

A leap in Electroweak Precision Opportunities and Challenges FCC

ECFA WG1 Mini Workshop Christoph Paus November 13, 2023

FCC-ee Run Plan

The baseline run plan for FCC-ee

- Z run has most events followed by WW run: most stringent exp. requirements
- Baseline run plan was updated for the midterm report of FCC feasibility study to have 4 IPs instead of 2 IPs increasing available event sample by factor of ~1.7

time [operation years]

FCC-ee Run Plan

Baseline FCC-ee staged running scenario

- Starting with the lowest energy scenario at the Z pole is most obvious to stage the installation of RF cavities
- Z pole running will result in an enormous data set with unprecedented precision
- Precision LEP uncertainties are devised by $~500$ (statistical uncertainties, only)

At FCC-ee it takes about a minute to accumulate an entire LEP Z pole dataset

FCC-ee Run Plan

Alternate FCC-ee running scenario

- After questions during P5 sessions, whether Higgs factory of FCC-ee could start earlier, an alternative scenario has been developed that also fits into a 16 year operation plan
- The initial ZH and Z pole running will initially ramp up and after development reach the design luminosity

At FCC-ee it takes about a minute to accumulate an entire LEP Z pole dataset

Motivation for Precision

At LEP

- Measure crucial fundamental parameters of the standard model
- Z mass, W mass, $\alpha_{\rm s}$, $\alpha_{\rm oED}$, number of light neutrinos
- Convert direct observables like σ , A_{FB} , T_{POL} , ... to pseudo observables
- Constrain indirectly m_t and m_H by using pseudo observables as input
- Find discrepancies in the measurements indicating the SM is broken or better that there is physics beyond the standard model (BSM)

For FCC ee

- All standard model parameters are known and look to be consistent
	- Last additions m $_{\rm H}$ (LHC, 2012) and m $_{\rm t}$ (Tevatron, 1995)
	- *… neutrinos are another story*
- Consistency between all measurements will be tested about 3 orders of magnitude more stringently than before, inconsistencies will immediately invoke new physics

Latest Status

Why do precision EW?

CDF experiments last word

W mass too heavy by seven standard deviations !

CDF experiments last word *Why do precision EW?*

W mass too heavy by seven standard deviations !

Source: https://www.quantamagazine.org/fermilab-says-particle-is-heavy-enough-to-break-the-standard-model-20220407/

Lineshape Summary

Key topics for theory to address

Asymmetry Summary

Key topics for theory to address

The Lineshape

Cross section

 $\sigma(\sqrt{s}) = \frac{N_{\text{signal}}}{\mathcal{L}} = \frac{N_{\text{selected}} - N_{\text{background}}}{\varepsilon A \mathcal{L}}$ What can we extract?

- Z mass (m_z), Z width (Γ_z)
- Hadronic peak cross section $(\sigma_{0. \text{hadr}})$
- Ratio of leptons (R_{l})
- (Number of light neutrinos)
- Hadrons "win" (quarks have color)
	- mass, width and σ_0

Theory needed

 Deconvolute QED and the EW/QCD corrections…. tricky

Cross section CM energy: \sqrt{s} *Ingredients*
 $\sigma(\sqrt{s}) = \frac{N_{\text{selected}} - N_{\text{background}}}{\varepsilon A C}$

Resonant depolarization and many more 'tricks'

Luminosity: \mathcal{L}

- How tightly packed is the beam?
- Basic idea: find accurately calculable process and count, it should not depend on the Z boson (too much).
- Event counts: N_{selected}, N_{background}
	- Selected events contain signal and the remaining background

Acceptance, *A*, and efficiency, *ԑ*

- Acceptance loss: particle outside detector fiducial volume
- Efficiency loss: particle inside detector volume, but not identified

Energy Calibration

Resonant depolarization is key

It will be run in situ using pilot bunches during data taking

Other important feature

- Absolute calibration will be transported precisely from point-to-point
- Calibration repetition rate needs to be considered
- Beam energy spread and its uncertainty will affect Z width and $\alpha_{\text{\tiny QED}}(m_{\text{\tiny Z}})$
- Can dimuons/dielectrons to measure beamspread or even center-of-mass energy and help beam calibrations? Needs calibrated muons/electrons using well known resonances… see W mass from LHC/CDF

