

P.-A. Söderström

ELI-NF

ROSPHERE measurements

Acknowledgements

Gamma Above Neutron Threshold at ELI-NP: How we got here and where we are going (Measurements of γ -ray strength functions)

Pär-Anders Söderström

Extreme Light Infrastructure - Nuclear Physics

International Symposium on Nuclear Science 2024-09-10

ELI-NP

ELIGANT physics scope

A. Zilges: Nuclear Photonics, June 24 - 28, 2018, Brasov, Romania

- Low energy $(p, p'\gamma)$, $(d, p\gamma)$ etc.
- Also low energy (γ, γ') . $(\gamma, \gamma' \gamma'')$
- High energy (p, p'), (γ, n)

Photonuclear physics

ELIGANT P.-A. Söderström

Acknowledgements

ELI-NP

- \bullet Incoming γ ray can select individual states to excite
- Above particle separation threshold, particle decay to neighbouring nucleus, fission, etc.
- $\bullet \ \ldots \ {\rm or} \ \gamma{\rm -decay}.$ This type of branching probabilities will be one key topic for measurements

ELIGANT - ELI Gamma Above Neutron Threshold

ELIGANT

P.-A. Söderström

ELI-NF

ELIGANT

ROSPHERE measurements

Acknowledgements

- An array of CeBr and LaBr for $\gamma\text{-rays},$ liquid scintillators and Li-glass detectors for neutrons
- All the ELIGANT-GN detectors installed at ELI-NP
- Tested in-beam (6 months campaign at ROSPHERE, IFIN 9MV)

- ³He tube array contained in a paraffin moderator for neutron counting
- Detector is operational
- Tested in-beam

ELIGANT

P.-A. Söderström

ELI-NP

- ROSPHERE measurements
- Acknowledgements

Preparatory GANT experiments at NewSUBARU • First campaign of (γ, xn) expenses of the second sec

- 0² 0² Present Carlos et al. (1974) -----BSk7+ORPA 10 -D1M+ORPA E [MeV] 700 ⁰⁹Bi(7, Sn) Present data 600 Miller (1962) Harvey (1964) 500 ection [mb] Sorokin (1973) 400 300 200 100 8 0 10 20 30 Energy [MeV]
- First campaign of (γ, xn) experiments performed at NewSUBARU LCS beamline, D. M. Filipescu and I. Gheorghe
- Part of the *Coordinated Research Project on Photonuclear Data and Photon Strength Functions* (IAEA CRP F41032)
- Wealth of experimental data, continued measurements possible at ELI-NP
- T. Kawano, et al., IAEA Photonuclear Data Library 2019, Nucl. Data Sheets, 163 (2020) 109
- S. Goriely, et al., Reference database for photon strength functions, Eur. Phys. J. A55 (2019) 172

◆□ → ◆□ → ◆ 三 → ◆ 三 → の へ ⊙ 5/16

- D. M. Filipescu, et al., Phys. Rev. C 90 (2014) 064616
- I. Gheorghe, et al., Phys. Rev. C 96 (2017) 044604

P.-A. Söderström

ELI-NP

ROSPHERE measurements

Acknowledgements

ELI-NP, IFIN-HH, and Tandem \rightarrow ELIFANT

- Combining the large volume γ-ray detectors with the ROSPHERE anti-Compton shields
- In-beam experiments using the 9MV Tandem at IFIN-HH
- Collaboration between ELI-NP and Department of Nuclear Physics
- Clean measurements of high-energy γ -rays

D. Bucurescu, et al.: Nucl. Instrum. Methods Phys. Res. A 837, 1 (2016)

Approved experiments (so far...)

