International Symposium on Nuclear Science (ISNS-24) <u>Sofia, Bulgaria</u>

Isomer nuclear-moment measurement of neutron-rich nuclei ⁷⁵Cu and ⁹⁹Zr using highly spin-aligned beams

Yuichi Ichikawa Kyushu University

First collaboration in 2008

Collaboration in 2010

Cheers!

Two-step fragmentation scheme

(Figure of Merit) \propto (Spin alignment)² \times (Statistical yields)

Momentum dispersion matching technique

Maximize spin alignment by simplest reaction
Enhance yields by momentum dispersion matching

Experimental demonstration in 2010

Broadening of accessible RI

Universal way to provide spin alignment

ARTICLES	nature
PUBLISHED ONLINE 21 OCTOBER 2012 DOI: 10.1038/NPHYS2457	physics

Production of spin-controlled rare isotope beams

Yuichi Ichikawa¹*[↑], Hideki Ueno¹, Yuji Ishii², Takeshi Furukawa³, Akihiro Yoshimi⁴, Daisuke Kameda¹, Hiroshi Watanabe¹, Nori Aoi¹, Koichiro Asahi², Dimiter L. Balabanski⁵, Raphaël Chevrier⁶, Jean-Michel Daugas⁶, Naoki Fukuda¹, Georgi Georgiev⁷, Hironori Hayashi², Hiroaki lijima², Naoto Inabe¹, Takeshi Inoue², Masayasu Ishihara¹, Toshiyuki Kubo¹, Tsubasa Nanao², Tetsuya Ohnishi¹, Kunifumi Suzuki², Masato Tsuchiya², Hiroyuki Takeda¹ and Mustafa M. Rajabali⁸

The degree of freedom of spin in quantum systems serves as an unparalleled laboratory where intriguing quantum physical properties can be observed, and the ability to control spin is a powerful tool in physics research. We propose a method for controlling spin in a system of rare isotopes which takes advantage of the mechanism of the projectile fragmentation reaction combined with the momentum-dispersion matching technique. The present method was verified in an experiment at the RIKEN RI Beam Factory, in which a degree of alignment of 8% was achieved for the spin of a rare isotope ¹²AI. The figure of merit for the present method was found to be greater than that of the conventional method by a factor of more than 50.

Y. Ichikawa *et al.*, Nature Phys. 8 (2012) 918-922.,

Recent experiments _75Cu-

Shell evolution in Cu isotopes

K. T. Flanagan *et al.*, PRL 103, 142501 (2009)

Shell evolution in Cu isotopes

K. T. Flanagan *et al.*, PRL 103, 142501 (2009)

⁷⁵Cu production at BigRIPS

Results

$$3/2^{-}$$
 $T_{1/2}=149 \text{ ns}$
 $1/2^{-}$ 61.7 keV
 $T_{1/2}=310 \text{ ns}$
 $5/2^{-}$ 75 CU

3 Magnetic moment $\omega_{\rm L} = -\frac{g\mu_{\rm N}B_0}{\hbar}$ g = 0.93(4) $\mu = 1.40(6)\mu_{\rm N}$ Magnetic moment systematics

Magnetic moment systematics

MCSM calculation by T. Otsuka and Y. Tsunoda

Shell evolution on deformation

Y. Ichikawa *et al.*, Nature Phys. 15, 321-325 (2019) 15

- Good correspondence between ini. & fin. states
- Extremely simple (one-shot) reaction

Reaching maximum

Realized 30(5)% for Maximum 41%

Trend : "clean experiment" with high spin alignment

Recent experiments _⁹⁹Zr-

Sudden shape change

F. Boulay et al., Phys. Rev. Lett. 124, 112501 (2020)

□ Not spherical also for excited state

Q moment measurement with higher spin aligned beam

Q moment measurement of ⁹⁹Zr

NP1912-RIBF175 (done in April, 2022)

Setup for μ moment

Beam stopper

- Cu (annealed)
- 3 mm^t

Dipole magnet

- $B_0 = 0.200 \,\mathrm{T}$
- Instability in time < 0.1%
- Inhomogeneity <0.1%

Ge detectors

- LEPS \times 2, Co-axial \times 2
- 7 cm from stopper center

Plastic scintillator

- 0.1 mm^t
- Time zero definition

Setup for Q moment

Beam stopper

- Zr single crystal (grain cluster)
- c-axis alignment > $1/(3 \sim 4)$
- 15 mm×15 mm×3 mm^t

Ge detectors

- LEPS & Co-axial (not very good condition…)
- 7~10 cm from stopper center

Plastic scintillator

- 0.1 mm^t
- Time zero definition

Preliminary R(t) signal

 \Box 30,000 events of 130-keV γ ray for μ measurement

lacksquare Preliminarily, \sim 10% alignment in 99 Zr

□Analysis on Q moment is on-going

Summary

Spin aligned RI beams

- ✓ Two-step scheme
- ✓ Highly spin aligned RI beams
- ✓ Isomer moment measurements

Recent experiments

- ✓ μ measurement of ⁷⁵Cu
- ✓ 30% alignment for ⁷⁵Cu
- ✓ μ & Q measurement of ^{99m}Zr