Compared to LEP

- Main calibration idea is the same
- ... but much more precise with huge data rate and in situ calibration schemes substantially expanding the scope
- A lot more detail but not for this talk

Energy Calibration

FCC calibration is still in rapid development

- Latest studies showed a much improved point-to-point uncertainty and more is to come
- The latest study is summarized below
- *Overall uncertainty still needs to be shrunk...*

Table 15. Calculated uncertainties on the quantities most affected by the centre-of-mass energy uncertainties, under the final systematic assumptions.

From: [arxiv:1909.12245](https://arxiv.org/pdf/1909.12245.pdf)

Uncertainties have been decreasing but no full update available, yet.

Luminosity ^ℓ r

Small angle Bhabha scattering from LEP?

- Cross section very large (78 nb): good statistical precision
- Need to have excellent control of the geometry: O(10-5) precision
	- Precision on radial dimensions $Δr \sim 1$ μm
	- Half distance between lumi monitors at $\Delta\ell \sim 50$ μm
- Theory prediction improved from 0.061% at LEP to 0.037% recently, but still far from statistical precision of hadronic final states (~4x10-7)

e-

Another clean and copious process?

- $e^+e^- \rightarrow \gamma \gamma$: precise prediction, no Z dependence and clean
- Only 1 in 1000 Z events accuracy $O(10^{-5})$
- No perfect solution but pretty good

Best plan, so far

- Use $e^+e^- \rightarrow \gamma \gamma$ as overall normalization (global)
- Bhabha events to extrapolate across CM energies (σ_{theory} = 14 nb)
- Loose significant precision on $\sigma_{0, \text{ hadr}}$ (# light neutrinos) and
- … some on *mZ, Γ^Z*

https://arxiv.org/abs/1912.02067

 $e+$ \longrightarrow \longrightarrow \qquad \vee \vee \vee

Luminous region FCC

Size of the luminous region $\frac{E}{N}$ 1.2 versus beam energy

- *y*-direction [nm], *x*-direction [μm]
- **The Surfar Surie Community Contraction [1011]**
 y-direction [nm], *x*-direction [µm]
 z- direction [mm] ... at Z pole below $\frac{1}{8}$

mm level

vertexing uncertainty at μ m level mm level
- vertexing uncertainty at *μm level*

My conclusion on luminous region?

- Due to well focused beam and pristine vertex reconstruction neither significant beam crossing angle nor uncertainties on those should be an issues
- Event pileup at about 2 in a thousand events can be cleanly identified (μm vertex with 0.4 mm luminous region at Z pole)
- Needs to be careful implemented in MC and confirmed!

^{} https://github.com/HEP-FCC/FCCeePhysicsPerformance/tree/master/General#vertex-distribution*

Importance of Monte Carlo

Hadron colliders

- Collisions never use the full center-of-mass energy, protons are complex
- Collisions: full of 'uninteresting' events,
- Highly selective before they are written to tape
- Monte Carlo simulation very hard and patched together
- Huge cross sections are very useful for detector and physics calibrations

Lepton colliders

- Every event uses the 'full' center-of-mass energy
- Calculations can be very precise and are reasonable to produce
- Monte Carlo is used for most backgrounds and more inclusive
- Separate calibration data samples are hard to come by

Event Counts

Number of selected events

- Statistical precision is ultimate limitation; you cannot get better
- Keep as many events as possible, but not let in too much background
- Number of background events
	- Monte Carlo predicts it precisely, *if you have enough and it agrees*
	- Detailed detector description is crucial (*realistic** Monte Carlo)
	- Exception: two-photon collision events notoriously difficult, in particular two photons with hadronic decay products ($e^+e^- \rightarrow e^+e^-$ qqbar)
	- Event pileup needs to be accounted for (2x10-3)

Two-Photon events (e⁺e⁻→e⁺e⁻ ffbar)

- Key issues: shape in visible energy and number of particles produced
- Tails are sensitive to noise, promoting them to multihadron events, other final states safer
- Off-peak running, or explicit tagging of e⁺/e⁻?
- Better MC is needed (theory community)

