### ILC at Z-Pole – A reminder

for a more comprehensive assessment see 1908.08212 and/or 2203.07622

Roman Pöschl



### ECFA Higgs/elw./top study– November 2023

Disclaimer: I mainly show material that I have already shown more than 1.5 years ago at meetings of similar scope. I hope that it's not too outdated. If it is I apologise and please raise your hand .....



# e+e- Physics program



- All Standard Model particles within reach of planned e+e- colliders
- High precision tests of Standard Model over wide range to detect onset of New Physics
- Machine settings can be "tailored" for specific processes
  - Centre-of-Mass energy
  - Beam polarisation (straightforward at linear colliders)

$$\sigma_{P,P'} = \frac{1}{4} \left[ (1 - PP')(\sigma_{LR} + \sigma_{RL}) + (P - P')(\sigma_{RL} - \sigma_{LR}) \right]$$

Background free searches for BSM through beam polarisation ECFA PREC Working Meeting - November 2023







- High energies ~above tt-threshold Domain of linear colliders
- Low energies e.g. Z-pole Domain of circular machines However, see later ...
- Transition region, i.e. HZ threshold ... not so clear Comparable numbers for all proposals and N =  $\sigma$ L
- Linear colliders are more versatile to test chiral theory due to polarised beams
- Plot on power consumption see backup

### Figure J. List





# **ILC Running Scenarios**



### In 2019 – Revision of capabilities to run on the Z Pole - GigaZ

|                                         | $\operatorname{sgn}(P(e^{-}), P(e^{+})) =$ |       |       |       |     |
|-----------------------------------------|--------------------------------------------|-------|-------|-------|-----|
|                                         | (-,+)                                      | (+,-) | (-,-) | (+,+) | sum |
| luminosity $[fb^{-1}]$                  | 40                                         | 40    | 10    | 10    |     |
| $\sigma(P_{e^-}, P_{e^+}) \text{ [nb]}$ | 83.5                                       | 63.7  | 50.0  | 40.6  |     |
| $Z$ events $[10^9]$                     | 2.4                                        | 1.8   | 0.36  | 0.29  | 4.9 |
| hadronic Z events $[10^9]$              | 1.7                                        | 1.3   | 0.25  | 0.21  | 3.4 |

- luminosity upgrade
- Further details see arxiv: 1908.08212





### arXiv:1506.07830

### • Pole running can happen before and after the



Track momentum:  $\sigma_{1/p} < 5 \times 10^{-5}/\text{GeV}$  (1/10 x LEP) (e.g. Measurement of Z boson mass in Higgs Recoil) Impact parameter:  $\sigma_{d0} < [5 \oplus 10/(p[GeV]sin^{3/2}\theta)] \ \mu m (1/3 \times SLD)$ (Quark tagging c/b) Jet energy resolution :  $dE/E = 0.3/(E(GeV))^{1/2}$  (1/2 x LEP) (W/Z masses with jets) Hermeticity :  $\theta_{min} = 5 \text{ mrad}$ (for events with missing energy e.g. dark sector/ invisible decays)



Final state will comprise events with a large number of charged tracks and jets(6+)

- High granularity
- Excellent momentum measurement • High separation power for particles
- Particle Flow Detectors







## **ILC Physics Targets – Energy requirements**

### Core Program

| Observable                        | M <sub>H</sub> | $M_{ m t}$ | $M_{ m W}$     |
|-----------------------------------|----------------|------------|----------------|
| Method                            | Recoil mass    | Scan       | Reconstruction |
| Best $\sqrt{s}$ [GeV]             | 250            | 350        | 250            |
| Current precision [MeV]           | 170            | 300        | 12             |
| Target precision [MeV]            | 10             | 20         | 2              |
| $\sqrt{s}$ contribution [MeV]     | 3              | 6          | 0.5            |
| $\sqrt{s}$ uncertainty goal [ppm] | 100            | 200        | 10             |

