisted boundary conditions to simulate at $q^2 \simeq 0$.
 - ** Extrapolation to physical masses using NLO ChPT.
 - ** Two lattice spacings → extrapolation to the continuum
- # In progress: * $N_f=2+1$ staggered calculation on MILC lattices with t.b. conditions at several lattice spacings FNAL/MILC POS(Lattice 2010)306
 - * $N_f=2+1$ overlap calculation: **JLQCD** POS(Lattice 2010)146

One of the most stringent constraints in UT analyses.

$$\begin{aligned} |\epsilon_K| &= \left| \frac{A(K_L \to (\pi \pi)_{I=0})}{A(K_S \to (\pi \pi)_{I=0})} \right| = e^{i\phi_\epsilon} \sin \phi_\epsilon \left(\frac{\operatorname{Im} M_{12,SD}^K}{\Delta M_K} + \frac{\operatorname{Im} M_{12,LD}^K}{\Delta M_K} + \underbrace{\frac{\operatorname{Im} A_0}{\Delta M_K}}_{\Gamma_{12}^K} \right) \\ &= e^{i\phi_\epsilon} \kappa_\epsilon C_\epsilon \hat{B}_K |V_{cb}|^2 \lambda^2 \eta \left(|V_{cb}|^2 (1 - \bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right) \end{aligned}$$

Great success of lattice QCD: reducing \hat{B}_K errors to $\leq 5\%$

- # One of the most stringent constraints in UT analyses.
- # Great success of lattice QCD: reducing \hat{B}_K errors to $\leq 5\%$

$$\hat{B}_K^{LLV} = 0.737 \pm 0.020$$

- * Good agreement with $\hat{B}_K^{N_f=2}=0.729(30)$ ETMC, 1009.5606 (not included in average because of unknown quenching errors)
- * Different fermion formulations (staggered, domain wall, twisted mass), set of configurations (MILC,RBC/UKQCD, ETMC) and renormalization procedures.

- # One of the most stringent constraints in UT analyses.
- # Great success of lattice QCD: reducing \hat{B}_K errors to $\leq 5\%$

$$\hat{B}_K^{LLV} = 0.737 \pm 0.020$$

- * Good agreement with $\hat{B}_K^{N_f=2}=0.729(30)$ ETMC, 1009.5606 (not included in average because of unknown quenching errors)
- * Different fermion formulations (staggered, domain wall, twisted mass), set of configurations (MILC,RBC/UKQCD, ETMC) and renormalization procedures.
- * \hat{B}_K is no longer the dominant source of uncertainty in neutral K mixing.

* Need to include subleading effects.

$$|\epsilon_K| = \left| \frac{A(K_L \to (\pi\pi)_{I=0})}{A(K_S \to (\pi\pi)_{I=0})} \right| = e^{i\phi_\epsilon} \sin \phi_\epsilon \left(\frac{\operatorname{Im} \ M_{12,SD}^K}{\Delta M_K} + \frac{\operatorname{Im} \ M_{12,LD}^K}{\Delta M_K} + \underbrace{\frac{\operatorname{Im} \ A_0}{\Delta M_K}}_{\Gamma_{12}^K} \right)$$

$$= e^{i\phi_{\epsilon}} \kappa_{\epsilon} C_{\epsilon} \hat{B}_{K} |V_{cb}|^{2} \lambda^{2} \eta \left(|V_{cb}|^{2} (1 - \bar{\rho}) + \eta_{tt} S_{0}(x_{t}) + \eta_{ct} S_{0}(x_{c}, x_{t}) - \eta_{cc} x_{c} \right)$$

Where κ_{ϵ} parametrizes $\phi_{\epsilon} \neq \pi/4$ and long-distance contributions

$$\kappa_{\epsilon} = \sqrt{2} \sin \phi_{\epsilon} \left(1 - \frac{\rho}{\omega} \operatorname{Re} \left(\varepsilon_{K}' / \varepsilon_{K} \right) + \frac{\rho P_{2}}{\sqrt{2} |\varepsilon_{K}|} \right)$$

* Need to include subleading effects.

$$|\epsilon_K| = \left| \frac{A(K_L \to (\pi\pi)_{I=0})}{A(K_S \to (\pi\pi)_{I=0})} \right| = e^{i\phi_\epsilon} \sin \phi_\epsilon \left(\frac{\operatorname{Im} M_{12,SD}^K}{\Delta M_K} + \frac{\operatorname{Im} M_{12,LD}^K}{\Delta M_K} + \underbrace{\frac{\operatorname{Im} M_{12,LD}^K}{\Delta M_K}}_{\Gamma_{12}^K} + \underbrace{\frac{\operatorname{Im} M_{12,LD}^K}{\Delta M_K}}_{\Gamma_{12}^K} \right)$$

$$= e^{i\phi_{\epsilon}} \kappa_{\epsilon} C_{\epsilon} \hat{B}_{K} |V_{cb}|^{2} \lambda^{2} \eta \left(|V_{cb}|^{2} (1 - \bar{\rho}) + \eta_{tt} S_{0}(x_{t}) + \eta_{ct} S_{0}(x_{c}, x_{t}) - \eta_{cc} x_{c} \right)$$

Where κ_{ϵ} parametrizes $\phi_{\epsilon} \neq \pi/4$ and long-distance contributions

$$\kappa_{\epsilon} = \sqrt{2} \sin \phi_{\epsilon} \left(1 - \frac{\rho}{\omega} \operatorname{Re} \left(\varepsilon_{K}' / \varepsilon_{K} \right) + \frac{\rho P_{2}}{\sqrt{2} |\varepsilon_{K}|} \right)$$

