Implications of the CDF $tar{t}$ Forward-Backward Asymmetry for Hard Top Physics

Yotam Soreq, Weizmann Institute of Science.

The CDF collaboration has recently reported a large deviation from the standard model of the $t\bar{t}$ forward-backward asymmetry in the high invariant mass region. We interpret this measurement as coming from new physics at a heavy scale Λ , and perform a model-independent analysis up to $\mathcal{O}(1/\Lambda^4)$. We find that a large asymmetry can only be accommodated by heavy new physics that interfere with the standard model. In addition, the new physics induces a minimal enhancement of boosted jets. We show that a smoking gun test for the heavy new physics hypothesis is a significant deviation from the standard model prediction for the $t\bar{t}$ differential cross section at large invariant mass.

Experimental Data (see the table)

- •Evidence for an anomalous forward-backward $t\bar{t}$ production asymmetry was observed for large invariant mass of the $t\bar{t}$ system $(M_{t\bar{t}})$.
- •Hint for an excess in highly boosted jets, $p_T > 400 \, \mathrm{GeV}$.
- •Good agreement between other measurements and SM prediction.

Effective Field Theory (EFT)

- •A model independent description.
- •The new physics (NP) is at heavy scale $\Lambda\gg M_{t\bar{t}}$.

EFT Description

•The dominant EFT operators are dimension 6 and lead from initial state $u\bar{u}$ to a final state $t\bar{t}$. The effective Lagrangian beyond the SM is

$$\mathcal{L}_{\text{eff}} = \sum_{i} \frac{c_i}{\Lambda^2} \left(\bar{u} \Gamma_u^i u \right) \left(\bar{t} \Gamma_t^i t \right) , \qquad \frac{c_i - \text{real coefficients}}{\Gamma_{u/t}^i - \text{all possible Lorentz/color structures}}$$

•The two operators which interfere with the SM are the most important:

$$\mathcal{O}_V^8 = (\bar{u}\gamma_\mu T^a u) (\bar{t}\gamma^\mu T^a t) , \qquad \mathcal{O}_A^8 = (\bar{u}\gamma_\mu \gamma^5 T^a u) (\bar{t}\gamma^\mu \gamma^5 T^a t) .$$

- •All the other operators can be approximately described by two parameters (which replace the c_i 's except for c_V^8 and c_A^8):
 - $R^2 \sim \sum (c_i)^2$ the total amplitude.
 - θ the projection on the asymmetry.
- •To reduce sub-leading effects we normalize the NP contribution by the SM.

Observable	Data		NP Goal/Constraints	NP forward-backward
$A_{450}^{t\bar{t}} \equiv A^{t\bar{t}} (M_{t\bar{t}} \ge 450)$	$+0.48\pm0.11$ (SM predict. $+0.09\pm0.01$)	ñ.	$A_{450}^{t\bar{t},\text{NP}} = +0.4 \pm 0.1$	asymmetry goal
$\sigma_{700} \equiv \sigma^{t\bar{t}} (700 \text{GeV} < M_{t\bar{t}} < 800 \text{GeV})$	$80 \pm 37\mathrm{fb}$		$ N_{700} \equiv \left \sigma_{700}^{\text{NP}} / \sigma_{700}^{\text{SM}} \right \lesssim 0.5$	Constrains the NP
$\sigma_{450} \equiv \sigma^{t\bar{t}}(M_{t\bar{t}} > 450 \mathrm{GeV})$	$1.9 \pm 0.3 \mathrm{pb}$		$ N_{450} \equiv \left \sigma_{450}^{ m NP}/\sigma_{450}^{ m SM} ight \lesssim 0.2$.	Constrains the M
$\sigma_{boosted} \equiv \sigma^{t\bar{t}}(p_T > 400 \mathrm{GeV})$	$11 \pm 4\mathrm{fb}$ (SM predict. $2 \pm 0.2\mathrm{fb}$)		$N_b \equiv \sigma_{boosted}^{\rm NP} / \sigma_{boosted}^{\rm SM} = 5 \pm 2$	
The required contribution of the				

The required contribution of the NP to boosted cross section

Conclusions

The constraints on the NP lead to

• $A_{450}^{t\bar{t},\mathrm{NP}} \pm 1\sigma = 0.4 \pm 0.1$

Minimal interference is needed $c_A^8/\Lambda_{\rm TeV}^2>0.3$

Minimal enhancement of boosted tops production $N_b \gtrsim 0.5$

- $N_b \leq 4$, it is consistent within $A_{450}^{tt,\mathrm{NP}} \pm 1\sigma$.
- . In case that only operators with definite chirality are included $A_{450}^{t\bar{t},{
 m NP}}\lesssim 0.1.$
- $R \lesssim 3.1$.

Allowed region for $c_V^8/\Lambda_{
m TeV}^2-c_A^8/\Lambda_{
m TeV}^2$ as constrained by $\pm 1\sigma$ for $A_{450}^{t\bar t,{
m NP}}$, N_{450} and N_{700} for different values of R.

Prediction for the Near Future

Expect that the NP will have a large contribution to the differential

cross section ratio, $N_{
m tot}\equiv rac{d\sigma^{
m SM+NP}/dM_{tar t}}{d\sigma^{
m SM}/dM_{tar t}}$,at $M_{tar t}>1\,{
m TeV}$:

For the Tevatron - $N_{\rm tot}(M_{t\bar t}=1\,{
m TeV})\gtrsim 2.$ For the LHC, at 7 TeV - $N_{\rm tot}(M_{t\bar t}=1.5\,{
m TeV})\gtrsim 3.$

corresponds to $A_{450}^{t\bar{t},\rm NP}=0.4$, ranging over the allowed range for N_{700} and N_{450} .

corresponds to the range of $A_{450}^{t\bar{t},\mathrm{NP}}=0.4\pm0.1$, ranging over the allowed range for N_{700} and N_{450} .

The ratio between the total and SM differential cross sections at top-pair production as a function of $M_{t\bar{t}}$ at the Tevatron (left) and the LHC at 7 TeV (right).

References:

- K. Blum et al., Implications of the CDF $t\bar{t}$ Forward-Backward Asymmetry for Boosted Top Physics, arXiv:1102.3133.
- C. Delaunay, O. Gedalia, Y. Hochberg, G. Perez and Y. Soreq, Implications of the CDF $t\bar{t}$ Forward-Backward Asymmetry for Hard Top Physics, arXiv:1103.2297.