### Ultimate Impact/Reach

| Observable                        | $M_{ m W}$ | Mz      | $\Gamma_{ m Z}$ |     |
|-----------------------------------|------------|---------|-----------------|-----|
| Method                            | Scan       | Scan    | Scan            | Co  |
| Best $\sqrt{s}$ [GeV]             | 161        | 91      | 91              |     |
| Current precision                 | 12         | 2.1     | 2.3             | 1.9 |
| Target precision                  | 2 MeV      | 0.2 MeV | 0.11 MeV        | 3.5 |
| $\sqrt{s}$ contribution           | 0.8 MeV    | 0.2 MeV | small           | 1.8 |
| $\sqrt{s}$ uncertainty goal [ppm] | 10         | 2       | 5*              |     |

Graham Wilson, IDT WG3 MDI Meeting, https://agenda.linearcollider.org/event/9401/

Roman Pöschl

ECFA WG1 – March 2022









## **Measurement of beam energy**

### Use dilepton momenta, with $\sqrt{s}_p \equiv E_+ + E_- + |\vec{p}_{+-}|$ as $\sqrt{s}$ estimator.



Tie detector *p*-scale to particle masses (know  $J/\psi$ ,  $\pi^+$ , p to 1.9, 1.3, 0.006 ppm)

Measure  $<\sqrt{s}>$  and luminosity spectrum with same events. Expect statistical uncertainty of 1.0 ppm on *p*-scale per 1.2M  $J/\psi \rightarrow \mu^+\mu^-$  (4 × 10<sup>9</sup> hadronic Z's).

- excellent tracker momentum resolution can resolve beam energy spread.
- feasible for  $\mu^+\mu^-$  and  $e^+e^-$  (and ... 4l etc).

Graham Wilson, IDT WG3 MDI Meeting, https://agenda.linearcollider.org/event/9401/ ECFA PREC Working Meeting – November 2023



### Further remarks:

Realistic study has to take real beam energy spread and crossing angle into account
Ongoing

 Momentum scale can be further constrained by with K<sub>0</sub> and Λ using Armenteros-Podolanski Method

• See e.g. 2012.03620

• 10ppm at s=250 GeV and 1ppm on Z pole seem to be in reach



# **W - Parameters**

### W Mass from ...:

- Constrained WW reconstruction
- Hadronic mass from hadronic W decays
- Lepton endpoints:  $m_W^2 = E_l(E_b E_l), \ E_l = E_b(1 \pm \beta_W)/2$
- Dilepton pseudo mass from constrained fit
- Polarised W scan

$$\Delta m_W(MeV) = 2.4(stat.) \oplus 3.2(syst.) \oplus 0.8(\sqrt{s}) \oplus \text{theory}$$

### **Branching ratios**

From simultaneous fit to all 10 decay combinations

=> 
$$\sigma_{tot}$$
 and  $B_{e,\mu,\tau}$  and  $B_{had}$  = 1 –  $B_e$  –  $B_{\mu}$  -  $B_{\tau}$ 

W width:  $\Delta \Gamma_{W} = 3.2 \text{ MeV}$ 





Roman Pöschl





# **W - Parameters**





- Robust method
- background
- Need extreme good control of beam energy



### • Beam polarisation essential to control



# **Anomalous Triple Gauge Couplings**









# **Two fermion processes**



$$\frac{d\sigma}{d\cos\theta}(e_L^- e_R^+ \to f\bar{f}) = \Sigma_{LL}(1 - \frac{1}{2})$$

$$\frac{d\sigma}{d\cos\theta}(e_R^- e_L^+ \to f\bar{f}) = \Sigma_{RL}(1 - \frac{d\sigma}{d\cos\theta}) = \Sigma_{RL}(1 -$$

\*add term  $\sim sin^2 \theta$  in case of non-relativistic fermions e.g. top close to threshold

- $\Sigma_{\mu}$  are helicity amplitudes that contain couplings  $g_{\mu}$ ,  $g_{\mu}$  (or  $F_{\mu}$ ,  $F_{\mu}$ )
- $\Sigma_{\mu} \neq \Sigma_{\mu}' =>$  (characteristic) asymmetries for each fermion
- Forward-backward in angle, general left-right in cross section
- All four helicity amplitudes for all fermions only available with polarised beams