- * ϕ_{ε} , Re $(\varepsilon_K'/\varepsilon_K)$, $|\varepsilon_K|$, ω , and Re A_2 in $P_2={\rm Im}\ A_2/{\rm Re}\ A_2$ are very well known experimentally.
- * ρ can be estimated using ChPT Buras, Guadagnoli, and Isidori, 1002.3612.
- * Taking Im $A_2=(-7.9\pm4.2)\times10^{-13}$ from the exploratory unquenched lattice calculation by RBC/UKQCD, 0812.1368

* Need to include subleading effects.

$$|\epsilon_K| = \left| \frac{A(K_L \to (\pi\pi)_{I=0})}{A(K_S \to (\pi\pi)_{I=0})} \right| = e^{i\phi_\epsilon} \sin \phi_\epsilon \left(\frac{\operatorname{Im} M_{12,SD}^K}{\Delta M_K} + \frac{\operatorname{Im} M_{12,LD}^K}{\Delta M_K} + \underbrace{\frac{\operatorname{Im} M_{12,LD}^K}{\Delta M_K}}_{\Gamma_{12}^K} + \underbrace{\frac{\operatorname{Im} M_{12}^K}{\Delta M_K}}_{\Gamma_{12}^K} \right)$$

$$= e^{i\phi_{\epsilon}} \kappa_{\epsilon} C_{\epsilon} \hat{B}_{K} |V_{cb}|^{2} \lambda^{2} \eta \left(|V_{cb}|^{2} (1 - \bar{\rho}) + \eta_{tt} S_{0}(x_{t}) + \eta_{ct} S_{0}(x_{c}, x_{t}) - \eta_{cc} x_{c} \right)$$

Where κ_{ϵ} parametrizes $\phi_{\epsilon} \neq \pi/4$ and long-distance contributions

$$\kappa_{\epsilon} = \sqrt{2} \sin \phi_{\epsilon} \left(1 - \frac{\rho}{\omega} \operatorname{Re} \left(\varepsilon_{K}' / \varepsilon_{K} \right) + \frac{\rho P_{2}}{\sqrt{2} |\varepsilon_{K}|} \right)$$

- * ϕ_{ε} , Re $(\varepsilon_K'/\varepsilon_K)$, $|\varepsilon_K|$, ω , and Re A_2 in $P_2={\rm Im}\ A_2/{\rm Re}\ A_2$ are very well known experimentally.
- * ρ can be estimated using ChPT Buras, Guadagnoli, and Isidori, 1002.3612.
- * Taking Im $A_2=(-7.9\pm4.2)\times10^{-13}$ from the exploratory unquenched lattice calculation by RBC/UKQCD, 0812.1368

$$\kappa_{arepsilon} = 0.94 \pm 0.02$$
 | Laiho, Lunghi, and Van de Water

3. Heavy quark phenomenology

- # Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.
- * Effective theories: Need to include multiple operators matched to full QCD (NRQCD,HQET,static). B-physics √
 - * Relativistic (improved) formulations:
 - ** Allow accurate results for charm (especially twisted mass, Hisq (Highly improved staggered quarks)).
 - ** Advantages of having the same f ormulation for light and charm: ratios light/charm, PCAC for heavy-light, ...

One could get the same precision for D as for K

** Starting to be extended to the bottom region.

$$f_D^{\text{lat}} = (213.6 \pm 4.1) \; MeV$$

$$f_{D_s}^{\rm lat} = (248.7 \pm 3.1) \ MeV$$

* From **HFAG** 2010:

$$f_D^{exp} = (206.7 \pm 8.9) MeV$$

$$f_{D_s}^{exp} = (257.3 \pm 5.3) MeV$$

Not in average **ETMC** 0904.0954 ($N_f = 2$)

$$f_D = 197(9) MeV; f_{D_s} = 244(8) MeV$$

PACS-CS, $1104.4600(N_f = 2 + 1)$ Promising but needs complete error budget

Current error at 2-4% level

 f_{D_s} puzzle A. Kronfeld

$$3.8\sigma \ (2007) \rightarrow 1.6\sigma \ (2011)$$

 $f_D^{\text{lat}} = (213.6 \pm 4.1) \ MeV$

$$f_{D_s}^{\rm lat} = (248.7 \pm 3.1) \ MeV$$

* From **HFAG** 2010:

$$f_D^{exp} = (206.7 \pm 8.9) MeV$$

 $f_{D_s}^{exp} = (257.3 \pm 5.3) MeV$

* Change in experimental average CLEO, BaBar and update in the value of r_1 used by HPQCD

Not in average **ETMC** 0904.0954 ($N_f = 2$)

$$f_D = 197(9) MeV; f_{D_s} = 244(8) MeV$$

PACS-CS, $1104.4600(N_f = 2 + 1)$ Promising but needs complete error budget

Current error at 2-4% level

 f_{D_s} puzzle A. Kronfeld

$$3.8\sigma \ (2007) \rightarrow 1.6\sigma \ (2011)$$

 $f_D^{\text{lat}} = (213.6 \pm 4.1) \ MeV$

$$f_{D_s}^{\rm lat} = (248.7 \pm 3.1) \ MeV$$

* From **HFAG** 2010:

$$f_D^{exp} = (206.7 \pm 8.9) MeV$$

 $f_{D_s}^{exp} = (257.3 \pm 5.3) MeV$

* Change in experimental average CLEO, BaBar and update in the value of r_1 used by HPQCD

