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Muon Collider

Optimization Workflow

 End objective: design optimization study approached with AD techniques

* Development of a pipeline to propose an optimal configuration in terms of
signal-to-background discrimination and instrumentation cost

e Based on 3 main
core methods

Latent parameter { Geometry + sensor Instrumentation
space : parameters odel
LOSS FUNCTION * Provide information
encoded in a utility
Particle-level Detector simulation Pattern Reconstructed funCtlon
truth surrogate signals
* Minimized using
automatic
Det ; differentiation
techniques



Muon Collider

CRILIN: reference design

 Reference design chosen for our
studies is CRILIN for the
Electromagnetic Calorimeter (ECal)

e Array of 1x1x4.5cm3 PbF2 voxels,
arranged In a dodecahedron

e 5 |layers per wedge

 Modular design, easy to modify and
rearrange




Muon Collider

BIB characterization

e Nozzle shields most radiation from
endcaps, but area around interaction
point remains unshielded

 BIB simulation at 1.5TeV center-of-
mass energy. Energy deposits in ECal

o Still a considerable amount of energy
deposited inside

* Non-uniform distribution alongside z-
axis suggests that homogeneous
voxels might be suboptimal
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Muon Collider
Fitting BIB distribution

o Starting from 1.5TeV BIB
simulation

 Cylindrical symmetry lets us
neglect transverse direction:
focus on a single wedge and
model component along beam
axis.

e 5-parameter fit to a gaussian
superimposed to a 2nd order
polynomial
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Muon Collider

BIB simulation and checks

» Evaluate parametrization in a grid. Since we

scale factors

s have neglected transverse direction,
parametrizations will be accurate up to a
normalization constant

» Constraint: parametrized deposition match
layer-by-layer the Geant4 deposition

F * Normalization constant can be explained by the
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transverse bin multiplicity (~80) times a bin width
geometric factor (10mm)



Muon Collider

Object Condensation for reconstruction

* Jo reconstruct signals in ECal we test DeepdJetCore, a package developed
for the reconstruction of jets in the High-Granularity Calorimeter for the
CMS upgrade for the High-Luminosity LHC runs

 Coreis a Graph Neural Network that clusters the data, whose
dimensionality has been reduced by filter layers.

* Clustering performed through the identification of one condensation point
for each object, and the subsequent minimization of a loss function



Muon Collider

OC: Dataset Generation

 The dataset chosen to train the algorithm is 10000 photon events, distributed
uniformly in [10,175]GeV

 Photons are generated with Geant4, with rapidity 0 and uniformly distributed
In the transverse angle ¢

 BIB parametrization superimposed
 Geometric cuts:
e 20 of total signal deposition in ¢

 40cm band along z-axis
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Muon Collider

OC: Dataset Generation
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Muon Collider || s
OC: Clustering g ' |
|
- N
* Trained for 150 epochs with N

learning_rate=1E-3
 Jumps in loss due to too big learning step
* Next training down 2 orders of magnitude

 Performance evaluated on 1k
monochromatic photons for 8 energy points

* Decent signal (ID=0) vs background (ID=1)
separation
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Muon Collider

OC: Energy reconstruction

* Primary energy inferred by summing the energy
deposits for signal-labeled hits

* Degrades at lower energies, where sighal and
BIB deposits become comparable

 (Calculate standard deviation and RMS error
around each peak to evaluate resolution
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Muon Collider ?]. pi=am-
OC: Energy reconstruction s\l PRELIMINARY
- Fit to obtain resolution function
parameters: |
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Muon Collider

Towards setting up a pipeline

* |dea: represent Crilin detector as a 3D grid
of voxels, and optimizing the spacing
(Ax,Ay,Az) between them.

o Started to work on a toy model:

 Defining the geometry: simple 3D grid
with custom # voxels

 Evaluating a function on the grid: 3D
gaussian with oxzoy#0z + random noise
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Initial spacing: [1.0 1.0 1.0]

Muon Collider

Towards setting up a pipeline

e Reconstruction: Use maximum-
likelihood estimators to infer the

gaussian parameters [, 6 100 epochs

Lr = 0.001

X 200

* Evaluating loss: MSE for gaussian
parameters + regularizer to prevent

spacing to collapse towards degeneracy =~ - |
X =+ Gim o)+
I=X,Y,Z

e Minimization of loss and identification
of ideal parameters
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Summary

» Still work to do to come up with a design
» Differentiable blocks are however taking shape

* Tests on OC promising. Need to play with parameters, and generalize to N
photons.

* Joy pipeline model to be upgraded with more realistic loss and signal
generation

* |f it proves successful, we are able to implement the full ECal geometry

15



Summary

» Still work to do to come up with a design
» Differentiable blocks are however taking shape

* Tests on OC promising. Need to play with parameters, and generalize to N
photons.

* Joy pipeline model to be upgraded with more realistic loss and signal
generation

* |f it proves successful, we are able to implement the full ECal geometry

Thank you!
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DJC Architecture
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Muon Collider baseline

proton driver front end

=

buncher
combiner
capture sol.

accumulator
MW-class target

Low EMmittance Muon
Accelerator (LEMMA):

1011 y, pairs/sec from e*e~
Interactions. The small production
emittance allows lower overall charge
in the collider rings — hence, lower
backgrounds in a collider detector
and a higher potential centre-of-mass
energy while mitigating neutrino
radiation from muon decays.

decay channel

buncher

phase rotator

cooling

initial 6D cooling
charge separator

positron linac

positron linac

6D cooling
final cooling

positron
ring

Isochronous

acceleration collider ring °

accelerators:
linacs, RLA or FFAG, RCS

acceleration

accelerators:
linacs, RLA or FFAG, RCS
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Muon production
- mMAo Muon
Accelerator
Program

O Proton beam

on a target,
muons from
pion decay

O High

emittance,
advanced
cooling
needed

Alternative - LEMMA



