

Rare Charm Decays & f(D_s)

FPCP 2011, Kibbutz Maale Hachamisha, Israel

Jonathon Coleman

What is Rare?

(A Definition)

Suppressed or Forbidden by SM:

- Flavor Changing Neutral Currents
 - (c→u)
- GIM suppressed:
 - D+→π+e+e-
 - D→Xγ
- Lepton Flavor Violation & Lepton Number Violation If seen may indicate majorana nature of neutrino:
 - D+→π-e+e+,
 - D+→π+e+μ-
- Will not cover Radiative Decays, as the long distance contributions are not easily separated from short distance contributions

From: Flavor Physics in the Quark Sector: hep-ph/0907.53862008:

 It is clear that due to the relatively little experimental progress in this area within the last decade and the large data sets from the flavor factories, that there is a several orders of magnitude in precision to be gained from re-reanalyzing these measurements with meaningful limits to be derived which may have the potential to constrain parameter space for many new physics models.

D_s⁺ Ecm = 4.170 GeV L = 602 pb⁻¹ N_{DsDs*} = 0.6 x 10⁶

FIG. 2. Scatter plots of ΔM_{recoil} vs ΔM . The two contours for each mode enclose regions determined with signal MC simulation to contain 40% and 85% of signal events, respectively. The signal region, defined by $(\Delta M, \Delta M_{\text{recoil}}) = (\pm 20 \text{ MeV}, \pm 55 \text{ MeV})$, is shown as a box.

Phys.Rev.D82:092007,2010.

Channel	N	ϵ (%)	N_{exp}	$N_{\rm obs}$	$C(N_{\rm obs} N_{\rm exp})$	B
$D^+ \rightarrow \pi^+ e^+ e^-$	4.76×10^{6}	33.9	5.7	9	9.3	$< 5.9 \times 10^{-6}$
$D^+ \rightarrow \pi^- e^+ e^+$	4.76×10^{6}	43.5	1.3	0	2.3	$< 1.1 \times 10^{-6}$
$D^+ \rightarrow K^+ e^+ e^-$	4.76×10^{6}	23.1	4.9	2	3.2	$< 3.0 \times 10^{-6}$
$D^+ \rightarrow K^- e^+ e^+$	4.76×10^6	35.3	1.2	3	5.8	$< 3.5 \times 10^{-6}$
$D^+ \rightarrow \pi^+ \phi(e^+ e^-)$	4.76×10^{6}	46.2	0.3	4		$(1.7^{+1.4}_{-0.9} \pm 0.1) \times 10^{-6}$
					7.9	$< 3.7 \times 10^{-6}$
$D_s^+ \rightarrow \pi^+ e^+ e^-$	$1.10 imes 10^6$	24.3	6.7	6	5.6	$< 2.2 \times 10^{-5}$
$D_s^+ \rightarrow \pi^- e^+ e^+$	$1.10 imes10^6$	33.4	2.2	4	6.2	$< 1.8 \times 10^{-5}$
$D_s^+ \rightarrow K^+ e^+ e^-$	$1.10 imes 10^6$	17.3	3.0	7	9.3	$< 5.2 \times 10^{-5}$
$D_s^+ \rightarrow K^- e^+ e^+$	$1.10 imes 10^6$	27.7	4.1	4	5.0	$< 1.7 \times 10^{-5}$
$D_s^+ \to \pi^+ \phi(e^+ e^-)$	$1.10 imes 10^6$	33.9	0.7	3		$(0.6^{+0.8}_{-0.4} \pm 0.1) \times 10^{-5}$
					6.2	$< 1.8 \times 10^{-5}$

$X_c \rightarrow hll - Control Modes$

Before unblinding, checked procedure using ϕ resonance

- Reverse l⁺l⁻ mass cut: 0.995<m(e⁺e⁻)<1.030 GeV/c² 1.005<m(μ⁺μ⁻)<1.030 GeV/c²
- Significant signal seen in 3 of 4 modes
- Yield is about as expected
 - 1.5 σ low in $D_{s}^{+} \rightarrow \pi \phi$, $\phi \rightarrow e^{+}e^{-}$