* simulate time dependent effects of detector and other running conditions: MC mapped to specific data recorded

Type

 $e-$

Acceptance/Efficiency

Typical numbers

- Excellent control of geometry and positioning: O(10-5) precision
- In situ active laser alignment systems are crucial (μm precision)
- Definition of the fully active detector borders very important
	- Calorimeters: \sim Molière radius distance from the edges
	- Hermeticity more important than resolution: overlapping detectors to avoid dead areas

Different final states

- Hadrons hard to miss
	- We look for jets (many particles, broadly spread)
	- Fragmentation/hadronization are an issue: hard to derive systematic uncertainty
	- Reproducing multiplicity traditionally problematic (QCD / Infrared divergent ...)
	- Whizard and KKMC do not agree at all on hadronic shower constitutents
- Leptons easier to miss
	- Cracks or dead areas crucial, definition of fiducial volume most important here
	- Independent subdetectors: tracker/muon chambers, tracker/ECAL, tracker/HCAL, ...
	- Final state much clearer no additional uncertainties (?), collision angle (?)

Acceptance/Alignments

Philosophy from LEP

- There are many events
- Statistical precision is high
- Measure systematic: it usually stops when you run out of events
- … there are of course limitations to this philosophy

Alignments and acceptance

- Many events with given detector geometry and positioning will result in precise and accurate alignments, see previous experiments and most recently the LHC ones
- Precise detector acceptance measurement is possible 'in situ' for diphoton (dielectron) events
- This general idea should apply also to the luminosity calorimeter and the small angle Bhabha scattering and the muon detection system… some interesting studies should follow

Z → Hadrons: A/ԑ

Statistical precision: order 10-7 – 10-6

- LEP acceptance down to $12^{\circ} \rightarrow \cos(12^{\circ}) = 0.9781$ (L3)
- FCC acceptance down to $7^{\circ} \rightarrow \cos(7^{\circ}) = 0.9925$
	- Enormous improvement in number of *lost particles* $(2.2\% \rightarrow 0.75\%)$
	- Jets are too big to not register: efficiency should be *very* close to 100%
	- No trigger \odot , which is good but redundancy in detectors much needed
	- Tracker versus calorimeter based analysis essential (add timing layer?)
	- Is the detector on and is there any noise? → *realistic* detector Monte Carlo
	- Collision angle should not matter, as long as it is simulated well

22/44

Z→Hadrons: Message from LEP

Example plots for hadron selection at L3

- There is noise, number of clusters in MC do not agree
- Two photons are leaking

Z→Hadrons: Message from LEP

Example plots for hadron selection at L3

- There is noise, number of clusters in MC do not agree
- Two photons are leaking

Z→Hadrons: LEP versus FCCee

Compare visible energy

Resolution much better at FCC-ee: lower tail is physics

Z→Hadrons: LEP versus FCCee

Compare visible energy

Lower tail clearly needs to be understood very well

Z→Hadrons: Multiplicity

Initial comparison – making multi-hadron events at the Z pole (compare two reasonable programs)

Compare

- Different orders implemented
- Pythia for showering
- Pythia 8 versus 6
- KKMC versus Whizard

Issues

- Shower interface partially disabled
- Various other smaller items

Z→Hadrons: Multiplicity

Best status after fixing all problems and a reasonable selection: two MCs look pretty close.

Z→Hadrons: Multiplicity

Compare ALEPH and FCC simulation

- After fixing the comparison issues between KKMC and Whizard
- Reconstructed particles disagreed
- ALEPH plot is fully corrected to gen. particle level

Reconstructed Particles **Generator Level Particles**

Z→Hadrons: Acceptance

MC comparison not close: 8.7 std difference == 0.1%! Better MC needed to estimate theory uncertainties

How important is the definition of the detector hole?

- Reject particles smaller a given value
- Significant dependence seen
- Comparisons of the MC not as strongly dependent
- Make acceptance as large as possible!