## $(1 + \cos \theta)^2 + \sum_{LR} (1 - \cos \theta)^2$

## $(-\cos\theta)^2 + \Sigma_{RR}(1+\cos\theta)$



# **Helicity amplitudes and new physics**

Helicity amplitudes can be analysed in several ways (not mutually exclusive):

**Oblique Parameters W, Z:** 

$$Q_{e_i f_j} = Q_e^{\gamma} Q_f^{\gamma} + rac{g_{e_i}^Z g_{f_j}^Z}{\sin^2 heta_W \cos^2 heta_W} rac{s}{s - M_Z^2 + \mathrm{i}\Gamma_Z M_Z} + rac{s}{m_W^2} f_{i,j}(W,Y)$$

Contact interactions with e.g. compositeness scale  $\Lambda$ :

$$Q_{e_i f_j} = Q_e^{\gamma} Q_f^{\gamma} + \frac{g_{e_i}^Z g_{f_j}^Z}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \frac{g_{contact}^2}{2\Lambda^2} \eta_{e_i f_j}$$

New propagators in concrete models of new physics:

$$Q_{e_i f_j} = Q_e^{\gamma} Q_f^{\gamma} + \frac{g_{e_i}^Z g_{f_j}^Z}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^{Z'} g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_{Z'}^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_{Z'}^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_{Z'}^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_{Z'}^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^{Z'}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^Z g_{f_j}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}^Z g_{f_j}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{f_j}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{e_i}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{e_i}}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \sum \frac{g_{e_i}^Z g_{e_i}}{\sin$$

Always with I,j being the helicities of the initial state electron e and the final state fermion f *Remark: Have to exchange g-> Q to be conistent with conventions* ECFA PREC Working Meeting – November 2023

Roman Pösch











### PhD thesis: S. Bilokin A. Irles

## flavor tagging

- b-quark charge measurement
  - Important for top quark studies, indispensable for ee->bb
- Control of migrations:
  - Correct measurement of vertex charge • Requires excellent forward acceptance
  - Kaon identification by dE/dx (and more)
- ILC/ILD can base the entire measurements on double Tagging and vertex charge
  - LEP/SLC had to include single tags and semi-leptonic events







## **Decomposing ee->bb – Differential cross section**

Full simulation study within ILD Concept at  $\sqrt{s}$ =250 GeV allows for educated guess on uncertainties on Z-Pole



Arxiv:2306.11413

### **Excellent agreement between predicted** and reconstructed distributions

| Source                   | $e^-e^+  ightarrow car{c}$ |                   |                         | $e^-e^+  ightarrow bar{b}$ |                         |                   |                         |                   |
|--------------------------|----------------------------|-------------------|-------------------------|----------------------------|-------------------------|-------------------|-------------------------|-------------------|
|                          | $P_{e^-e^+}(-0.8,+0.3)$    |                   | $P_{e^-e^+}(+0.8,-0.3)$ |                            | $P_{e^-e^+}(-0.8,+0.3)$ |                   | $P_{e^-e^+}(+0.8,-0.3)$ |                   |
|                          | $R_c$                      | $A_{FB}^{car{c}}$ | $R_c$                   | $A_{FB}^{car{c}}$          | $R_b$                   | $A_{FB}^{bar{b}}$ | $R_b$                   | $A_{FB}^{bar{b}}$ |
| Statistics               | 0.18%                      | 0.38%             | 0.27%                   | 0.52%                      | 0.12%                   | 0.24%             | 0.23%                   | 0.70%             |
| Preselection eff.        | <0.01%                     | 0.12%             | 0.02%                   | 0.16%                      | <0.01%                  | 0.08%             | 0.06%                   | 0.12%             |
| Background               | 0.01%                      | 0.01%             | 0.02%                   | 0.02%                      | 0.01%                   | 0.01%             | 0.06%                   | <0.01%            |
| heavy quark mistag       | 0.11%                      | <0.01%            | 0.06%                   | <0.01%                     | 0.12%                   | <0.01%            | 0.22%                   | <0.01%            |
| uds mistag               | 0.03%                      | <0.01%            | 0.02%                   | <0.01%                     | 0.08%                   | <0.01%            | 0.14%                   | <0.01%            |
| Angular correlations     | 0.10%                      | 0.10%             | 0.10%                   | 0.10%                      | 0.10%                   | 0.10%             | 0.10%                   | 0.10%             |
| <b>Beam Polarisation</b> | <0.01%                     | <0.01%            | 0.02%                   | 0.01%                      | <0.01%                  | 0.01%             | 0.03%                   | 0.15%             |
| Systematics              | 0.15%                      | 0.16%             | 0.12%                   | 0.19%                      | 0.18%                   | 0.13%             | 0.29%                   | 0.22%             |
| Total                    | 0.24%                      | 0.41%             | 0.30%                   | 0.55%                      | 0.21%                   | 0.27%             | 0.37%                   | 0.73%             |