Decay mode	Yield (events)	Eff	iciency (%)	Expected yield (events)
$D^+ \to \pi^+ \phi_{e^+e^-}$	$21.8 \pm 5.8 \pm 1.5$		5.65	22.2 ± 1.1
$D^+ \to \pi^+ \phi_{\mu^+\mu^-}$	$7.5 \pm 3.4 \pm 1.4$	BABAR	1.11	4.5 ± 0.4
$D_s^+ \to \pi^+ \phi_{e^+e^-}$	$62.8 \pm 9.9 \pm 3.0$	nroliminary	6.46	79 ± 3
$D_s^+ \to \pi^+ \phi_{\mu^+\mu^-}$	$12.7 \pm 4.3 \pm 2.6$	premimary	1.07	13.1 ± 1.2

$X_c \rightarrow hll$ Comparisons to Previous Limits

- Most channels improve upon previous limits
 - Many modes by more than order of magnitude
 - Dimuon modes have the worst limits (lowest efficiency)

2						
	BF UL				BF UL	
	(10^{-6})				(10^{-6})	
Decay mode	90% CL			Decay mode	90% CL	
$D^+ \to \pi^+ e^+ e^-$	1.1	5.9	CLEO-c	$D^+ \rightarrow \pi^- e^+ e^+$	1.9	1.1
$D^+ \to \pi^+ \mu^+ \mu^-$	6.5	3.9	DO	$D^+ \rightarrow \pi^- \mu^+ \mu^+$	2.0	4.8
$D^+ \to \pi^+ e^+ \mu^-$	2.9	34	E791	$D^+ \rightarrow \pi^- \mu^+ e^+$	2.0	50
$D^+ \to \pi^+ \mu^+ e^-$	3.6	34	E791	$D^+_{*} \rightarrow \pi^- e^+ e^+$	4.1	18
$D_s^+ \to \pi^+ e^+ e^-$	13	22	CLEO-c	$D_{*}^{+} \rightarrow \pi^{-}\mu^{+}\mu^{+}$	14	29
$D_s^+ \to \pi^+ \mu^+ \mu^-$	43	26	FOCUS	$D_{*}^{+} \rightarrow \pi^{-} \mu^{+} e^{+}$	8.4	730
$D_s^+ \to \pi^+ e^+ \mu^-$	12	610	E791	$D^+ \to K^- e^+ e^+$	0.9	3.5
$D_s^+ \to \pi^+ \mu^+ e^-$	20	610	E791	$D^+ \rightarrow K^- \mu^+ \mu^+$	10	13
$D^+ \rightarrow K^+ e^+ e^-$	1.0	3.0	CLEO-c	$D^+ \rightarrow K^- \mu^+ e^+$	1.9	130
$D^+ \to K^+ \mu^+ \mu^-$	4.3	9.2	FOCUS	$D_s^+ \to K^- e^+ e^+$	5.2	17
$D^+ \to K^+ e^+ \mu^-$	1.2	68	E791	$D_s^+ \rightarrow K^- \mu^+ \mu^+$	13	13
$D^+ \to K^+ \mu^+ e^-$	2.8	68	E791	$D^+_s \to K^- \mu^+ e^+$	6.1	680
$D_s^+ \to K^+ e^+ e^-$	3.7	52	CLEO-c	$\Lambda_c^+ \to \overline{p}e^+e^+$	2.7	
$D_s^+ \to K^+ \mu^+ \mu^-$	21	36	FOCUS	$\Lambda_c^+ \to \overline{p}\mu^+\mu^+$	9.4	
$D_s^+ \to K^+ e^+ \mu^-$	14	630	E791	$\Lambda_c^+ \to \overline{p}\mu^+ e^+$	16	
$D_s^+ \to K^+ \mu^+ e^-$	9.7	630	E791			
$\Lambda_c^+ \to p e^+ e^-$	5.5	340	E653			
$\Lambda_c^+ \to p \mu^+ \mu^-$	44			RARAR		
$\Lambda_c^+ \to p e^+ \mu^-$	9.9					
$\Lambda_c^+ \to p \mu^+ e^-$	19			preliminary	7	