Match Experiment/Theory

Undusted L3 program to fit two-fermion data

- LEP/SLC: theory and experiment used Pseudo Observables (PO)
	- Assume: QED correct (ISR/FSR/int), weak interaction V-A, effective Born Approx., and Z boson decays to fermions only, photon/Z interference
- For verification the full L3 cross section and forward-backward asymmetry dataset was fit, including all details and the numbers in the last L3 paper were reproduced with minute differences
- Various theory programs are interfaced (TOPAZ0, ZFITTER, ALIBHABHA, MIBA, ….): ZFITTER is the only program used for the following studies

What about FCC-ee?

- Is it still feasible to use Pseudo Observables?
- Maybe differential measurements: direct comparison between MC and data needed to extract physics parameters

How well can we do?

Extract Pseudo Observables: *mZ, ΓZ and σ0, hadr*

Inputs: hadronic TXS, 3 points: 91.2 GeV: 125/ab; 88.0, 94.0 GeV: 40/ab

- 1) statistical uncertainty on hadrons only, nothing else
- 2) Add fully correlated systematic uncertainty as large as peak stat. uncertainty
- 3) Add stat. uncertainty on luminosity corresponding to 14 nb cross section
- 4) Add 1.4 x 10-5 syst. fully correlated, and another 10-5 uncorrelated on luminosity
- 5) Add 10 keV correlated uncertainty on E_{CMS}
- 6) Or alternatively 100 keV correlated uncertainty on ECMS

Leptonic Ratios and α_ς

Advantage of Ratios (and Asymmetries)

- Relative measurements do not need the luminosity …
- *It seems luminosity will be very hard to pin down to desired precision*
- Provides sensitive test of lepton universality by comparing different lepton flavors
- Quark-lepton universality will be tested and allows a determination of the strong coupling constant, theoretical uncertainties need to be evaluated carefully

Limitations at LEP

 R^ℓ at LEP has largest experimentally uncertainty from the acceptance

How about FCCee

- Acceptance at FCCee is substantially improved
	- Coverage is much larger
	- Angular and vertex resolutions much improved
- An expected uncertainty on *Rℓ* at 0.001 needs theory uncertainty to be improved by about a factor of 4 to approximate exp. precision

 $\alpha_S = x \pm 0.00014(exp) \pm 0.00022(th)$

 $R_{\ell} =$

Forward backward asymmetries

- Decouples from cross section, no luminosity uncertainty!
- Measures sin² θ_{w} ^{eff} and $\alpha_{\text{\tiny QED}}(\textsf{m}_\textsf{Z})$, which mostly decouple
- A_{FB} constrains $sin^2\theta_W$ ^{eff (m_t and m_w)} most significantly at peak, small stat. uncertainty
- Needs accurate MC for ISR, FSR and IFI: QED/SM corrections crucial
- Points to measure $\alpha_{\text{QED}}(m_z)$, are just below or just above the Z peak (87.9 or 94.3 GeV) ⌒

$$
A_{\rm FB} = \frac{3}{4} A_{\rm e} A_f
$$

 $A_{\text{FB}}^{\mu\mu} = \frac{N_{\text{F}}-N_{\text{B}}}{N_{\text{F}}+N_{\text{B}}} \approx f(\sin^2\theta_W^{\text{eff}}) + \alpha_{\text{QED}}(s) \frac{s-m_Z^2}{2s} g(\sin^2\theta_W^{\text{eff}})$

Forward backward asymmetries

- Decouples from cross section, no luminosity uncertainty!
- Measures sin² θ_{w} ^{eff} and $\alpha_{\text{\tiny QED}}(\textsf{m}_\textsf{Z})$, which mostly decouple
- A_{FB} constrains $sin^2\theta_W$ ^{eff (m_t and m_w)} most significantly at peak, small stat. uncertainty
- Needs accurate MC for ISR, FSR and IFI: QED/SM corrections crucial
- Points to measure $\alpha_{\text{QED}}(m_z)$, are just below or just above the Z peak (87.9 or 94.3 GeV) ⌒

$$
A_{\rm FB} = \frac{3}{4} A_{\rm e} A_f
$$

 $A_{\text{FB}}^{\mu\mu} = \frac{N_{\text{F}}-N_{\text{B}}}{N_{\text{F}}+N_{\text{B}}} \approx f(\sin^2\theta_W^{\text{eff}}) + \alpha_{\text{QED}}(s) \frac{s-m_Z^2}{2s} g(\sin^2\theta_W^{\text{eff}})$