ELIGANT

P.-A. Söderström

ELI-NP

ROSPHERE measurements

Acknowledgements

2022

- A. Oberstedt, A. Dragic et al. The ⁷²Ge(p,p'γ) reaction cross-section and γγ decay measurements (2021)
- B. Million, F. Camera, et al. Position-Sensitivity in large volume LaBrg:Ce:Sr and performances of the ELIGANT-GN detectors using 15.1 MeV gamma-rays (2021)
- C. Borcea, et al. GDR excitations of fission fragments (2021)
- D. Nichita, P.-A. Söderström, et al. Study of dipole strength below particle separation energy in ⁵⁶Fe (2021)
- F. Camera, F. Crespi, et al. Study of the isospin symmetry in ⁷²Kr at low temperature (2021)
- O. Wieland, E. Gamba, et al. Search for pygmy dipole strength in $\frac{58,60}{10}$ Ni at finite temperature (2021)
- P. Constantin, P.-A. Söderström, et al. Spectroscopy of the first excited 2⁺ state of ¹⁰B with inelastic proton scattering (2021)
- S. Pascu, et al. Detailed investigation of low-lying states of ¹⁴⁴Sm (2021)
- T. Kawabata, et al. Measurement of the Radiative-Decay Probability of the Hoyle State (2021)

2023

- A. Kusoglu, M. Weinert, et al. Investigating the single-particle content of the sub-threshold electric dipole response of ⁸⁸Sr (2022)
- D. Nichita, P.-A. Söderström, et al. Study of dipole strength below particle separation energy in ⁵⁶Fe (2021)
- P.-A. Söderström, M. Markova, et al. Gamma strength function measurements in ¹¹², ¹¹⁴Sn (2022)

2024

- A. Kusoglu, et al. Access to the Single-Particle Structure of the Low-Lying Electric Dipole Response of ⁶²Ni via One-Neutron (d, pγ) Transfer (2023)
- P.-A. Söderström, J. Isaak, et al. Study of gamma strength functions in ¹²⁸Te with complementary probes and methods (2023)
- T. Furuno, et al. Measurement of $^{14}\rm N(^{3}He,t)^{14}O(1^-_1)$ Cross Section for Stellar $^{13}\rm N(p,\gamma)$ Reaction Rate (2023)
- O. Wieland, A. Giaz, et al. Search for HOT PDR in neutron rich ⁶⁶Ni at finite temperature (2023)

First photon strength experiment at IFIN-HH

10²

<□> < □> < □> < 三> < 三> < 三> < 三 > ○< 0 < 8/16

- $\bullet\,$ First experiment performed with the Oslo method at IFIN-HH in 2023
- Target nuclei: ¹¹²Sn and ¹¹⁴Sn

ELIGANT

P.-A. Söderström

ROSPHERE

measurements

Acknowledgements

ELIGANT

P.-A. Söderström

ROSPHERE measurements

Fits of the strength functions

10 ⁻⁶	TU Darmstadt/RCNP data (r/n) data ELLAP/INIPHHI data ELLAPITOIAI /R EL ELOS /r t EL ELOS /r t EL ELOS /r t
y-ray strength func	- And -
10 ⁻⁹ 0	.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
	γ -ray energy E_{γ} (MeV)

	$E_{ m GDR}$	$\Gamma_{ m GDR}$	$\sigma_{ m GDR}$	$T_{ m f}$
¹¹² Sn*	16.14(9)	5.46(31)	265.9(95) 0.70(5)
112 Sn	16.18(12)	5.30(12)	279(12)	0.718(20)
¹¹⁴ Sn	15.980(29)	5.78(12)	251.9(29) 0.614(21)
	$E_{ m M1}$	$\Gamma_{\rm M1}$	$\sigma_{ m M1}$	-
¹¹² Sn*	10.45(43)	4.77(53)	1.77(21)	
112 Sn	10.44(11)	4.76(17)	1.77(8)	
¹¹⁴ Sn	10.95(31)	4.5(6)	2.18(18)	
	$E_{ m LEDR}$	$W_{ m LEDR}$	$\sigma_{ m LEDR}$	% TRK
¹¹² Sn*	8.24(9)	1.22(8)	3.17(24)	1.81(15)
112 Sn	8.32(8)	1.39(6)	4.2(4)	2.08(25)
114 C	6.37(29)	0.55(17)	0.39(16)	1 6(7)
Sh	8.4(5)	0.95(22)	3.0(15)	1.0(7)