CLEO-c FOCUS E791 CLEO-c FOCUS E791 CLEO-c FOCUS E687 CLEO-c FOCUS E791

- FCNC Decay
 - Forbidden at the tree-level
 - 1-loop GIM suppressed
- Dominated by long distance effects [1]
 - Short-range (2-loop dominate): $B(D^0 \rightarrow \gamma \gamma) \approx 3 \times 10^{-11}$
 - Long-range (VMD contribution dominates):
 - B(D⁰-> γγ) ≈ 3.5 X 10⁻⁸
- However, possible 10² enhancement from new physics (gluino-exchange of MSSM) [2]
- Within the range of BaBar sensitivity.
- Excellent (but difficult) mode to search for new physics

Short Distance

 $\rightarrow \gamma \gamma$

Systematics

Systematic	$\sigma(D^0 \to \gamma \gamma) \ (\%)$	$\sigma(D^0 \to \pi^0 \pi^0) \ (\%)$
Tracking (K_S^0) and Vertexing	0.96	0.96
Photon Reconstruction	0.60	3.00
π^0 Veto	1.80	-
D^{*+} Fragmentation	0.02	0.03
Signal Shape	*	0.20
Background Shape	*	0.80
Cut selection	*	2.50
$D^0 \to K^0_s \pi^0$ Signal Shape	0.53	0.17
$D^0 \to K^0_s \pi^0$ Background Shape	0.01	0.63
$D^0 \to K^0_s \pi^0$ Cut selection	0.76	0.76
Total Systematic Effect	*	4.23

•D⁰->γγ

•B(D⁰-> γγ) < 2.51 X 10⁻⁶

 About factor of 10 improvement on previous CLEO measurement

State of flux

- searching for FCNC, LFV, or LNV modes in the charm sector is a relatively inviting place to investigate new physics in the SM.
- Similar arguments hold for rare decays in the K and B sector. However, the charm system is unique in that it couples an up-type quark to new physics.
- more recently measurements are starting to confine the allowed parameter space of R-parity violating super-symmetric models.

$f(D_s)$

In the standard model the leptonic decays of the D_s meson provide a clean way to measure the decay constant f_{Ds}:

$$B(D_s \rightarrow l\upsilon) = \frac{\Gamma(D_s \rightarrow l\upsilon)}{\Gamma(D_s \rightarrow all)} = \frac{G_F^2}{8\pi} |V_{cs}|^2 f_{D_s}^2 M_{D_s}^3 \left(\frac{m_l}{M_{D_s}}\right)^2 \left(1 - \frac{m_l^2}{M_{D_s}^2}\right)^2$$

Many Averages, eg:

Previously 3.8σ disagreement.

Phys.Rev.Lett.100:241802,2008.

- & Many Explanations:
- This discrepancy could be the result of new physics:

Leptoquarks

[Phys. Rev. D RC 82, 091103 (2010)]

f(D_s)Analysis Strategy

Event reconstruction :

$$e^+e^- \rightarrow c \ \bar{c} \rightarrow D \ K \ X \ D_s^{*-} \rightarrow D \ K \ X \ \gamma \ \ell^- \ \bar{\nu}$$

• A normalization sample is created by $D_{\rm s}$ Tagging using the recoil mass:

 $m_{Ds}^{2} = [p_{e^{+}} + p_{e^{-}} - (p_{D} + p_{K} + p_{X} + p_{\gamma})]^{2}$