Additional complication in continuum compared with Z-Pole: **Rejection of ISR events)** 







## **Differential cross section ee->cc @ 250 GeV**



- Full simulation study (with ILD concept)
- $\bullet$  Long lever arm in cos  $\theta_{\rm c}$  to extract from factors or couplings





### arxiv:2306.11413



## Light quarks at @ 250 GeV are in the making

### **Polar Angle Distribution**



Figure 4: Reconstructed polar angle distribution for the u and d mixed samples with (a) left-handed and (b) right-handed electron beam.







PhD thesis Y. Okugawa See also talk at Paestum





- ILC/GigaZ with ~10<sup>9</sup> Z
- Sensitivity to Z/Z' mixing
- Sensitivity to vector (and tensor?) couplings of the Z
  - the photon does not "disturb"

- Sensitivity to interference effects of Z and photon!!
- Measured couplings of photon and Z can be influenced by new physics effects
- Interpretation of result is greatly supported by precise input from Z pole











Partial fermion width:

$$R_f = \frac{N_f}{N_{had}} = \frac{(g_f^L)^2 + (g_f^R)^2}{\sum_{i=1}^{n_q} [(g_i^L)^2 + (g_i^R)^2]}$$

Left-right asymmetry:

$$A_{LR} = \frac{1}{|\mathcal{P}_{eff.}|} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \mathcal{A}_e = \frac{(g_f^L)^2 - (g_f^R)^2}{(g_i^L)^2 + (g_i^R)^2} \sim 1 - 4 \sin^2 \theta_{eff.}^{\ell}$$

Forward-backward asymmetry:

$$A_{FB}^{f} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}} = \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f} \text{ for } \mathcal{P}_{e} = 0.$$

Left-right-forward-backward asymmetry:

$$A_{FB,LR}^f = \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_L + \sigma_l)_R} = -\frac{3}{4}\mathcal{A}_f$$

- Sensitive to sum of coupling constants
- Available at linear and circular colliders

- Direct sensitivity to Zee vertex

• e.g. 
$$P_{\tau} \sim A_{e}$$

- "Classical" observable to study P-violating effects in ee->ff
- Available at circular and linear colliders
- Without beam polarisation interpretation is always model dependent
  - Combination of asymmetries above
  - Only available linear colliders due to beam polarisation
  - Direct and model independent measurement of A,

Roman Pösch



## • Only available at linear colliders due to beam polarisation • Circular colliders need auxiliary measurement



## Measurement of $\sin^2 \theta_{\rm eff}^{\ell}$

$$\mathcal{A}_{e} = \frac{(g_{e_{L}}^{Z})^{2} - (g_{e_{R}}^{Z})^{2}}{(g_{e_{L}}^{Z})^{2} + (g_{e_{R}}^{Z})^{2}} = \frac{2g_{e_{V}}/g_{e_{A}}}{1 + (g_{e_{V}}/g_{e_{A}})^{2}} \text{ with } g_{e_{V}}/g_{e_{A}} = 1 - \frac{1}{2}$$

# How to determine A?

Left Right Asymmetry **Requires polarised beams**  Forward backward asymmetry Has to assume lepton universality!!!