Not in average **ETMC** 0904.0954 ($N_f = 2$)

$$f_D = 197(9) MeV; f_{D_s} = 244(8) MeV$$

PACS-CS, $1104.4600(N_f = 2 + 1)$ Promising but needs complete error budget

Current error at 2-4% level $\rightarrow \sim 1\%$ error reachable in 3-5 years

- # Needed for processes potentially sensitive to NP: for ex. $B_s \to \mu^+ \mu^-$
- $\# B^- \to \tau^- \bar{\nu}_{\tau}$ is a sensitive probe of effects from charged Higgs bosons.
 - * Tension in output from UT fits and $f_B^{lattice}$ (driven by $\sin(2\beta)$ from $B_d \to \psi K_s$) Lunghi and Soni, 1104.2117
 - * Agreement of $Br(B \to au
 u)$ with $f_B^{lattice}$ and experiment when using $|V_{ub}^{inc.}|$ but not when using $|V_{ub}^{exc.}| \sim 2.8 \sigma$ Lunghi and Soni, 1104.2117

- # Needed for processes potentially sensitive to NP: for ex. $B_s \to \mu^+ \mu^-$
- $\# B^- \to \tau^- \bar{\nu}_{\tau}$ is a sensitive probe of effects from charged Higgs bosons.
 - Tension in output from UT fits and $f_B^{lattice}$ (driven by $\sin(2\beta)$ from $B_d \rightarrow \psi K_s$) Lunghi and Soni, 1104.2117
 - ullet Agreement of Br(B o au
 u) with $f_B^{lattice}$ and experiment when using $|V_{ub}^{inc.}|$ but not when using $|V_{ub}^{exc.}| \sim 2.8 \sigma$ Lunghi and Soni, 1104.2117

$$f_B^{\text{lat}} = (200 \pm 11) \ MeV$$

$$f_{B_s}^{\rm lat} = (245 \pm 9) \; MeV$$

** **HPQCD** results in PRD80 (2009) 014503 updated with new value $r_1 = 0.3133(23)(3)$

- # Needed for processes potentially sensitive to NP: for ex. $B_s \to \mu^+ \mu^-$
- $\# B^- \to \tau^- \bar{\nu}_{\tau}$ is a sensitive probe of effects from charged Higgs bosons.
 - * Tension in output from UT fits and $f_B^{lattice}$ (driven by $\sin(2\beta)$ from $B_d \to \psi K_s$) Lunghi and Soni, 1104.2117
 - * Agreement of $Br(B \to au
 u)$ with $f_B^{lattice}$ and experiment when using $|V_{ub}^{inc.}|$ but not when using $|V_{ub}^{exc.}| \sim 2.8 \sigma$ Lunghi and Soni, 1104.2117

$$f_{B_s}^{\text{lat}} = (245 \pm 9) \; MeV$$

- ** **HPQCD** results in PRD80 (2009) 014503 updated with new value $r_1 = 0.3133(23)(3)$
 - * $N_f=2\,$ ETMC feasibility study in JHEP 1004:049(2009) gives compatible results.

- # Needed for processes potentially sensitive to NP: for ex. $B_s \to \mu^+ \mu^-$
- # $B^- \to \tau^- \bar{\nu}_{\tau}$ is a sensitive probe of effects from charged Higgs bosons.
 - * Tension in output from UT fits and $f_B^{lattice}$ (driven by $\sin(2\beta)$ from $B_d \to \psi K_s$) Lunghi and Soni, 1104.2117
 - * Agreement of $Br(B \to au
 u)$ with $f_B^{lattice}$ and experiment when using $|V_{ub}^{inc.}|$ but not when using $|V_{ub}^{exc.}| \sim 2.8 \sigma$ Lunghi and Soni, 1104.2117

$$f_B^{\text{lat}} = (200 \pm 11) \ MeV$$

$$f_{B_s}^{\mathbf{lat}} = (245 \pm 9) \; MeV$$

- ** **HPQCD** results in PRD80 (2009) 014503 updated with new value $r_1 = 0.3133(23)(3)$
 - * $N_f=2$ ETMC feasibility study in JHEP 1004:049(2009) gives compatible results.
- # In progress: HPQCD calculation using relativistic b quarks (extrapol. to m_b using HQET)

3.3. $B \to \pi l \nu$: Exclusive determination of $|V_{ub}|$

- * z-expansion used with FNAL/MILC data to parametrize $f_{+(0)}(q^2)$ shape based on analyticity, unitarity, and HQ symmetry
- * BK parametrization used with HPQCD data for $f_{+(0)}(q^2)$ shape

3-parameters description given by the $M_{B^{st}}$ pole

$$|V_{ub}^{exc.}|^{\mathbf{LLV}} = (3.12 \pm 0.26) \times 10^{-3}$$

* Reminder: A 100% correlation is taken for the theory/experimental errors in calculations using the same lattice/exper. data.

