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Bohr, Mottelson and Pines have singled out two nuclear 
spectroscopic properties affected strongly by nuclear pairing 
and possibly accessible to mean field approaches

- Moments of inertia of well and rigidly deformed even-even 
nuclei

- Odd-even mass differences (in well and rigidly deformed 
nuclei)

Using such data, we aim at providing  a simple yet efficient 
method to determine phenomenologically the intensity of pairing 
correlations to be considered in these approaches

As a first step, we deal with calculations within the                       
Hartree-Fock (with self-consistent blocking when necessary)   
plus pairing correlations within the simple seniority force ansatz

We are thus searching here for a safe determination of    
average pairing matrix elements

This approach could be considered as usual but we include 
here two important features absent in all previous similar works



  

The limitation to well and rigidly deformed nuclei is motivated by

minimizing quantal shape fluctuations, maximizing the 
relevance of a single mean-field wavefunction description 

allowing to describe with a good approximation nuclear ground 
states from intrinsic states within the Bohr-Mottelson unified 
model (plus using the pure rotor approximation to determine the 
moments of inertia) 

Moments of inertia are deduced from the energy of the  first 2+ 
state in even-even nuclei as 

Odd-even three-points mass differences                                   
of odd neutron – even proton nuclei (N,Z) for instance              
are considered here and defined as

J / ℏ2 = 3 / E (2+)

δn
(3)(N , Z ) = 1 /2 [2 E (N , Z ) − E (N +1, Z ) − E (N− 1, Z )]

= 1/2 [S n(N +1, Z ) − Sn(N , Z )]
(where S n(N , Z )  is the separaton energy of a (N,Z) nucleus)



  

A fit on a large enough nuclear region is akin of making             
a semiclassical average

Entering some average pairing gap formulae                              
and computing semiclassical estimates *                                   
of the average sp level densities          for given quantal spectra  
      * approximated through  a standard (energy) smoothing à la 
        Strutinsky

One deduces the pairing matrix elements      averaged over an 
interval       around the Fermi energy       through the gap 
equation

(to avoid problem with the continuum, on should restrict to 
nuclei not too close to the drip lines)
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The average sp level density            is the key quantity 
determining the pairing intensiiesy in a given nucleus

Two important features (pertaining to this sp level density) of such 
a standard fitting approach currently not considered in similar 
microscopic calculations, are taken into account here  

1) Selecting well and rigidly deformed ground states, one 
introduces a bias by sampling sp spectra with sp level densities at 
the Fermi energy systematically lower than average                     
as noted by P. Möller and J.R. Nix, Nucl. Phys. A536 (1992) 20.

Therefore one must not use there standard fits as in                       
A.S. Jensen and P.G. Hansen, Nucl. Phys. A431 (1984) 393.      
D. Madland and J.R. Nix, Nucl. Phys. A476 (1988) 1.

We use rather the values given by P. Möller and J.R. Nix:

However this should be corrected for the protons due to another 
bias present in almost all such microscopic calculations

∆q(N q) =
4.8

N q
1 /3 (MeV)

ρq(e)

 



  

In most Hartree-Fock plus BCS or Hartree-Fock-Bogolyubov and 
in all EDF calculations one makes easier the calculation of 
Coulomb exchange terms by using a local Slater approximation 

This as noted years ago, confirmed and explained later entails a 
systematic and significant spurious enhancement of the proton sp 
level density near the Fermi surface 

 

[MeV] 

J.L Le Bloas, M.-H. Koh, P. Quentin, L. Bonneau, J.  Ithnin, Phys . Rev. C84 (2011) 0143310



  

This has been taken care of by renormalizing the Möller Nix 
ansatz by a factor deduced from exact microscopic Coulomb 
calculations as

It has been found that such a corrective factor may be evaluated 
with a good approximation according to the value of the average 
proton pair condensation energy 

avoiding thus to make exact Coulomb calculations for each 
nucleus with a very fast converging iterative process on  

∆q(N q) = X
4.8

N q
1/3 (MeV)  typically X  is of the order of 0.8

with X =
∆exact

∆Slater
 as obtained in quantal Hartree-Fock + BCS calculations

Econd.
p =

∆ p
2

V p

  as  X ≈ 0.0181 Econd.
p + 0.781  (where Econd.

p  is given in MeV)

V p



  

What is the effect on the average pairing matrix elements            
of taking into account these effects ?