 $\begin{array}{l} \bullet D_s \ \rightarrow \mu \ \nu, e \ \nu events can be can be detected \\ by calculating the mass of the neutrino: \\ m_v^2 = \ [p_{e+} + p_{e-} \ - \ (p_D + p_K + p_X + p_\gamma + p_\ell)]^2 \end{array}$

• $D_s \rightarrow \tau \overline{} \nu$ events are counted using the distribution of extra energy in the EMC which should peak towards 0.

f(D_s) The Denominator

The yield of Ds mesons is determined using a 2-D fit to:

- \blacksquare Mass recoiling against the DKX γ system
- n_X^R, the reconstructed number of pions in the fragmentation system.
- □ We obtain $n(D_s) = 67,200 \pm 1500$.

$D_s \rightarrow \mu \upsilon$ reconstruction

- A muon | candidate is identified, using standard particle identification techniques.
- The mass of the D_s candidate is constrained to the mass provided by the Particle Data Group.
- □ We require E_{Extra}<1GeV.
- A kinematic fit to the whole event is performed.
- A binned maximum likelihood fit to the mass squared recoiling against the DKX γ_μ system, m_m², is performed.

We obtain events 274 \pm 17, which yields B(D_s $\rightarrow \mu \nu$) = (6.02 \pm 0.37 \pm 0.33) × 10⁻³

[Phys. Rev. D RC 82, 091103 (2010)]

Comparison to <u>CLE</u>Oc and BELLE

[Phys. Rev. D RC 82, 091103 (2010)]

[Phys. Rev. D RC 82, 091103 (2010)]

$D_s \rightarrow \tau \nu$ reconstruction

We measure the final states

 $\Box \ \tau \rightarrow e \nu \ \nu$

 $\tau \rightarrow \pi v$ impossible due to backgrounds

- □ Particle identification procedure remains the same as for $D_s \rightarrow e \nu$ and $D_s \rightarrow \mu \nu$ as appropriate.
- □ For D_s → τ ν ; τ → µ ν ν we require m_m²>0.3 GeV²c⁻⁴ to remove backgrounds from D_s → µ ν events.
- □ For $D_s \rightarrow \tau \nu$ decays we perform a binned maximum likelihood fit to E_{Extra} .

[Phys. Rev. D RC 82, 091103 (2010)]

$D_s \rightarrow \tau \nu$ reconstruction

Mode	Yield	Branching fraction
$D_s \rightarrow \tau \nu ; \tau \rightarrow e \nu \nu$	408 ± 42	$(4.91 \pm 0.50 \pm 0.66) \times 10^{-2}$
$D_{s} \rightarrow \tau \ \nu \ ; \ \tau \rightarrow \mu \ \nu \ \nu$	340 ± 32	$(5.07 \pm 0.48 \pm 0.54) \times 10^{-2}$
Combined		$(5.00 \pm 0.35 \pm 0.49) \times 10^{-2}$

- Due to the nature of the reconstruction, most of the systematic uncertainties cancel out exactly
- Remaining dominant systematic uncertainties arise from signal and background models
- $\hfill\square$ Values for f_{Ds} are obtained using the formula:

$$f_{D_s^+} = \frac{1}{G_F m_\ell \left(1 - \frac{m_\ell^2}{M_{D_s^+}^2}\right) |V_{cs}|} \sqrt{\frac{8\pi B(D_s^+ \to \ell\nu)}{M_{D_s^+} \tau_{D_s^+}}}$$

Decay mode	B(Ds→I ν)	f _{Ds}			
$D_s \rightarrow \mu \nu$	$(6.02 \pm 0.37 \pm 0.33) \times 10^{-3}$	(265.7 \pm 8.4 \pm 7.9) MeV			
$D_{s} \not\rightarrow \tau \ \nu \ ; \ \tau \not\rightarrow_{e} \nu \ \nu$	$(4.91 \pm 0.50 \pm 0.66) \times 10^{-2}$	(247 ± 13 ± 17) MeV			
$D_{s} \rightarrow \tau \ \nu \ ; \ \tau \rightarrow \mu \ \nu \ \nu$	$(5.07 \pm 0.48 \pm 0.54) \times 10^{-2}$	(243 \pm 12 \pm 14) MeV			
Combined		(258.6 \pm 6.4 \pm 7.5) MeV			