3.3. $B \to \pi l \nu$: Exclusive determination of $|V_{ub}|$

- * z-expansion used with FNAL/MILC data to parametrize $f_{+(0)}(q^2)$ shape based on analyticity, unitarity, and HQ symmetry
- * BK parametrization used with HPQCD data for $f_{+(0)}(q^2)$ shape

3-parameters description given by the $M_{B^{st}}$ pole

$$|V_{ub}^{exc.}|^{\mathbf{LLV}} = (3.12 \pm 0.26) \times 10^{-3}$$

- * Reminder: A 100% correlation is taken for the theory/experimental errors in calculations using the same lattice/exper. data.
- # There is a 3.3σ discrepancy with inclusive calculations $|V_{ub}^{incl}|=(4.34^{+0.22}_{-0.27})\times 10^{-3}$ HFAG, 1010.1589
 - * Discrepancy could be due to right handed currents \to need calculation of $B\to \rho l \nu$ M. Neubert

3.3. $B \to \pi l \nu$: Exclusive determination of $|V_{ub}|$

- * z-expansion used with FNAL/MILC data to parametrize $f_{+(0)}(q^2)$ shape based on analyticity, unitarity, and HQ symmetry
- * BK parametrization used with HPQCD data for $f_{+(0)}(q^2)$ shape

3-parameters description given by the M_{B^st} pole

$$|V_{ub}^{exc.}|^{\mathbf{LLV}} = (3.12 \pm 0.26) \times 10^{-3}$$

- * Reminder: A 100% correlation is taken for the theory/experimental errors in calculations using the same lattice/exper. data.
- # There is a 3.3σ discrepancy with inclusive calculations $|V_{ub}^{incl}|=(4.34_{-0.27}^{+0.22})\times 10^{-3}$ HFAG, 1010.1589
 - * Discrepancy could be due to right handed currents \to need calculation of $B \to \rho l \nu$ M. Neubert
- # In progress FNAL/MILC is addressing the main sources of error: $4\times$ more configurations, add smaller lattice spacing, more sophisticated analysis techniques, improvements on parametrization of shape ...

3.3. Exclusive determination of $|V_{cb}|$

- $\# |V_{cb}|$ normalizes the whole unitarity triangle.
- $\# |V_{cb}|$ needed as an input in ϵ_K (dominant error after improvements in B_K) and rare kaon decays $Br(K \to \pi \nu \bar{\nu})$.

3.3. Exclusive determination of $|V_{cb}|$

- $\# |V_{cb}|$ normalizes the whole unitarity triangle.
- $\# |V_{cb}|$ needed as an input in ϵ_K (dominant error after improvements in B_K) and rare kaon decays $Br(K \to \pi \nu \bar{\nu})$.
- # Updated FNAL/MILC determination of $B \to D^* l \nu$ form factor at zero recoil (blind anlysis)
 - * Double ratio method: $|h_A(1)|^2 = \frac{\langle D^*|\bar{c}\gamma_j\gamma_5b|\bar{B}\rangle\langle\bar{B}|\bar{b}\gamma_j\gamma_5c|D^*\rangle}{\langle D^*|\bar{c}\gamma_4c|D^*\rangle\langle\bar{B}|\bar{b}\gamma_4b|\bar{B}\rangle}$

$$|V_{cb}| imes 10^3 = (39.7 \pm 0.7_{exp} \pm 0.7_{LQCD})$$
 J. Laiho, CKM2010

3.3. Exclusive determination of $|V_{cb}|$

- $\# |V_{cb}|$ normalizes the whole unitarity triangle.
- $\# |V_{cb}|$ needed as an input in ϵ_K (dominant error after improvements in B_K) and rare kaon decays $Br(K \to \pi \nu \bar{\nu})$.
- # Updated FNAL/MILC determination of $B \to D^* l \nu$ form factor at zero recoil (blind anlysis)
 - * Double ratio method: $|h_A(1)|^2 = \frac{\langle D^*|\bar{c}\gamma_j\gamma_5b|\bar{B}\rangle\langle\bar{B}|\bar{b}\gamma_j\gamma_5c|D^*\rangle}{\langle D^*|\bar{c}\gamma_4c|D^*\rangle\langle\bar{B}|\bar{b}\gamma_4b|\bar{B}\rangle}$

$$|V_{cb}| \times 10^3 = (39.7 \pm 0.7_{exp} \pm 0.7_{LQCD}) \quad \text{J. Laiho, CKM2010}$$

$$|V_{cb}^{exc.}|^{\mathbf{LLV}} \times 10^3 = 39.5 \pm 1.0$$

$$|V_{cb}^{inc.}| \times 10^3 = 41.68 \pm 0.73$$
 HFAG, 1010.1589

 \rightarrow 2.2 σ discrepancy.

3.3. Exclusive determination of $|V_{cb}|$

- $\# |V_{cb}|$ normalizes the whole unitarity triangle.
- $\# |V_{cb}|$ needed as an input in ϵ_K (dominant error after improvements in B_K) and rare kaon decays $Br(K \to \pi \nu \bar{\nu})$.
- # Updated FNAL/MILC determination of $B \to D^* l \nu$ form factor at zero recoil (blind anlysis)
 - * Double ratio method: $|h_A(1)|^2 = \frac{\langle D^*|\bar{c}\gamma_j\gamma_5b|\bar{B}\rangle\langle\bar{B}|\bar{b}\gamma_j\gamma_5c|D^*\rangle}{\langle D^*|\bar{c}\gamma_4c|D^*\rangle\langle\bar{B}|\bar{b}\gamma_4b|\bar{B}\rangle}$

$$|V_{cb}| \times 10^3 = (39.7 \pm 0.7_{exp} \pm 0.7_{LQCD}) \quad \text{J. Laiho, CKM2010}$$

$$|V_{cb}^{inc.}| \times 10^3 = 41.68 \pm 0.73$$

 \rightarrow 2.2 σ discrepancy.

$$|V_{cb}^{exc.}|^{\mathbf{LLV}} \times 10^3 = 39.5 \pm 1.0$$

In progress: New calculation of $|V_{cb}|$ from $B\to Dl\nu$, and form factors shape for both $B\to D(D^*)l\nu$ FNAL/MILC

- # Errors in the extraction of $|V_{cd(cs)}|$ from semileptonic decays dominated by lattice uncertainties.
- # Testing lattice QCD: shape of the form factors
 - \rightarrow use same methodology for other processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$
- # Correlated signals of NP to those in leptonic decays.