Final state polarisation (r,l) e.g. with  $\tau$ 

$$A_{LR} = \frac{1}{|\mathcal{P}_{eff.}|} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \mathcal{A}_e$$

Available at LC

Using all hadronic decays of Z!!!

$$A_{FB}^{f} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}} = \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{f} \text{ for } \mathcal{P}_{e} = 0. \quad A_{FB}^{pol} = \frac{(\sigma_{r} - \sigma_{l})_{F} - (\sigma_{r} - \sigma_{l})_{B}}{(\sigma_{r} + \sigma_{l})_{F} + (\sigma_{r} + \sigma_{l})_{B}} = -\frac{3}{4}\mathcal{A}_{e}$$

Available at LC, CC Used e.g. In EPJC (2019) 79:474 with  $f = \mu$ 

Beam polarisation is key: Remember SLC delivered most precise value of  $\sin^2 \theta_{\rm eff.}^{\ell}$ despite of 30 times less lumi



 $4\sin^2\theta_{\rm eff}^\ell$ 

Available at LC, CC



## Measurement of $\sin^2 \theta_{\text{eff}}^{\ell}$

 $\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}$ Blondel scheme:  $A_{
m LR} = \sqrt{}$ 



- Blondel scheme independent of polarimeter precision
  - Assumes perfect spin flip for polarised beams
  - Residuals must be monitored by polarimeter
  - Residual uncertainty of  $\Delta A_{_{IR}} = 0.5 \times 10^{-4}$  seems possible
  - The more positron polarisation the better
  - Don't forget energy dependency ( $dALR/d\sqrt{s} \sim 2x10^{-5}/MeV$ )
    - 1 MeV precision on  $\sqrt{s}$  seems possible (see above)
- Precision  $\Delta A_{IR} = 1 \times 10^{-4}$  is a realistic assumption for GigaZ

$$\Rightarrow \delta \sin^2 \theta_{\rm eff.}^\ell \sim 1.3$$

- Radiative return
  - Mainly limited by statistics  $\Delta A_{\mu} = 1.4 \times 10^{-4}$
  - Beam polarisation better than  $\Delta A_{IR} = 0.5 \times 10^{-4}$  (More processes available)
- Energy dependence much weaker than on Z-pole





 $\cdot 10^{-5}$ 





- LEP/SLD
- Precise measurement of  $\sin^2 \theta_{\rm eff}^{\ell}$ 
  - Around 13 times better than LEP/SLD and a factor three better than current world average
- Considerable improvement of fermion asymmetries A<sub>i</sub>
  - e.g.: arXiv: 1908.11299
    - $\Delta A_{b}/A_{b} \sim 5 \times 10^{-4}$  (compare with  $\Delta A_{b}/A_{b} \sim 214 \times 10^{-4}$  today)

    - For completeness note that a statistical error of 10-4 has been assumed for  $A_{h}$  and  $3 \times 10^{-4}$  for  $A_{c}$

### Main error source

- Knowledge of beam polarisation
- QCD corrections that dilute forward backward be looked at (once more)



### • Z pole running of ILC will improve significantly precision w.r.t.

•  $\Delta A_{A_{a}} \sim (5 \oplus 5) \times 10^{-4}$  (compare with  $\Delta A_{A_{a}} \sim 404 \times 10^{-4}$  today)

asymmetry (arXiv:2010.08604) not considered but about to



From Slide 7 it follows

$$\frac{\sigma_{\mathcal{A}_f}}{\mathcal{A}_f} = \frac{\sigma_{\widetilde{A}}}{\widetilde{A}} \oplus \frac{\sigma_x}{x} \text{ with } \widetilde{A} = A_{FB}, A' \text{ and } x = P_{eff.}, \mathcal{A}_e$$

