

ISNS-24 confernce, Sofia, Bulgaria – 09.- 13.09.2024

Why thermalizing relativistic beams?

- Long observation times enable
	- Precision studies
	- Spontaneous decay studies
	- Measurement of ground state properties
- … • Wide variety of experimental techniques
	- Ion trapping
	- **Mass Spectrometry**
		- Universal and unambiguous identification by mass
	- Laser spectroscopy
	- Background-free decay spectroscopy
	- Rare decay searches

Two proton radioactivity

Ion accumulation

Applications

- Radioactive molecules
- Fundamental symmetries and interactions

T. Dickel – Experiments with thermalized relativistic beams at GSI and FAIR – ISNS-24 confernce, Sofia, Bulgaria – 09.- 13.09.2024

• …

How we thermalize relativistic beams?

- Large beam size (200x100mm²)
- First cryogenic stopping cell

Normalized extraction efficiency

• Highest density (700 mbar @ 300K)

T. Dickel – Experiments with thermalized relativistic beams at GSI and FAIR – ISNS-24 confernce, Sofia, Bulgaria – 09.- 13.09.2024

Why multiple-reflection time-of-flight mass spectrometry?

- Higher precision Faster measurement Higher sensitivity Higher rate capability
-
-
-

Enables high performance

- Fast \rightarrow access to very short-lived ions (T_{1/2} \sim ms)
- Sensitive, broadband, non-scanning \rightarrow efficient, access to rare ions
- High mass resolving power and accuracy

H. Wollnik et al., Int. J. Mass Spectrom. Ion Processes 96 (1990) 267

- World record:
	- Mass accuracy down to $1.7 \cdot 10^{-8}$
	- **MRP of 1,000,000 at total TOF of ~23 ms**

- 485 events collected
- Mass uncertainty **2.6 keV** $(\delta m/m = 4.0 \times 10^{-8})$

I. Mardor et al., PRC 103, 034319 (2021)

⁷⁰Se:

The FRS and Super-FRS Ion Catcher at GSI/FAIR

The FRS Ion Catcher at GSI

The FRS Ion Catcher at GSI

FRS and FRS Ion Catcher: Efficient measurement schemes

Energy bunching mode

+ optimize beam energy

max. stopping efficiency for single isotopes

Mean Range Bunching (MRB) **Simultaneous stopping of many isotopes** (at slightly reduced efficiency for single isotopes)

35 nuclides in one(!) FRS / MR-TOF-MS setting

Broadband mass measurements → **mapping the mass surface**

T. Dickel et al., NIM B 541 (2023) 275-278

Separation of isomers

First spatial separation of ground state and isomeric state in an MR-TOF-MS

T. Dickel, A. Mollaebrahimi EPJ ST 233 (2024) 1181

T. Dickel et al., Phys. Lett. B 744 (2015) 137

Mass measurements of ⁹⁸Cd and ⁹⁷Rh with the FRS Ion Catcher

Shell Gap and Gamov-Teller Strength at *N***=50 and the puzzle of ¹⁰⁰Sn mass**

Gamov-Teller Strength at N=50, 52

 98 In

 $B +$

Evolution of two-neutron shell gap at N=50: Value of Hinke et al. [1] is favored. Evolution of Gamov-Teller Strength at N=50: Value of Lubos et al. [2] is favored.

→ Overall situation unclear, further experiments required

²⁵²Cf - Broadband mass and yield measurments

Broadband mass measurements:

Offline experiment with $252Cf$ (20kBq, \lt µCu):

- first time simultaneous direct measurement of 64 masses, **50 in a single setting**,
	- 14 first direct
	- 4 improved accuracy

A. Spataru et al., Bulgarian Journal of Physics vol. 48 (2021) 535 A. Spataru et al , Phys. Scr. 99 (2024) 075305

Yield / cross section measurements:

Developed method for IFY measurement Large chemical efficiency C(Z)

$$
\sum_{i=1}^{n} IFY(N, Z)_{exp}^{N+Z=A} \cdot C(Z)
$$

= $frac(FY_{lit}(A)) \cdot FY_{lit}(A)$

I. Mardor et al., EPJ Web of Conferences 239 (2020) Y. Waschitz et al., EPJ Web of Conferences 284 (2023)

Search for new radioactive decay modes

Radioactive molecules

- Molecules are interesting laboratories to probe fundamental physics, e.g. electric dipole moment of the electron (eEDM)
- Radioactive molecules with heavy and deformed nuclei, like RaF, provide superior sensitivity for eEDM

(theoretical chemistry)

Future nuclear astrophysics experiments: beta-delayed neutron emission

T. Dickel – Experiments with thermalized relativistic beams at GSI and FAIR – ISNS-24 confernce, Sofia, Bulgaria – 09.- 13.09.2024

Proof-of-concept: Novel method for half-lives and branching ratios (e.g., P_{xn})

I. Miskun et al., EPJA (2019) 55: 148

Outlook – Evolution from FRS to Super-FRS CSC

T. Dickel et al., NIM B 317 (2016) 216-220

- More efficient \rightarrow Higher sensitivity
- Faster \rightarrow Access to shorter lived nuclei

From FRS-Ion CSC to Super-FRS Ion CSC

Higher rate capability \rightarrow New class of experiments

New scientific opportunities:

- β -delayed neutron emission (one of the first experiments at the Super-FRS)
- MNT reactions with secondary beams
- Mass measurements of more exotic species
- and more…

Same technology used in other projects:

- Photofission @ ELI-NP, Romania
- Neutron-induced fission @ Soreq, Israel

Summary

Direct mass measurements

Measurement of Pn values from betadelayed neutron emission

Program without relativistic beams

Acknowledgements

Super-FRS Experiment Collaboration

Funding: German Federal Ministry for Education and Research (05P19RGFN1, 05P21RGFN1), **JLU Giessen and GSI** (JLU-GSI strategic Helmholtz partnership agreement), **Helmholtz Research Academy Hesse for FAIR (HFHF)**, **HGS-HIRe**, **German Research Foundation** (SCHE 1969/2-1), **DAAD** (57610603), **Israel Ministry of Energy** (220-11-052), **Israel Science Foundation** (2575/21), **Romanian Ministry of Research, Innovation and Digitalization** (PN 23 21 01 06), **Polish Minister of Science and Higher Education** (5237/GSI-FAIR/2022/0), **IAEA** (CRP F42007, 24000)