- # Errors in the extraction of $|V_{cj}|$ from semileptonic decays dominated by lattice uncertainties.
- # Testing lattice QCD: shape of the form factors \rightarrow use same methodology for other processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$
- # Correlated signals of NP to those in leptonic decays.
- # Determination of $|V_{cs}|$ from $D \to K l \nu$ by HPQCD, Phys.Rev.D82:114506(2010) with $N_f=2+1$, two a's (MILC configurations) and Hisq valence quarks.
 - * Use PCVC to relate $f_0(q^2)$ to three-point functions with a scalar (versus vector) insertion $f_+(0)=f_0(0)=\frac{m_c-m_q}{m_D^2-m_\pi^2}\langle D|S|K\rangle$

- # Errors in the extraction of $|V_{cj}|$ from semileptonic decays dominated by lattice uncertainties.
- # Testing lattice QCD: shape of the form factors
 - ightarrow use same methodology for other processes like $B
 ightarrow \pi l
 u$ or $B
 ightarrow K l ar{l}$
- # Correlated signals of NP to those in leptonic decays.
- # Determination of $|V_{cs}|$ from $D \to K l \nu$ by HPQCD, Phys.Rev.D82:114506(2010) with $N_f=2+1$, two a's (MILC configurations) and Hisq valence quarks.
 - * Use PCVC to relate $f_0(q^2)$ to three-point functions with a scalar (versus vector) insertion $\boxed{ f_+(0) = f_0(0) = \frac{m_c m_q}{m_D^2 m_\pi^2} \langle D|S|K \rangle }$
 - * Very precise determination of $|V_{cs}|$, but can not get the shape of $f_+(q^2)$. Only $f_0(q^2)$.

- # Errors in the extraction of $|V_{cj}|$ from semileptonic decays dominated by lattice uncertainties.
- # Testing lattice QCD: shape of the form factors \to use same methodology for other processes like $B \to \pi l \nu$ or $B \to K l \bar{l}$
- # Correlated signals of NP to those in leptonic decays.
- # Determination of $|V_{cs}|$ from $D \to K l \nu$ by HPQCD, Phys.Rev.D82:114506(2010) with $N_f=2+1$, two a's (MILC configurations) and Hisq valence quarks.
 - * Use PCVC to relate $f_0(q^2)$ to three-point functions with a scalar (versus vector) insertion $\boxed{ f_+(0) = f_0(0) = \frac{m_c m_q}{m_D^2 m_\pi^2} \langle D|S|K \rangle }$
 - * Very precise determination of $|V_{cs}|$, but can not get the shape of $f_+(q^2)$. Only $f_0(q^2)$.
 - * Modified z-expansion: includes a^2 and light quark masses dependence on the coefficients

- # Errors in the extraction of $|V_{cj}|$ from semileptonic decays dominated by lattice uncertainties.
- # Testing lattice QCD: shape of the form factors \to use same methodology for other processes like $B \to \pi l \nu$ or $B \to K l \bar{l}$
- # Correlated signals of NP to those in leptonic decays.
- # Determination of $|V_{cs}|$ from $D \to K l \nu$ by HPQCD, Phys.Rev.D82:114506(2010) with $N_f=2+1$, two a's (MILC configurations) and Hisq valence quarks.
 - * Use PCVC to relate $f_0(q^2)$ to three-point functions with a scalar (versus vector) insertion $f_+(0)=f_0(0)=\frac{m_c-m_q}{m_D^2-m_\pi^2}\langle D|S|K\rangle$
 - * Very precise determination of $|V_{cs}|$, but can not get the shape of $f_+(q^2)$. Only $f_0(q^2)$.
 - * Modified z-expansion: includes a^2 and light quark masses dependence on the coefficients

$$f_{+}^{D \to K}(0) = 0.747(19)$$
 error: 11% \to 2.5%.

- # Several lattice groups working on $D \to K(\pi)l\nu$:
 - * HPQCD $N_f=2+1$ on MILC configurations with Hisq action for valence quarks and Asqtad for sea quarks $(D \to \pi)$.
 - * FNAL/MILC $N_f=2+1$ on MILC configurations with Fermilab action for c and Asqtad for u,d,s.
 - * ETMC $N_f = 2$ with twisted mass sea and valence quarks.
- * Preliminary results for the shape presented at Lattice 2010 by the last two agree very well with experiment.

- # Several lattice groups working on $D \to K(\pi)l\nu$:
 - * HPQCD $N_f=2+1$ on MILC configurations with Hisq action for valence quarks and Asqtad for sea quarks $(D \to \pi)$.
 - * FNAL/MILC $N_f=2+1$ on MILC configurations with Fermilab action for c and Asqtad for u,d,s.
 - * ETMC $N_f = 2$ with twisted mass sea and valence quarks.
- * Preliminary results for the shape presented at Lattice 2010 by the last two agree very well with experiment.