- $\sigma_{Peff} / P_{eff} = 5 \times 10^{-4}$  assumed for ILC (most likely pessimistic)
- $\sigma_{Ae}$  = 0.000022 absolute error (see Alacaraz Slide 9, https://indico.fnal.gov/event/51940/)
- =>  $\sigma_{A_{a}} / A_{a} = 0.00002 / 0.1511 \sim 1.4 \times 10^{-4}$
- Systematic errors on "analysis power" A and P may considered to be comparable
- Dilution due to QCD effects on  $A_{FR}$ . Effect can be controlled at  $\Delta A_{FR} \sim 10^{-4}$  (arXiv:2010.08604)
  - Using "current theoretical knowledge"
  - =>  $\sigma_{AFB} / A_{FB} \sim 0.0001 / 0.1 \sim 10^{-3}$
  - QCD dilution is independent of beam polarisation and may influence A' in the same way as  $A_{FR}$
- A relative error of 10<sup>-3</sup> would be the dominant error source in both cases
  - Remark: In 2019 I have used Table 2 of https://arxiv.org/pdf/hep-ex/0410042.pdf which in turn (on QCD corrections) made use of Table 15 of http://cds.cern.ch/record/426819/files/ep-2000-016.pdf and references therein
  - At the time I went through the papers and references and have indeed supposed, with some reasoning, that the QCD corrections will become subdominant w.r.t. the error on polarisation

ECFA PREC Working Meeting – November 2023







## **Precision on couplings and helicity amplitudes in ee->bb**







- Couplings are order of magnitude better than at LEP
  - In particular right handed couplings are much better constrained
- New physics can also influence the Zee vertex
  - in 'non top-philic' models
- Full disentangling of helicity structure for all fermions only possible with polarised beams!!





### New resonances



### Example: b couplings and helicity amplitudes



- Spectacular sensitivity to new physics in Randall Sundrum Models with warped extra dimensions
  - Complete tests only possible at LC
  - Discovery reach O(10 TeV)@250 GeV and O(20 TeV)@500 GeV
- Pole measurements critical input
  - Only poorly constrained by LEP
- Pole measurements will (most likely) influence also top electroweak precision program
  - (t,b) doublet







- ILC is electroweak precision machine
  - Electroweak parameters are limited by systematics, not statistics
  - High precision measurements of  $M_{_{_{7}}}$ ,  $\Gamma_{_{_{7}}}$ ,  $M_{_{_{W}}}$ ,  $\Gamma_{_{_{W}}}$ ,  $M_{_{_{1}}}$  and  $\sin^2\theta_{\rm eff}^{\ell}$ .
- ILC can (should) be run on the Z-pole
  - Electroweak precision observables deliver decisive input for interpretation at higher energies
- Full exploitation of physics potential by large energy coverage and polarised beams
  - Clean model independent measurements due to beam polarisation
    - Tests of lepton universality
  - Measurement of patterns for indirect discovery of new physics
    - Spectacular mass reach for new physics already art 250 GeV demonstrated
    - Flexibility of beam energy allows for systematic tracing of the the onset of new physics

### Main challenge at future machines will be the control of systematic errors

- Experimentally (non exhaustive list)
  - Vertex charge and particle ID
  - PFO for final state jets
  - Beam energy and polarisation
- Theoretically (not discussed)
  - Need at least NLO electroweak predictions (and MC programs) for correct interpretation of results
  - α<sub>s</sub>





1. Can mW be measured well at center-of-mass energies above ZH production threshold? For ILC this needs a more detailed look with a full kinematic fit to qqlnu events including effects of luminosity spectrum. These events have mW information from both W's.

### Acceptance?

1b. Is it really necessary to use the WW threshold for theoretical reasons?

2. Ultimate precision on center-of-mass energy using radiative return events especially in case momentum-scale systematics dominate sqrt(sp). Important for Higgs mass, top mass, and W mass.

3. Detector requirements for Z pole observables.

Forward acceptance for e+e- -> q qbar is very important.

4. Can the background be controlled well enough

for mW from threshold measurements. Especially for 4-jet case, and

without both beams being polarized.

