\bigwedge Flavor Physics and CP Violation 2011 \oint

Lepton Flavor Violating τ Decays at B-factories

Y.Miyazaki Nagoya University

(on behalf of Belle and BaBar Collaborations)

Introduction

Introduction LFV in SUSY

Introduction

Lepton flavor violation (LFV) in charged lepton

- ⇒negligibly small probability in the Standard Model (SM) even including neutrino oscillations
 - Br($\tau \rightarrow l\gamma$) <O(10⁻⁵⁴)
 - Br(τ→3leptons) <O(10⁻¹⁴) (PRL95 41802(2005), EPJC8 513(1999))

Many extensions of the SM predict LFV decays with enhanced branching fractions that could be accessible at current experimental sensitivities

⇒Observation of LFV is a clear signature of New Physics (NP)

Tau lepton:

- The heaviest charged lepton
- Many possible LFV decay modes
- ⇒Ideal place to search for LFV

LFV in SUSY

SUSY is the most popular candidate among new physics models

induce naturally LFV at one loop due to slepton mixing

 $\tau \rightarrow$ lγ mode has the largest branching fraction $\widetilde{\chi}^0$ in SUSY-Seesaw (or SUSY-GUT) models

When sleptons are much heavier than weak scale

LFV mediated by neutral Higgs boson (h/H/A)

Higgs coupling is proportional to mass

 $\Rightarrow \mu\mu$ or \overline{ss} (K \overline{K} , η , $f_0(980)...) are favored$

Model independent searches for various LFV modes are very important

Analysis

B-factories

Analysis method

Signature of signal and background

B-factories

B-factoies : E at CM = Y(4S)

e⁺(3.5 (3.1) GeV) e⁻(8 (9) GeV) for KEKB (PEP II)

 $\sigma(\tau\tau)\sim 0.9$ nb, $\sigma(bb)\sim 1.1$ nb

A B-factory is also a τ-factory!

Detector: Good track reconstruction and particle identification

Lepton ID ~ (80-90)% Fake ID ~ O(0.1-1)% BABAR Detector

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Tracking Chamber

Support Tube

Vertex Detector

~4.8x108 ττ at BaBar

~9x108 ττ at Belle

Belle

Analysis method

Signature of signal and background

Recent Results

```
\begin{array}{c} I + \gamma \\ I + \text{pseudoscalar meson} \\ I + \text{Vector meson} \\ I + \text{hh'} \ (=\text{K}^{\pm} \text{ or } \pi^{\pm}) \end{array}
```


 $\tau \rightarrow \mu \gamma, e \gamma$ (PLB666,16(2008))

Data: $492M \tau$ pairs

Br($\tau \rightarrow \mu \gamma$)<4.5x10⁻⁸ at 90%C.L.

Br($\tau \to e\gamma$)<1.2x10⁻⁷ at 90%C.L.

Data: $482M \tau$ pairs (including Y(2,3S) data)

Use Neural network for event selection

Decay modes	20	σ signal ellipse	ε	$UL (\times 10^{-8})$		
	obs	exp	(%)	obs	exp	
$\tau^{\pm} \to e^{\pm} \gamma$	0	1.6 ± 0.4	3.9 ± 0.3	3.3	9.8	
$\tau^{\pm} \to \mu^{\pm} \gamma$	2	3.6 ± 0.7	6.1 ± 0.5	4.4	8.2	

Many remaining BG events from $e^+e^- \rightarrow \tau^+\tau^-\gamma$ sensitivity is limited by the background

$\tau \rightarrow IP^0(1)$

Previous results (6.5-16)x10⁻⁸@Belle 401fb⁻¹ Update with 901fb⁻¹ @Belle

 $M_v^2 (\text{GeV}^2/\text{c}^4)$

Signal side

- lepton (e or mu)
- pseudoscalar meson

-
$$\eta \rightarrow \gamma \gamma$$
, $\pi^+ \pi^- \pi^0$

•
$$\eta$$
' $\rightarrow \eta$ ($\rightarrow \gamma \gamma$) $\pi^+\pi^-$, $\rho \gamma$

•
$$\pi^0 \rightarrow \gamma \gamma$$

 $M_{\gamma\gamma} (GeV/c^2)$

To improve sensitivity, we changed event selection mode by mode

For example $\mu\eta(\rightarrow\gamma\gamma)$: Neural Net increase higher eff in x1.5

while keep low BG (<1)

 $\tau \rightarrow IP^0(2)$

After event selection

Expected # of BG (0.0-1.4)events

- 1 èvent $e\dot{\eta}(\rightarrow\gamma\gamma)$
- 0 events others

Br($\tau \rightarrow IP^0$)<(2.2-4.4)x10⁻⁸

@90%C.L.(preliminary)

Improve x(2.1-4.4) from prev.