Current state-of-the-art results from the lattice

$$f_+^{D\to K}(0) = 0.747(19) \quad \text{HPQCD}, \ \text{Phys.Rev.D82(2010)}$$

$$f_+^{D\to \pi}(0) = 0.64(3)(6) \quad \text{Aubin et al. PRL94(2005)}$$

In the Standard Model

$$\Delta M_q|_{theor.} = \frac{G_F^2 M_W^2}{6\pi^2} |V_{tq}^* V_{tb}|^2 \eta_2^B S_0(x_t) M_{B_s} f_{B_q}^2 \hat{B}_{B_q}$$

** Non-perturbative input

$$\frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2 = \langle \bar{B_q^0} | O_1 | B_q^0 \rangle(\mu) \quad \text{with} \quad O_1 \equiv [\bar{b^i} \, q^i]_{V-A} [\bar{b^j} \, q^j]_{V-A}$$

* $\Delta\Gamma$ dominated by CKM-favoured $b \to c \bar c s$ tree-level decays.

In the Standard Model

$$\Delta M_q|_{theor.} = \frac{G_F^2 M_W^2}{6\pi^2} |V_{tq}^* V_{tb}|^2 \eta_2^B S_0(x_t) M_{B_s} f_{B_q}^2 \hat{B}_{B_q}$$

** Non-perturbative input

$$\frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2 = \langle \bar{B_q^0} | O_1 | B_q^0 \rangle(\mu) \quad \text{with} \quad O_1 \equiv [\bar{b^i} \, q^i]_{V-A} [\bar{b^j} \, q^j]_{V-A}$$

* $\Delta\Gamma$ dominated by CKM-favoured $b \to c \overline{c} s$ tree-level decays.

Specially interesting for phenomenology (UT analyses):

$$f_{B_q} \sqrt{\hat{B}_{B_q}} \qquad \xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$$

Only published result with $N_f=2+1$ available so far for $\sqrt{f_B\hat{B}_B}$:

HPQCD, PRD80 (2009) 014503

$$f_{B_s} \sqrt{\hat{B}_{B_s}} = 276(6)(18) \text{MeV}$$

$$f_{B_d} \sqrt{\hat{B}_{B_d}} = 224(9)(12) \text{MeV}$$

* Using new value for the lattice scale $r_1=0.3133(23)(3)\,\mathrm{Davies}$ et al.,PRD81(2010)

Only published result with $N_f=2+1$ available so far for $\sqrt{f_B\hat{B}_B}$:

HPQCD, PRD80 (2009) 014503

$$f_{B_s}\sqrt{\hat{B}_{B_s}} = 276(6)(18) \text{MeV}$$
 $f_{B_d}\sqrt{\hat{B}_{B_d}} = 224(9)(12) \text{MeV}$

$$f_{B_d} \sqrt{\hat{B}_{B_d}} = 224(9)(12) \text{MeV}$$

- Using new value for the lattice scale $r_1 = 0.3133(23)(3)$ Davies et al.,PRD81(2010)
 - * **NEW: Preliminary** results from **FNAL/MILC**:

$$f_{B_s} \sqrt{\hat{B}_{B_s}} = 268(8)(14) \text{MeV}$$
 $f_{B_d} \sqrt{\hat{B}_{B_d}} = 221(9)(11) \text{MeV}$

** Final results expected for Lattice 2011 (July)

Only published result with $N_f=2+1$ available so far for $\sqrt{f_B\hat{B}_B}$:

HPQCD, PRD80 (2009) 014503

$$f_{B_s} \sqrt{\hat{B}_{B_s}} = 276(6)(18) \text{MeV}$$

$$f_{B_s}\sqrt{\hat{B}_{B_s}} = 276(6)(18) \text{MeV}$$
 $f_{B_d}\sqrt{\hat{B}_{B_d}} = 224(9)(12) \text{MeV}$

- Using new value for the lattice scale $r_1=0.3133(23)(3)$ Davies et al.,PRD81(2010)
 - * **NEW: Preliminary** results from **FNAL/MILC**:

$$f_{B_s}\sqrt{\hat{B}_{B_s}} = 268(8)(14)\text{MeV}$$
 $f_{B_d}\sqrt{\hat{B}_{B_d}} = 221(9)(11)\text{MeV}$

- ** Final results expected for Lattice 2011 (July)
- # Bag parameters B_{B_s} and B_{B_d} can be used for theoretical predictions of, for example, $\mathcal{B}r(B \to \mu^+\mu^-)$.

$$\frac{\mathcal{B}r(B_q \to \mu^+ \mu^-)}{\Delta M_q} = \tau(B_q) \, 6\pi \frac{\eta_Y}{\eta_B} \left(\frac{\alpha}{4\pi M_W sin^2 \theta_W} \right)^2 \, m_\mu^2 \, \frac{Y^2(x_t)}{S(x_t)} \, \frac{1}{\hat{B}_q}$$

- * Using HPQCD determinations of \hat{B}_q PRD80 (2009) 014503 $\rightarrow \mathcal{B}r(B_s \rightarrow \mu^+\mu^-) = (3.19 \pm 0.19) \times 10^{-9}$ and $\mathcal{B}r(B_d \rightarrow \mu^+\mu^-) = (1.02 \pm 0.09) \times 10^{-10}$
- * CDF (DØ)[LHCb] bounds $\mathcal{B}r(B_s \to \mu^+\mu^-) \le 4.3(5.1)[5.6] \times 10^{-8}$, $\mathcal{B}r(B_d \to \mu^+\mu^-) \le 0.76[1.5] \times 10^{-8}$