Forward backward asymmetries

- Decouples from cross section, no luminosity uncertainty!
- Measures sin² θ_{w} ^{eff} and $\alpha_{\text{\tiny QED}}(\textsf{m}_\textsf{Z})$, which mostly decouple
- A_{FB} constrains $sin^2\theta_W$ ^{eff (m_t and m_w)} most significantly at peak, small stat. uncertainty
- Needs accurate MC for ISR, FSR and IFI: QED/SM corrections crucial
- Points to measure $\alpha_{\text{QED}}(m_z)$, are just below or just above the Z peak (87.9 or 94.3 GeV) \blacklozenge ⌒

$$
A_{\rm FB} = \frac{3}{4} A_{\rm e} A_f
$$

 $A_{\text{FB}}^{\mu\mu} = \frac{N_{\text{F}}-N_{\text{B}}}{N_{\text{F}}+N_{\text{B}}} \approx f(\sin^2\theta_W^{\text{eff}}) + \alpha_{\text{QED}}(s) \frac{s-m_Z^2}{2s} g(\sin^2\theta_W^{\text{eff}})$

From: <u>arxiv:1512.05544</u> 36/44

Forward backward asymmetries

- Decouples from cross section, no luminosity uncertainty!
- Measures sin² θ_{w} ^{eff} and $\alpha_{\text{\tiny QED}}(\textsf{m}_\textsf{Z})$, which mostly decouple
- A_{FB} constrains $sin^2\theta_W$ ^{eff (m_t and m_w)} most significantly at peak, small stat. uncertainty
- Needs accurate MC for ISR, FSR and IFI: QED/SM corrections crucial
- Points to measure $\alpha_{\text{QED}}(m_z)$, are just below or just above the Z peak (87.9 or 94.3 GeV) \blacklozenge Ω

$$
A_{\rm FB} = \frac{3}{4} A_{\rm e} A_f
$$

 $A_{\text{FB}}^{\mu\mu} = \frac{N_{\text{F}}-N_{\text{B}}}{N_{\text{F}}+N_{\text{B}}} \approx f(\sin^2\theta_W^{\text{eff}}) + \alpha_{\text{QED}}(s) \frac{s-m_Z^2}{2s} g(\sin^2\theta_W^{\text{eff}})$

Key Ingredients: Tau Polarization

Tau polarization

- Disentangles left-right asymmetry A_e and A_τ
- Enables to decorrelate the remaining fermion AFB
- Provides best A_e and A_τ

Limitations

- Main issue is the non-tau background and its proper estimate
- Massive calibration samples should provide sufficient control over background but this has to be proven

Heavy Flavours

Ratios R*b,c,(s)*

- Sensitive to potential top/W vertex modification
- Atios $R_{b,c,(s)}$

Sensitive to potential top/W vertex modification

Sens theoretically limited
- Much better vertex detector and vertexing algorithms
- Is it possible to tag strange quarks? Studies show that yes….
- Substantial improvement needed in details of quark production: gluons radiation and splitting, decay models and fragmentation (b, c, … s)

Forward-backward asymmetries $\rightarrow A_{b.c(.s)}$

- Building on the taggers developed for heavy flavor ratios
- Double tagging techniques from LEP will be very useful to contain systematic uncertainties
- Careful though, hemisphere correlations turned out to be a big issue during LEP
- QCD uncertainties are fully correlated between all measurements, studies show that tight cuts on acollinearity will substantially improve the situation
- This will result in precise new $A_{b, c(s)}$ measurements
- Exclusive decays can also help