τ→	Eff.	$N_{ m BG}^{ m exp}$	UL(10 ⁻⁸)	τ→	Eff.	$N_{ m BG}^{ m exp}$	UL(10 ⁻⁸)
μη(→γγ)	8.2%	0.63 ± 0.37	3.6	μη'(→ππη)	8.1%	$0.00^{+0.16}_{-0.00}$	10
$\mu\eta(\rightarrow\pi\pi\pi^0)$	6.9%	0.23 ± 0.23	8.6	$\mu\eta'(\rightarrow\rho^0\gamma)$	6.2%	0.59 ± 0.41	6.6
μη(comb.)			2.3	μη' (comb.)			3.8
eη(→ γγ)	7.0%	0.66 ± 0.38	8.2	eη' (→ππη)	7.3%	0.63 ± 0.45	9.4
$eη(\rightarrow πππ^0)$	6.3%	0.69 ± 0.40	8.1	eη' (→ρ ⁰ γ)	7.5%	0.29 ± 0.29	6.8
eη(comb.)			4.4	eη' (comb.)			3.6
$\mu\pi^0(\rightarrow\gamma\gamma)$	4.2%	0.64 ± 0.32	2.7	eπ ⁰ (→ γγ)	4.7%	0.89 ± 0.40	2.2

$\tau \rightarrow IP^0(3)$

Constraint on new physics parameters

$\tau \rightarrow IV^0$ (1)

Previous results

1-prong decay

- Belle:543fb⁻¹ Br<(6.3-18)x10⁻⁸
- BaBar:(384-451)fb⁻¹ Br<(2.6-19)x10⁻⁸

Update with 854 fb⁻¹ of data@Belle

- lepton (e or μ)
- Vector meson $(\rho, \phi, \omega, K^{*0}, K^{*0})$
- ⇒final state $h^+h^-(h=\pi/K)$
 - $(+\pi^0 \text{ for } \omega \text{ only})$

By detailed BG study, we apply the event selection mode by mode

$\tau \rightarrow IV^0$ (2)

For example, we apply event selections as

better or similar eff. than prev. while keep low BG

PLB 699 251, (2011)

1.8

 $\rm M_{\rm \mu\omega}\,(GeV/c^2)$

1.6

After event selections

Expected # of BG

(0.1-1.5) events

No excess between
data and expected BG

- 1 event $\mu\phi$, μK^{*0} , $\mu \overline{K}^{*0}$
- 0 events others

Br(
$$\tau \rightarrow IV^0$$
) < (1.2-8.4)x10⁻⁸ @90%C.L.

⇒Improve up to x 5.7 from previous results

τ⁻→	Eff.	N _{BG} exp	UL(x10 ⁻⁸)	τ⁻→	Eff.	$N_{ m BG}^{ m exp}$	UL(x10 ⁻⁸)
$e^-\rho^0$	7.6%	0.29 ± 0.15	1.8	e^-K^{*0}	4.4%	0.39 ± 0.14	3.2
$\mu^- \rho^0$	7.1%	1.48 ± 0.35	1.2	$\mu^- K^{*0}$	3.4%	0.53 ± 0.20	7.2
е-ф	4.2%	0.47 ± 0.19	3.1	e-K*0	4.4%	0.08 ± 0.08	3.4
$\mu^-\phi$	3.2%	0.06 ± 0.06	8.4	$\mu^- K^{*0}$	3.6%	0.45 ± 0.17	7.0
e-w	2.9%	0.30 ± 0.14	4.8	μ-ω	2.4%	0.72 ± 0.18	4.7

$\tau \rightarrow lhh'(1)$

Ihh' modes: 14 modes are investigated (h,h'= π^{\pm} and K $^{\pm}$)

- lepton flavor violation ($\tau^- \rightarrow l^-h^+h'^-$) 8 modes
- lepton number violation ($\tau^- \rightarrow l^+h^-h'^-$) 6 modes

Current upper limits

- Belle Br<(4.4-16)x10⁻⁸ @ 671fb⁻¹
- BaBar Br<(7-48)x10⁻⁸ @ 221fb⁻¹

update with 854fb⁻¹

Basically same signature as $\tau \rightarrow IV^0(\rightarrow hh')$ modes while BGs are increased due to no meson reconstructions