5. Can gamma-gamma -> hadrons background be controlled at the Z peak?



## Backup



## **Oblique parameters**



| $\sqrt{s}$            |     |
|-----------------------|-----|
| HL-LHC                | 1   |
| ILC250                | 3.  |
| ILC500                | 1.  |
| ILC1000               | 0.3 |
| 500 GeV, no beam pol. | 2.  |

- ILC250 outperforms LHC
- ILC500 and above outperforms e+e- machines w/o polarisation (at 4ab<sup>-1</sup>)





• Beam polarisation essential to disentangle effects from W and Y



## **Uncertainty driver** α



Electroweak fit with updated EWPO and theory uncertainties

 $δ α_{s}(M_{7}) \sim 0.0007$  for  $10^{9}Z$  $\delta \alpha_{s}(M_{7}) \sim 0.0003(16)$  for  $10^{12}Z$ 

**Prospects Lattice** 

δα<sub>c</sub>(MZ) ~ 0.0003





Slide made in 2016!





- SSM is "carbon" copy of SM Z and used as common metric in generic Z' searches
- ALR introduces an "ad hoc"  $SU(2)_{p}$  and a Z' with orthogonal couplings to the fermions
- X,  $\psi$ ,  $\eta$  are linear combinations of bosons appearing in Grand Unified Theories with couplings orthogonal to the SM

### **Typical mass reach 5-10 TeV**

- Reach shown for  $e, \mu, \tau$
- Adding quarks would improve limits







## Higgs couplings and EWPO in ESU-Fit – 1905.03764









- SM does not provides no explanation for mass spectrum of fermions (and gauge bosons)
- Fermion mass generation closely related to the origin electroweak symmetry breaking
- Expect residual effects for particles with masses closest to symmetry breaking scale

Strong motivation to study chiral structure of heavy quark vertices in high energy e+e- collisions





## New physics below tt threshold? - Example b quark couplings



- High precision e+e- collider will give final word on anomaly
- In case it will persist polarised beams will allow for discrimination between effects on left and right handed couplings
- Randall Sundrum Models generate basically automatically a symmetry group of type SU(2)





Randall Sundrum Models Djouadi/Richard '06



|        | $\sqrt{s}$   | beam<br>polarisation | ∫Ldt for Higgs                                                   | R&D ph               |
|--------|--------------|----------------------|------------------------------------------------------------------|----------------------|
| ILC    | 0.1 - 1 TeV  | e-: 80%<br>e+: 30%   | 2000 fb-1 @ 250 GeV<br>200 fb-1 @ 350 GeV<br>4000 fb-1 @ 500 GeV | TDR comp<br>in 20    |
| CLIC   | 0.35 - 3 TeV | e-: (80%)<br>e+: 0%  | 1000 fb-1 @ 380 GeV<br>2500 fb-1 @ 1.5 TeV<br>5000 fb-1 @ 3 TeV  | CDR comp<br>in 20    |
| CEPC   | 90 - 240 GeV | e-: 0%<br>e+: 0%     | 5600 fb-1 @ 240 GeV                                              | CDR comp<br>in 20    |
| FCC-ee | 90 - 350 GeV | e-: 0%<br>e+: 0%     | 5000 fb-1 @ 250 GeV<br>1700 fb-1 @ 350 GeV                       | CDR comp<br>in Jan 2 |
|        |              |                      |                                                                  |                      |

Table courtesy of J. Brau

Roman Pöschl





### lase

leted 13

### Details see talk by Y. Okada

leted 12

leted 18

Details see talk by M. Ruan

leted 2019



# **Open questions**









Roman Pöschl





Energy: 0.1 - 1 TeV Electron (and positron) polarisation TDR in 2013 + DBD for detectors Footprint 31 km

Initial Energy 250 GeV – Footprint ~20km

Energy: 0.4 - 3 TeV

**CDR in 2012** 

Footprint 48km

Initial Energy 380 GeV



# **New physics?**

EFT: Two distinct observations

Observables at fixed mass m (e.g. Z pole of Higgs decays)

$$\frac{\sigma}{\sigma_{SM}}\approx |1+\frac{c_6m^2}{\Lambda^2}|^2$$

Increasing UV scales probed in EFT achieved solely by increasing the measurement precision  $c_{e} \sim (g^{*})^{2}$ Typical experimental precision 0.1-1% High energy tails of distributions (e.g. Drell-Yan Productions