- * Using HPQCD determinations of \hat{B}_q PRD80 (2009) 014503 $\rightarrow \mathcal{B}r(B_s \rightarrow \mu^+\mu^-) = (3.19 \pm 0.19) \times 10^{-9}$ and $\mathcal{B}r(B_d \rightarrow \mu^+\mu^-) = (1.02 \pm 0.09) \times 10^{-10}$
- * CDF (DØ)[LHCb] bounds $\mathcal{B}r(B_s \to \mu^+\mu^-) \le 4.3(5.1)[5.6] \times 10^{-8}$, $\mathcal{B}r(B_d \to \mu^+\mu^-) \le 0.76[1.5] \times 10^{-8}$
- * Real test in LHC.

Results for
$$\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$$

$$\xi^{\text{LLV}} = 1.237 \pm 0.032$$

Results for
$$\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$$

$$\xi^{\text{LLV}} = 1.237 \pm 0.032$$

- * RBC/UQCD result using domain wall fermions is an exploratory study A project aimed to the precision calculations of both ξ and $f_B\sqrt{B_B}$ is in progress Witzel and Van de Water POS(Lattice 2010)318
- * FNAL/MILC calculation with the same choice of actions but improved statistics, discretization errors, and analysis techniques is in progress.

Results for
$$\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$$

$$\xi^{\text{LLV}} = 1.237 \pm 0.032$$

- * RBC/UQCD result using domain wall fermions is an exploratory study A project aimed to the precision calculations of both ξ and $f_B\sqrt{B_B}$ is in progress Witzel and Van de Water POS(Lattice 2010)318
- * FNAL/MILC calculation with the same choice of actions but improved statistics, discretization errors, and analysis techniques is in progress.
- # We expect results with errors around 4-5% for $f_B\sqrt{B_B}$ and 1.5-2% for ξ in ~ 2 years, and using at least two different sets of configurations and fermion formulations for light and heavy quarks.

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_{i}Q_{i} + \sum_{i=1}^{3} \widetilde{C}_{i}\widetilde{Q}_{i}$$

$$Q_{1}^{q} = \left(\bar{\psi}_{f}^{i}\gamma^{\nu}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}\gamma^{\nu}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right) \quad \mathbf{SM}$$

$$Q_{2}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right) \qquad Q_{3}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)$$

$$Q_{4}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} + \gamma_{5})\psi_{q}^{j}\right) \qquad Q_{5}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} + \gamma_{5})\psi_{q}^{i}\right)$$

$$\widetilde{Q}_{1,2,3}^{q} = Q_{1,2,3}^{q} \text{ with the replacement } (\mathbf{I} \pm \gamma_{5}) \rightarrow (\mathbf{I} \mp \gamma_{5})$$

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_{i}Q_{i} + \sum_{i=1}^{3} \widetilde{C}_{i}\widetilde{Q}_{i}$$

$$Q_{1}^{q} = \left(\bar{\psi}_{f}^{i}\gamma^{\nu}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}\gamma^{\nu}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right) \quad \mathbf{SM}$$

$$Q_{2}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right) \quad Q_{3}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)$$

$$Q_{4}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} + \gamma_{5})\psi_{q}^{j}\right) \quad Q_{5}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} + \gamma_{5})\psi_{q}^{i}\right)$$

$$\widetilde{Q}_{1,2,3}^{q} = Q_{1,2,3}^{q} \text{ with the replacement } (\mathbf{I} \pm \gamma_{5}) \rightarrow (\mathbf{I} \mp \gamma_{5})$$

- * C_i, C_i Wilson coeff. calculated for a particular BSM theory
- * $\langle \bar{F^0}|Q_i|F^0\rangle$ calculated on the lattice
- # SM predictions + BSM contributions = experiment
 - → constraints on BSM building

- # Same programme can be applied for extra operators on the lattice.

 Only quenched calculations for BSM operators available.
 - → Need unquenched calculations of matrix elements for the complete basis.

Goal: errors $\leq 10\%$

- # Same programme can be applied for extra operators on the lattice.
 Only quenched calculations for BSM operators available.
 - → Need unquenched calculations of matrix elements for the complete basis.

Goal: errors $\leq 10\%$

- $\# D^0 \bar{D}^0$ mixing: SM contribution dominated by long-distance effects. Current lattice techniques are inefficient for calculating matrix elements for non-local operators.
 - * Imposing short-distance < experiment can exclude large regions of parameters in many models, constraining BSM building.
- E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, PRD76 (2007);PRD79 (2009)

- # Same programme can be applied for extra operators on the lattice.
 Only quenched calculations for BSM operators available.
 - → Need unquenched calculations of matrix elements for the complete basis.