Apply similar event selections to IV⁰ selections and additional tighter cuts

$\tau \rightarrow lhh'(2)$

+ data (854 fb⁻¹) continuum MC tautau MC μKπ MC

For $\mu\pi K$ modes

main remaining BG events from $\tau{\to}\pi\pi\pi\nu$ decays with missID $\pi\pi$ as K and μ

⇒shift to bigger mass than tau mass due to π →K mass assignment

Assign $\pi\pi\pi$ mass in BG and $\mu K\pi$

 \Rightarrow M_{$\pi\pi\pi$}>1.52 GeV

To reduce $\tau\tau$ and continuum BG

- μπK modes
- \Rightarrow m²_{miss} vs. p_{miss} correction cut
- ehh', $\mu\pi\pi$ and μ KK modes
- \Rightarrow m²_{miss} cut

$\tau \rightarrow lhh'(3)$

between data and BG

on the average

Set upper limits as
Br(τ→lhh')< (2.0-8.4)x10⁻⁸
(preliminary)
Improve UL from our prev.
results by factors of 1.8

		• • • • • • • • • • • • • • • • • • • •	<u> </u>	•		
Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{ m obs}$	s ₉₀	\mathcal{B} (10 ⁻⁸)
$ au^- ightarrow \mu^- \pi^+ \pi^-$	5.83	0.63 ± 0.23	5.3	0	1.87	2.1
$ au^- ightarrow \mu^+ \pi^- \pi^-$	6.55	0.33 ± 0.16	5.3	1	4.02	3.9
$ au^- ightarrow e^- \pi^+ \pi^-$	5.45	0.55 ± 0.23	5.4	0	1.94	2.3
$ au^- ightarrow e^+ \pi^- \pi^-$	6.56	0.37 ± 0.18	5.4	0	2.10	2.0
$\tau^- \to \mu^- K^+ K^-$	2.85	0.51 ± 0.18	5.9	0	1.97	4.4
$\tau^- \rightarrow \mu^+ K^- K^-$	2.98	0.25 ± 0.13	5.9	0	2.21	4.7
$\tau^- \to e^- K^+ K^-$	4.29	0.17 ± 0.10	6.0	0	2.28	3.4
$\tau^- \to e^+ K^- K^-$	4.64	0.06 ± 0.06	6.0	0	2.38	3.3
$ au^- ightarrow \mu^- \pi^+ K^-$	2.72	0.72 ± 0.27	5.6	1	3.65	8.6
$\tau^- \to e^- \pi^+ K^-$	3.97	0.18 ± 0.13	5.7	0	2.27	3.7
$ au^- ightarrow \mu^- K^+ \pi^-$	2.62	0.64 ± 0.23	5.6	0	1.86	4.5
$\tau^- \to e^- K^+ \pi^-$	4.07	0.55 ± 0.31	5.7	0	1.97	3.1
$ au^- ightarrow \mu^+ K^- \pi^-$	2.55	0.56 ± 0.21	5.6	0	1.93	4.8
$\tau^- \to e^+ K^- \pi^-$	4.00	0.46 ± 0.21	5.7	0	2.02	3.2

Upper Limits on LFV τ Decay

Upper limits @ FPCP2010

New Upper Limits on LFV τ Decay

Reach upper limits around 10⁻⁸

Improve by factor ~100 from CLEO

Belle and BaBar are updating using full data samples

Future Prospects

LFV Sensitivity for future prospects

Belle II • Super B-factory: (10~50) ab⁻¹

LFV sensitivity depends on background level

• $\tau \rightarrow 1\gamma$,

Sensitivity currently limited due to background from τ+τ-γ events

scale as ~1/ \sqrt{L} \Rightarrow Br~O(10⁻⁽⁸⁻⁹⁾)

 $^{\bullet}$ τ→3leptons, I+meson

Negligible background at 1ab⁻¹ due to good particle identification and mass restriction to select meson

scale as ~1/L \Rightarrow Br~O(10⁻⁽⁹⁻¹⁰⁾)

Summary

Summary

Lepton flavor violation is a good signature of NP.

- ⇒Set limits of branching fraction around O(10⁻⁸)
- Improve sensitivity by factor ~100 from CLEO
- ⇒ rejected BG effectively while keeping high efficiencies due to detailed BG studies and new approach of event selections
- We are updating final results including LFV and hadronic tau decays using full data samples

Sensitivities of LFV search will reach O(10^{-9~10}) at Belle II /Super B with 50 ab⁻¹