LEP/SLC vs FCCee

Key points of comparison: m_W and sin $^2\mathsf{H}_\mathsf{W}^\mathsf{eff}$

LEP measured predicted $\sin^2 \theta_W^{\text{eff}} = 0.23153 \pm 0.00016$ $\sin^2 \theta_W^{\text{eff}} = 0.231488 \pm 0.000029_{mt} \pm 0.000015_{mZ} \pm 0.000035_{\alpha QED}$ $\pm 0.000010_{\alpha S} \pm 0.000001_{mH} \pm 0.000047_{\text{theory}}$ $= 0.21349 \pm 0.00007_{\text{total}}$ FCC projected projected prediction $\sin^2 \theta_W^{\text{eff}} = 0.231488 \pm 0.000001_{mt} \pm 0.000001_{mZ} \pm 0.000009_{\alpha QED}$ $\sin^2 \theta_W^{\text{eff}} = 0.23153 \pm 0.000002$ $\pm 0.000001_{\alpha S} \pm 0.000000_{mH} \pm 0.000047_{\text{theory}}$ LEP measured predicted $m_{\rm W} = 80.3584 \pm 0.0055_{mt} \pm 0.0025_{mZ} \pm 0.0018_{\alpha OED}$ $m_W = 80.379 \pm 0.012 \text{ GeV}$ $\pm 0.0020_{\alpha S} \pm 0.0001_{mH} \pm 0.0040_{\text{theory}}$ GeV $= 80.358 \pm 0.008_{\rm total}$ GeV FCC projected projected prediction $m_{\rm W} = 80.3584 \pm 0.0001_{mt} \pm 0.0001_{mZ} \pm 0.0005_{\alpha OED}$ $m_W = 80.379 \pm 0.0003$ GeV

 $\pm 0.0002_{\alpha S} \pm 0.0000_{mH} \pm 0.0040_{\text{theory}}$ GeV

40/44 Projections by Sven Heinemeyer

LEP/SLC vs FCCee

Example for new physics in W or Z propagator

- *S* and *T* variables paramterize this new physics
- FCCee is doing very well but it is clear we can do much better, if
	- Experimental systematics can be controlled and if theory calculations are precise enough to match statistical uncertainties

Improvements in calculations by factors of 10-20 needed to match the statistical uncertainties, but also experimentalists need to do a lot of work to establish that statistical boundary can really be reached.

Conclusions

New era in precision electroweak physics

- Profound test of standard model at Z pole and WW threshold: re-measure parameters up to 3 orders of magnitude more precisely: m_z, α_{QED}(m_z), ...
- Severe constraints from pseudo observables on: m_w , m_t , ...
- Far reaching consequences for predictions

We are not there yet though ...

- Luminosity measurement fundamentally limits $\sigma_{0, \text{ hadr}}$ (# light neutrinos) and puts some limitations on uncertainties for *mZ, Γ^Z*
- Energy calibration largest contribution to Z boson mass uncertainty
- Many experimental uncertainties are believed to be manageable, but significant work is needed to prove this *(see next slide)*
- Detailed detector status monitor and in situ inclusion of it into the MC will be key for precision results
- **Hadronic final states: acceptance uncertainty? Compare MC?**
- **Two photon processes most worrisome, especially for hadronic Z decays**

Thank you

Work on lineshape analyses

- Jan Eysermans, Luca Lavezzo, **Marina Malta Nogueira**
- Tim Neumann, Sofia Lara, Casey Lawson, Bella Torres, Denis Siminiuc, Brenda Chow, Rujuta Sane

General support

Emmanuel Perez, Patrick Janot, Gerardo Ganis

Next steps

Develop simulated data analysis setup

- Generate full Monte Carlo setup: start with LEPx10 equivalent samples
- Produce 'modified' MC with Delphes mixing it together so it appears as real detector data: LEPx1 equivalent
- Go through full analysis process and see how *modifications* affect the analyses
- Setting up a sample of 5x10¹² events is not trivial, but will be needed to test detailed systematic effects at that level once first 'single LEP' is completed
- Tau (polarization), Heavy flavour measurements and Bhabha's need to follow to make the picture complete, maybe QFB?
- 7 GB per 10⁶ hadronic decays \rightarrow 7 PB for 10¹² events (Delphes)

A word on theory and parameter extraction

- Theory uncertainties are making good progress but more work will be needed
- Is the old LEP style fit of pseudo observables still feasible? The latest ZFITTER and TOPAZ0 implementations are pretty convoluted