Relative Measurement of $D_{s}^{-} \rightarrow \tau^{-} \bar{\nu} \text{ using } D_{s}^{-} \rightarrow K_{s}K^{-}$ [arXiv: 1003.3063]

- Reconstruct recoil mass against DKXγ to tag D_s events
- Require an additional electron tagging τ⁻→ e⁻ v v
- Peaking backgrounds remaining are estimated.
- Similarly, create separate sample which is tagged as D_s⁻→K_sK⁻
- Signal yields: 448 ± 36 for $D_s \rightarrow \tau v$ and 333 ± 28 for $K_s K$.

f(D_s)Comparison to Other experiments

Theory vs. Experiment (new LQCD calculation)

LQCD value changed with their new energy scale calibration.

[PRD 82, 114504 (2010)]

HFAG(2011) = 257.3 +- 5.3 LQCD(2010) = 248.0 +- 2.5 $\rightarrow \Delta = 1.6 \sigma$

Summary

- Recent results on Rare decays have been presented
 - Improved upper limits
 - Starting to eat into the parameter space of new physics
 - Many results have not been updated in over a decade (E791, FOCUS, etc...)
 - Existing Data sets from Flavor Factories could provide much insight on Rare Decays
- BABAR's recent absolute measurements use a D_stagging technique (similar to the technique BELLE used) which reduces the systematic uncertainties. These measurements significantly improved the uncertainty on the world average value of f(D_s)
- The current difference between theory and experiment for f(D_s) is only about 1.6σ after the shift upwards in the new LQCD calculations.
 - A real difference would indicate contributions from Non-SM particles contributing in the decays.

f(D_s) _{n_x}T unfolding

- ¹ While the 2-D fit is being performed the n_X^T distribution is unfolded.
- A weights model for each value of n_x^T=j is constructed:

$$w_j^{RS} = \frac{(j-\alpha)^\beta e^{-\gamma j}}{\sum_{k=0}^6 (k-\alpha)^\beta e^{-\gamma k}}$$

- This weights model accounts for data-Monte Carlo differences
- The parameters are floated in the 2-D fit
- Efficiencies are calculated after n_X^T unfolding.

Rare Decays

relatively little experimental progress in this area within the last decade

Figure 1: Standard model short-distance contributions to the $c \rightarrow u \ell^+ \ell^-$ transition.

90% confidence limits on Flavor-changing neutral current, (FCNC), lepton family-number (LFV) violating, or lepton-number (LV) violating decay modes of the D^+ (left) and the D^+_s (right) [285].

90% confidence limits on flavor-changing neutral current (FCNC), lepton family-number (LFV) violating, or lepton-number (LV) violating decay modes of the D^0 [285].