Goal: errors < 10%

- $\# D^0 \bar{D}^0$ mixing: SM contribution dominated by long-distance effects. Current lattice techniques are inefficient for calculating matrix elements for non-local operators.
 - * Imposing short-distance \leq experiment can exclude large regions of parameters in many models, constraining BSM building.
- E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, PRD76 (2007);PRD79 (2009)
- # Work in progress:
 - * FNAL/MILC $B^0 \bar{B}^0$: Fermilab HQ + staggered C. Bouchard et al. POS(Lat2010)299
 - * RBC/UKQCD $B^0 \bar{B}^0$: Relativistic HQ + domain wall
 - * HPQCD $B^0 \bar{B}^0$: NRQCD + staggered

- * FNAL/MILC $D^0 \bar{D}^0$: Fermilab HQ + staggered
- * ETMC $(N_f=2)~K^0-\bar{K}^0$ mixing: twisted mass O. Dimopoulos et al. POS(Lattice 2010)302

- * FNAL/MILC $D^0 \bar{D}^0$: Fermilab HQ + staggered
- * ETMC $(N_f=2)~K^0-\bar{K}^0$ mixing: twisted mass O. Dimopoulos et al. POS(Lattice 2010)302
- # Calculation of the decay width differences $\Delta\Gamma_{s,d}$ also possible
 - * Need the matrix elements for $\mathcal{Q}_1,\mathcal{Q}_2$ or $\mathcal{Q}_1,\mathcal{Q}_3$
 - * Theoretical prediction for like-sign dimuon charge asymmetry ${\cal A}^b_{sl}$

$$A^b_{sl} \simeq a^s_{sl}/2$$
 with $a^s_{sl} = {\Delta\Gamma\over\Delta M_s} tan(\phi_s)$, and $\phi_s \equiv \left(-M^2_{12}/\Gamma^s_{12}\right)$

Important progress in lattice calculations including sea quarks $(N_f = 2 + 1)$

- * Precise new results (few percent errors) in Kaon and D sectors.
 - ** Relativistic improved description of c.
- * Results from several collaborations (especially light-light) quantities → excellent checks.
- * Approaching the physical light quark masses.

- # Important progress in lattice calculations including sea quarks $(N_f = 2 + 1)$
 - * Precise new results (few percent errors) in Kaon and D sectors.
 - ** Relativistic improved description of c.
 - * Results from several collaborations (especially light-light) quantities → excellent checks.
 - * Approaching the physical light quark masses.

Expected for next few years

- * New precise results in b physics: decay constants and mixing parameters FNAL/MILC, RBC/UQCD, HPQCD
 - ** Including BSM operators and $\Delta\Gamma$.

- # Important progress in lattice calculations including sea quarks $(N_f = 2 + 1)$
 - * Precise new results (few percent errors) in Kaon and D sectors.
 - ** Relativistic improved description of c.
 - * Results from several collaborations (especially light-light) quantities → excellent checks.
 - * Approaching the physical light quark masses.

Expected for next few years

- * New precise results in b physics: decay constants and mixing parameters FNAL/MILC, RBC/UQCD, HPQCD
 - ** Including BSM operators and $\Delta\Gamma$.
- * First results with $N_f=2+1+1$ configurations (MILC, ETMC) (some preliminary results already presented at Lattice 2010)

- * D semileptonic decays analized by several collaborations.
- * Improved determinations of B semileptonic decays.

- * D semileptonic decays analized by several collaborations.
- * Improved determinations of B semileptonic decays.
- * Reduction in uncertainties of quantities relevant for CKM to the 1-2% level
- * Studies of $K \to \pi\pi$ (RBC/UQCD, Coumbe-Laiho-Lightman-Van de Water), rare decays $(B \to K(K^*)...)$, spectrum of excited hadrons ...

A.1. Spectrum of light hadrons: test of lattice QCD

Good agreement between $N_f=2+1$ lattice calculations and the experimentally measured light spectrum.

A.2. Spectrum of heavy hadrons

FNAL/MILC Charmonium D D thresh. Thresh Th

Some post/predictions with NRQCD b (s. Meinel, 1007.3966, 1010.0889)

$$(m_{\Upsilon} - m_{\eta_b})(1S) = (60.3 \pm 7.7) \text{ MeV } ((m_{\Upsilon} - m_{\eta_b})(1S)^{exp} = 69.3 \pm 2.9)$$

 $(m_{\Upsilon} - m_{\eta_b})(2S) = (23.5 \pm 4.7) \text{ MeV}$
 $m_{\Omega_{bbb}} = (14.371 \pm 0.012) \text{ GeV}$

Prediction for $m_{B_c^*} = 6.3330(6)(2)(6) \text{ GeV}$

B.1. Light quark masses

Determination of m_s with around 1-5% errors from several $N_f=2+1$ collaborations.

$$m_s^{\text{LLV},\overline{MS}}(2\text{GeV}) = (93.6 \pm 1.1) \text{ MeV}; \quad m_{ud}^{\text{LLV},\overline{MS}}(2\text{GeV}) = (3.419 \pm 0.047) \text{ MeV}$$

B.2. Heavy quark masses

Heavy masses from current-current correlators HPQCD, PRD82(2010) $(N_f=2+1)$

$$m_c(3 \text{ GeV}, n_f = 4) = 0.986(6) \text{ GeV}$$

$$m_b(10 \text{ GeV}, n_f = 5) = 3.617(25) \text{ GeV}$$

$N_f = 2 + 1$ NRQCD b quarks A. Hart et al., Pos(Lat2010)223

$$m_b(m_v) = 4.25(12) \text{ GeV}$$

$N_f = 2$ twisted mass calculation from ETMC, Pos(Lat2010)239

$$\bar{m}_c(\bar{m}_c) = 1.28(4) \text{ GeV}$$

$$\bar{m}_b \bar{m}_b = 4.3(2) \text{ GeV}$$