 $\frac{\sigma}{\sigma_{SM}} \approx |1 + \frac{c_6 E^2}{\Lambda^2}|^2$ 

Increasing UV scales probed in EFT achieved solely by increasing the energy scale of measurement precision

Typical experimental precision 10%

A. Falkowski, Journée Grands Accél., LAL





# **New physics?**

Polarized beams play a crucial role in disentangling the two spin structures

$$\sigma = \frac{2}{3} \frac{\pi \alpha_w^2}{c_w^4} \frac{m_Z^2}{(s - m_Z^2)} \frac{2k_Z}{\sqrt{s}} \left(2 + \frac{E_Z^2}{m_Z^2}\right) \cdot Q_Z^2 \cdot \left[1 + 2a + 2\frac{3}{(2a)}\right]$$

The a and b coefficients depend on beam polarization:

$$e_{L}^{-}e_{R}^{+} \qquad Q_{ZL} = \left(\frac{1}{2} - s_{w}^{2}\right), \qquad a_{L} = -c_{H}$$

$$b_{L} = c_{w}^{2}\left(1 + \frac{s_{w}^{2}}{1/2 - s_{w}^{2}}\frac{s - m_{Z}^{2}}{s}\right)(s)$$

$$e_{R}^{-}e_{L}^{+} \qquad Q_{ZR} = \left(-s_{w}^{2}\right), \qquad a_{R} = -c_{H}$$

$$b_{R} = c_{w}^{2}\left(1 - \frac{s - m_{Z}^{2}}{s}\right)(sc_{WW})$$

• Angular distributions in  $e^+e^- \rightarrow hZ$  can also be used, but have weaker analyzing power and require more luminosity to achieve the same result

M. Perelstein: AWLC2017



 $\frac{3\sqrt{s}E_Z/m_Z^2}{2+E_Z^2/m_Z^2} b \bigg]$ 

 $8c_{WW}$ 



## **Science drivers**



Elementary Scalar?



- Higgs and top quark are intimately coupled!
   Top Yukawa coupling O(1) !
   => Top mass important SM Parameter
- New physics by compositeness? Higgs <u>and</u> top composite objects?



 $\langle h$   $\Delta_L$   $t_L$  Courtesy of S. Rychkov

- e+e- collider perfectly suited to decipher both particles









- Precise Top (and W) mass crucial to test compatibility of measured Higgs mass
- SM might not be sufficient to explain Higgs mass
- LHC may not reach sufficient discriminative power
- A lepton collider will for sure

![](_page_40_Picture_9.jpeg)

![](_page_41_Picture_0.jpeg)

## **Top pair production at threshold**

![](_page_41_Figure_2.jpeg)

- Decay of top quark smears out respendences in a well defined way

![](_page_41_Picture_5.jpeg)

![](_page_42_Picture_0.jpeg)

## Light scalar study in ILD

Light scalar may be missing piece to trigger first order 1<sup>st</sup> transition and/or the being the radion in extra dimension theories

![](_page_42_Figure_3.jpeg)

- New resonances cleanly dinstiguishable for large range of masses
- Sensitivity to mixing angle  $\theta$ h down to  $10^{-2}$  (taking all relevant backgrounds into account)
- <sup>L</sup>new scalar would count as "Feebly interacting Particle" (FIPS)

![](_page_42_Picture_9.jpeg)

![](_page_43_Picture_0.jpeg)

## **Electroweak top couplings**

Top is primary candidate to be a messenger new physics in many BSM models

![](_page_43_Figure_3.jpeg)

Precision expected for top quark couplings will allow to distinguish between models Remark: All presented models are compatible with LEP elw. precision data

![](_page_43_Picture_7.jpeg)

Statistical error:  $\sqrt{s} \sim 500 \text{ GeV}$ L = 500 fb<sup>-1</sup>

![](_page_44_Picture_0.jpeg)

### e+e- machines (and others) - Readiness

![](_page_44_Figure_2.jpeg)

ILC is the only machine that can be built now
European XFEL gives credbility for construction

![](_page_44_Picture_6.jpeg)