□ > < E > < E > E < < </p>

ELIGANT

ROSPHERE

measurements

Acknowledgements

QPM calculations

- QPM calculations performed by N. Tsoneva
- Model configuration space of QRPA states with $J^{\pi}{=}1^{\pm},\,2^{\pm},\,3^{\pm},\,4^{\pm},\,5^{\pm}$
- \bullet One-phonon 1^- states up to $E^*{=}30~{\rm MeV}$
- $\bullet\,$ Multi-phonon constituents up to $E^* \sim \! 11 \; {\rm MeV}$
- Focus on E1 strength between $E^* \sim$ 6-8 MeV, which resembles PDR structure

FLIGANT

P-A Söderström

ROSPHERE

measurements Acknowledgements

QPM calculations

- 1^- states at $E^* \sim$ 7-8 MeV in ^{112,114}Sn have a predominantly neutron structure
- Associated with one or two major single-particle configurations, can be associated with PDR modes
- Coupling of the low-energy tail of GDR, and low-energy 1^- excited states can have a strong impact to the dipole strength below the neutron threshold
- The effect becomes increasingly important in nuclei where the neutron threshold is higher

P.-A. Söderström

ELI-NP

ROSPHERE measurements

Acknowledgements

The concept of nuclear photon strength functions: A model-independent approach via $(\vec{\gamma}, \gamma'\gamma'')$ reactions L Isaak^{a,b,c,e}, D. Savran^b, B. Löher^{a,b}, T. Beck^a, M. Bhike^d, U. Gaver^a, Krishichavan^d,

N. Pietralla^a, M. Scheck^e, W. Tornow^d, V. Werner^a, A. Zilges^f, M. Zweidinger^a

• γ -ray strength functions can be measured in a model independent way with γ beams

• Ratio method
$$(k, j \neq 0)$$

Gamma strength with gamma beams - Example from HI γ S

$$rac{\sigma_{ik}}{\sigma_{ij}} = rac{f(\Delta E_{ik})}{f(\Delta E_{ij})} rac{\Delta E_{ij}^3}{\Delta E_{ik}^3}$$

 High-resolution beams can clearly separate different states!

J. Isaak, et al.: Phys. Lett. B 788, 225 (2019)

P.-A. Söderström

ROSPHERE

measurements

Acknowledgements

Outlook - ¹²⁸Te

- Next goal is ¹²⁸Te for comparing photon beams and charged particle method

Outlook - ¹²⁸Te

P.-A. Söderström

ELI-NP

ROSPHERE measurements

Acknowledgements

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < で 14/16

- Very first attempt, very preliminary
- Cut data below the contamination
- Normalize strength function to Isaak data
- Retrieve level density without constant temperature/fermi gas model dependency
- To do: In-depth evaluation of analysis methods, subtraction of contaminants

ELIGANT

P.-A. Söderström

ELI-NP

ROSPHERE measurements

Acknowledgements

Collaboration

ELIGANT-GN:

- Pär-Anders Söderström
- A. Kuşoğlu

ELI-NP core team:

- Soichiro Aogaki
- Dimiter Balabanski
- Mihai Cuciuc
- Asli Kusoglu
- Alfio Pappalardo
- Dmitry Testov

IFIN-HH core team:

- Ruxandra Borcea
- Cristian Costache
- Constantin Mihai
- Radu Mihai
- Lucian Stan
- Andrei Turturica

Spokespersons: A.Oberstedt, A.Dragic, B.Million, F.Camera, C.Borcea, D.Nichita, P.-A.Söderström, F.Crespi, O.Wieland, E.Gamba, P.Constantin, S.Pascu, T.Kawabata, A.Tamii, A. Kuşoğlu, M. Weinert, M. Markova, J. Isaak, A. Giaz, T. Furuno

Acknowledgements: The various topics in this research has been funded by the ELI-RO program by the Institute of Atomic Physics, Măgurele, Romania, contract number ELI-RO/RDI/2024_002 and ELI-RO/RDI/2024_007, the Romanian Ministry of Research, Innovation and Digitization, CNCS - UEFISCDI, project number PN-III-P4-PCE-2021-0595, within PNCDI III, and research contract PN 23 21 01 06.