		, ,		-	,	or repton-num	noer (nr) m	orating decay modes of the r	2001.		
Process	Decay typ	e Upper limit Reference				Process	Decay typ	e Upper limit Reference	Process	Decay typ	e Upper limit Reference
π+ e+e-	FCNC	$< 7.4 \times 10^{-6}$ [851]	Process	Decay type	e Upper limit Reference	าา	FCNC	$< 2.7 \times 10^{-5} [857]$	$K^{*0} \mu^{+}\mu^{-}$	N/Aª	$< 2.4 \times 10^{-5}$ [860]
-+ -+ -	FONO	< 0.0 v 10=6 [950]	$\pi^+ e^+e^-$	N/Aª	$< 2.7 \times 10^{-4}$ [855]	e^+e^-	FCNC	$< 1.2 \ imes 10^{-6} \ [858]$	$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	FCNC	$< 8.1 \times 10^{-4}$ [853]
π ' μ ' μ	FUNC	< 3.9 ×10 ⁻⁵ [852]	$\pi^{+} \mu^{+} \mu^{-}$	N/Aª	$< 2.6 \times 10^{-5}$ [854]	$\mu^+\mu^-$	FCNC	$< 1.3 \times 10^{-6} [858]$	$e^{\pm} \mu^{\mp}$	LFV	$< 8.1 \times 10^{-7}$ [858]
$\rho^+\mu^+\mu^-$	FCNC	$< 5.6 \times 10^{-4}$ [853]	Kt ata-	FONC	< 1.6 × 10 ⁻³ [855]	$\pi^{0} e^{+}e^{-}$	FCNC	$< 4.5 \ imes 10^{-5} \ [859]$	$\pi^0 e^{\pm} \mu^{\mp}$	LFV	$< 8.6 \times 10^{-5} [859]$
$K^+ e^+e^-$	N/A ª	$< 6.2 \times 10^{-6}$ [851]	V. E.E	FONC	< 1.0 × 10 [000]	$\pi^{0} \mu^{+}\mu^{-}$	FCNC	$< 1.8 \times 10^{-4} [853]$	$\eta e^{\pm} \mu^{\mp}$	LFV	$< 1.0 \ imes 10^{-4} \ [859]$
$K^{+} \mu^{+} \mu^{-}$	N/Aª	$< 9.2 \times 10^{-6}$ [854]	$K^+ \mu^+\mu^-$	FCNC	$< 3.6 \times 10^{-5}$ [854]	ηe^+e^-	FCNC	$< 1.1 \times 10^{-4}$ [859]	$\pi^+\pi^- e^{\pm} \mu^{\mp}$	LFV	$< 1.5 \times 10^{-5}$ [860]
,- ,- ,- -+ .+ .=	LEW		$K^{*-} \mu^{+}\mu^{-}$	FCNC	$< 1.4 \times 10^{-3}$ [853]	$\eta \mu^+ \mu^-$	FCNC	$< 5.3 \times 10^{-4}$ [859]	$\rho^0 e^{\pm} \mu^{\mp}$	LFV	$< 4.9 \ imes 10^{-5} \ [859]$
$\pi e^{-\mu}$	LFV	< 3.4 × 10 - [855]	$\pi^+ e^{\pm} \mu^{\mp}$	LFV	$< 6.1 \times 10^{-4}$ [855]	$\pi^+\pi^- e^+e^-$	FCNC	$< 3.73 \times 10^{-4}$ [860]	$\omega e^{\pm} \mu^{\mp}$	LFV	$< 1.2 \ imes 10^{-4} \ [859]$
$K^+ e^{\pm} \mu^{\mp}$	LFV	$< 6.8 \times 10^{-5}$ [855]	K+ a± 47	LEV	< 6.9 × 10-4 I8551	$\rho^0 e^+ e^-$	FCNC	$< 1.0 \times 10^{-4} [859]$	$K^-K^+ e^{\pm} \mu^{\mp}$	LFV	$< 1.8 \ imes 10^{-4} \ [860]$
$\pi^- \ e^+ \ e^+$	LV				n the Que	r 12 - 15 -	FCNC	$\leq 3.0 \times 10^{-5}$ [860]	$\phi e^{\pm} \mu^{\mp}$	LFV	$< 3.4 \times 10^{-5} [859]$
$\pi^{-} \mu^{+} \mu^{+}$	LV	< 4.8 × 10 6 854 VOI	глиуз	162 I	Here wua	I Ku+DE		$< 2.2 \times 10^{-5}$ [860]	$\overline{K}^0 e^{\pm} \mu^{\mp}$	LFV	$< 1.0 \times 10^{-4} [859]$