We made a test for three even-even rare earth nuclei                     
in the A= 176-178 region: 176Yb, 178Yb, 178Hf

We list the matrix elements with the values of         defined         
from       as (P. Bonche et al., Nucl. Phys. A 443 (1985) 39) :

For neutron matrix elements                                                         
Of course the Slater approx. correction does not affect them          
Going from Möller-Nix to Jensen gaps they decrease by 5-7%

For proton matrix elements                                                              
Going from Möller Nix to Jensen gaps they decrease by 6-9%        
Omitting the Slater approx. correction they increase by 6-7%          
Combining both changes the values vary by less than 2%

V q

G q

V q = Gq /11 + N q    giving Gq  in MeV

176Yb
178Yb
178Hf



  

Results for the moments of inertia of well and rigidly deformed 
even-even nuclei

They are calculated à la Inglis-Belyaev from Hartree-Fock plus 
BCS (with seniority force) solutions including a ~1/3 enhancement 
to approximately account for the so-called Thouless-Valatin 
correction (i.e. the self-consistence effect for the time-odd part of 
the 1-body density (see J. Libert et al., Phys. Rev. C60 (1999) 
054301)

11 nuclei from156Sm to174W (loosely called « rare-earth nuclei »)      
8 actinide nuclei from 234U to 256Fm

3 Skyrme interactions SIII, SkM* and Sly4 in use

Moments of inertia rms deviation with data (in units of ћ2 MeV-1)

(169/245)5 /3

2.454        1.829         1.885
Corrected for comparison with « rare-earths » 
by a factor

Typical values 
35 « rare-earth », 65 actinides

Meng-Hock Koh and P. Quentin
Phys. Rev. C110 (2024) 024311



  

Results for odd-even mass differences of well and rigidly 
deformed odd-even and even-odd nuclei

The Skyrme SIII interaction is in use

We always consider the experimental Iπ = Kπ  configurations      
(no problem with 1/2π cases the decoupling constant being always 
in the « safe » region)

16 odd-N even-Z « rare-earth nuclei » from 157Sm to 181Hf              
- 10 config. assigned, 9 obtained correctly                                      
- 3 config. suggested, 2 confirmed                                                   
- 1 config. not assigned in 165Gd (7/2 -  proposed)                             
- in 165Dy and 171Yb a ground and isomeric states are found within 
108 keV and 95 keV, we found them in the wrong order with an 
energy error of 156 keV and 168 kev respectively

13 even-N Odd-Z rare-earth nuclei from 157Eu to 179Lu                     
- 9 config. assigned, 8 obtained correctly                                        
- 3 config. suggested, 3 confirmed                                                   
- 1 config. not assigned in 161Eu (5/2 - proposed)                              
            



  

The rms deviation from data for the three-point odd-even mass 
differences is 

For odd-neutron nuclei   78 keV

For odd-proton nuclei   182 keV

T.V. Nhan Hao, N.N. Bao Nguyen, D. Quang Tam, P.  Quentin, L. 
Bonneau,  Meng-Hock Koh, submitted for publication at Chin. Phys. C

A point of comparison

In the paper by M.N. Nor, N.-A. Rezle, K.-W. Kelvin Lee, M.-H. Koh, 
L. Bonneau and P. Quentin, Phys. Rev. C99 (2019) 064306                  
two separate fits of the average pairing matrix elements  within a 
sample of  well and rigidly deformed « rare-earth » nuclei                  
on either the moments of inertia or the odd-even mass diffrerences     
using the SIII iteraction had resulted in similar results for the matrix 
elements

Comparing the qualities of these separate fits supposedly more apt to 
reproduce each of the data with the current approach should provide 
a further test of its relevance



  

Separate fit Our calc.

1.75 1.77

Separate fit
neutron

Our calc.
neutron

Separate fit 
proton

Our calc.
proton

87 78 172 182

MOMENTS OF 
INERTIA

rms deviation with dat
in ћ2 MeV-1  

ODD-EVEN MASS DIFFERENCES
rms deviation with data

in keV

SOME CONCLUDING REMARKS

Our approach is not directly a fit                                                            
Our approach does not provide an interaction                                      
It provides a value of average pairing matrix elements for each 
considered ground state

In principle there is no such thing as an universal residual interaction 
since it depends on the mean field by definition

However to go further we cannot in fact avoid fitting an interaction 
taking stock of the present study 



  

Our current approach suffer from two limitations

- It is limited by the seniority force ansatz (no state dependence of the 
matrix elements)

- It is restricted a priori to ground states of well and rigidly deformed 
nuclei (because only there we have relatively safe handles on 
relevant data)
Thus to extend to other nuclei and other states (potential energy 
surfaces, fission barriers etc.) we need to define through fits in a 
large enough region, the intensity parameters of an interaction to 
communicate there the information on pairing correlations gained 
where it was possible to extract them from data

This is currently undertaken