	IV			1200	$\leq 2.9 \times 10^{-5}$ [854]	ωe^+e^-	FCNC	$< 1.8 \times 10^{-4} [859]$	$K^- \pi^+ e^{\pm} \mu^{\mp}$	LFV	$< 5.53 imes 10^{-4}$ [859]
π ε' μ'	LV	nep-pn	1/0904	.୭୦୦	$\mathbf{Q}_{7.3 \times 10^{-4}}$ [855]	$\omega \mu^+ \mu^-$	FCNC	$< 8.3 \times 10^{-4}$ [859]	$\overline{K}^{*0} e^{\pm} \mu^{\mp}$	LFV	$< 8.3 \times 10^{-5}$ [860]
$\rho^-\mu^+\mu^+$	LV	$< 5.6 \times 10^{-4}$ [853]	K- e+ e+	IV	$< 6.3 \times 10^{-4}$ [855]	$K^{+}K^{-} e^{+}e^{-}$	FCNC	$< 3.15 \times 10^{-4}$ [860]	$\pi^- \pi^- e^+ e^+ + c.c$	LV	$< 1.12 \times 10^{-4}$ [860]
$K^- e^+ e^+$	LV	$< 4.5 \times 10^{-6}$ [851]	R e e		< 0.5 × 10 [055]	ϕe^+e^-	FCNC	$< 5.2 \times 10^{-5}$ [859]	$\pi^{-} \pi^{-} \mu^{+} \mu^{+} + c.c$	LV	$< 2.9 \ \times 10^{-5} [860]$
$K^{-} \mu^{+} \mu^{+}$	+ LV	$< 1.3 \times 10^{-5}$ [854]	$K = \mu + \mu +$	LV	$< 1.3 \times 10^{-5}$ [854]	$K^{+}K^{-} \mu^{+}\mu^{-}$	- FCNC	$< 3.3 \times 10^{-5}$ [860]	$K^- \pi^- e^+ e^+ + c.c$	LV	$< 2.06 \times 10^{-4}$ [860]
K = a+ u+	IV	< 1.9 \(10-4) [856]	$K^- e^+ \mu^+$	LV	$< 6.8 \times 10^{-4}$ [855]	$\phi \mu^+ \mu^-$	FCNC	$< 3.1 \times 10^{-5}$ [860]	$K^{-} \pi^{-} \mu^{+} \mu^{+} + c.c$	e LV	$< 3.9 \times 10^{-4}$ [860]
к е µ	LV	< 1.3 × 10 - [850]	$K^{*-} \mu^{+} \mu^{-}$	+ LV	$< 1.4 \times 10^{-3}$ [853]	$\overline{K}^0 e^+e^-$	N/Aª	$< 1.1 \ imes 10^{-4} \ [859]$	$K^- K^- e^+ e^+ + c.c$	e LV	$< 1.52 \times 10^{-4}$ [860]
$K^{*-} \mu^{+} \mu$	+ LV	$< 8.5 \times 10^{-4}$ [853]				$K^{0} \mu^{+}\mu^{-}$	N/A^{a}	$< 2.6 \times 10^{-4} [853]$	$K^- K^- \mu^+ \mu^+ + c.$	c LV	$< 9.4 \ imes 10^{-5} \ [860]$
						$K^{-} \pi^{+} e^{+}e^{-}$	FCNC	$< 3.85 \times 10^{-4}$ [860]	$\pi^{-} \pi^{-} e^{+} \mu^{+} + c.c$	LV	$< 7.9 \times 10^{-5}$ [860]

^a These modes are not a useful test for FCNC, because both quarks must change flavor.

because both quarks must change flavor.

^a These modes are not a useful test for FCNC,

 $< 4.7 \times 10^{-5}$ [860]

 $< 3.59 \times 10^{-4}$ [860]

because both quarks must change flavor.

N/Aª

K*0 0+0-

 $K^+ \pi^+ \mu^+ \mu^-$ FCNC

 $< 2.18 \times 10^{-4}$ [860]

 $< 5.7 \times 10^{-5}$ [860]

 $K^{-} \pi^{-} e^{+} \mu^{+} + c.c$ LV

 $K^- K^- e^+ \mu^+ + c.c LV$

D→hll

arXiv:hep-ex/0607051

