On the Nature of Yrast States in Neutron-Rich Polonium Isotopes

Presented by: Razvan Lica, IFIN-HH

Experiment spokespersons:

R. Lica, *IFIN-HH (Romania)* **A.N. Andreyev,** *University of York (UK)*

Theory:

H. Naidja, Universite Constantine (Algeria) A. Blazhev, IKP Koln (Germany) On behalf of the IS650 and IDS Collaborations

International Symposium on Nuclear Science Sep 9 – 13, 2024, Sofia, Bulgaria

- Po isotopes $(Z = 84)$
- \rightarrow text-book example for studying the seniority scheme
- \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po

- Po isotopes $(Z = 84)$
- \rightarrow text-book example for studying the seniority scheme \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po
- Po isotopes with N>126
- \rightarrow shell-model test using ²⁰⁸Pb as an inert core \rightarrow study the filling of the $vg_{9/2}$ orbital

• Po isotopes $(Z = 84)$

 \rightarrow text-book example for studying the seniority scheme \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po

Po isotopes with N>126

 \rightarrow shell-model test using ²⁰⁸Pb as an inert core \rightarrow study the filling of the $vg_{9/2}$ orbital

• $214,216,218p_{\Omega}$

 \rightarrow Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams

• Po isotopes $(Z = 84)$

 $3d$

 $2g$

1i.

 1_h

 \rightarrow text-book example for studying the seniority scheme \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po

184

126

82

Po isotopes with N>126

 \rightarrow shell-model test using ²⁰⁸Pb as an inert core \rightarrow study the filling of the $vg_{9/2}$ orbital

 $\frac{11}{2}$

1i 13/2

 $1h$ 9/2

e fari

 2σ $7/2$

• $214,216,218p_0$

 \rightarrow Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams

→ Recent measurement by *Astier et* al. [1] of the 8_1 ⁺ state half-life T_{1/2}= 13(1) ns in $214P$ o indicating a similar excitation mechanism as for ²¹⁰Pb, one-neutron-pair breaking

[1] A. Astier and M.-G. Porquet, Phys. Rev. C83, 014311 (2011).

 $\rightarrow \alpha + ^{208}Pb$ cluster configurations

 $\frac{2f}{2f}$ 5/2
 $\frac{2f}{7/2}$

in ²¹²Po

 $3d₅$

²¹⁴Bi - Previous study of Astier (2011)

¹⁸O + ²⁰⁸Pb reaction at 85-MeV + Euroball IV @IReS (Strasbourg) $T_{1/2}$ (8⁺) = 13(1) ns using HPGe detectors $B(E2; 8^+ \rightarrow 6^+) = 0.54(4)$ W.u.

Time distributions between the emissions of γ rays of ²¹⁴Po showing either prompt coincidences [curves in red and green, panel (a)] or delayed ones corresponding to the decay of the 1583-keV state [curves in blue, panels (b), (c), and (d)].

²¹⁴Bi - Previous study of Astier (2011)

2669

333

1339

1014

609

84

2605

2272

1823

 $T_{1/2} = 13$ ns 1583

Understand the nature of yrast states in neutron-rich Po: is it really one neutron-pair breaking for the 8⁺?

¹⁸O + ²⁰⁸Pb reaction at 85-MeV + Euroball IV @IReS (Strasbourg) $T_{1/2}$ (8⁺) = 13(1) ns using HPGe detectors $B(E2; 8^+ \rightarrow 6^+) = 0.54(4)$ W.u.

Time distributions between the emissions of γ rays of ²¹⁴Po showing either prompt coincidences [curves in red and green, panel (a)] or delayed ones corresponding to the decay of the 1583-keV state [curves in blue, panels (b), (c), and (d)].

Lifetime estimates

• Half-lives for yrast states in ^{214,216,218}Po estimated using:

 $B(E2)$ < 10 W.u. for 2,4,6⁺ states

 $B(E2) \sim 0.5$ W.u. for 8⁺ states

- **Within the reach of the fast-timing setup available at IDS (> 10 ps)**
- **Can be populated via β¯ decay from high-spin states in 214-218Bi**

The ISOLDE Decay Station

Permanent setup at the low-energy branch of ISOLDE

Physics programme

- Nuclear structure physics (80%)
- Nuclear astrophysics (10%)
- Nuclear industry and medicine (5%)
- Solid state physics (5%) \bullet

Previously

MISTRAL beamline

VETO Polarized beam - B-NMI

MEDICIS ical Annlication

Hall Overview

WITCH

Fundamental Interactions

\approx 150 researchers from 19 institutions

- Belgium (KU Leuven)
- Denmark (Aarhus University, Department of Physics and Astronomy)
- Finland (University of Jyväskylä)
- Germany (Institut für Kernphysik Universität zu Köln)
- Italy (Università degli Studi e INFN Milano)
- Poland (Faculty of Physics, University of Warsaw)
- Romania (IFIN-HH Bucharest)
- South Africa (iThemba LABS; University of the Western Cape)
- Spain (IEM-CSIC Madrid; IFIC-CSIC Valencia; UCM Madrid)
- Sweden (Lund University)
- Switzerland (CERN ISOLDE)
- UK (STFC Daresbury Laboratory: University of Liverpool: University of York: University
- of Surrey)
- USA (University of Tennessee)

IDS is supported by 19 institutes across the world, and used by many more globally.

Core IDS setup

Six HPGE clover detectors (+6 Aug. 2024)

- 4 crystals / clover \bullet
- 20% relative eff. / crystal
- 2 thin-carbon window detectors for low-E (-10 keV)

Flexible + dynamic support structure (2023)

- Minimise material around implantation position \bullet
- Detectors mounted on vertical gantries, 3 clovers \bullet per gantry, gantries mounted on circular rails
- Can move detectors radially + vertically, tilt \bullet vertically, rotate on axes

Digital XIA pixie-16 acquisition system

- 16 channels per module
- 12-16 bit ADC \bullet
- 100, 250 and 500 MHz modules
- 208 channels/crate

Movable tape system

- Reel-to-reel aluminsed mylar tape (\sim 2.5 km)
- Fully automated system
- Integrated with ISOLDE beam logic, RILIS laser system, and our DAQ
- **Primary "implantation" position** For main aims of experiments
- **Secondary "decay" position** Free "bonus" experiment, long-lived activity

Fast-timing studies at IDS

- Well established technique at IDS since 2014
- Detection system comprising of:
	- 4 Clover HPGe 7% abs. eff. at 500keV
	- 2 LaBr₃(Ce) -3% abs. eff. at 500 keV
	- 1 Plastic Scintillator 20% abs. eff.

Beam production (July 2018)

- Old proven method of producing up to ²¹⁸Bi [1,2]: **UCx** target + **RILIS**
- Yields **2x** better than previously extracted during IS608 at MR-ToF in 2016.
- Short-lived contaminants such as **Fr** were easily removed using the pulsed release technique and the **High Resolution Separator (HRS)**

 $N=126$ Chart of nuclides for the isotopes north-east of ²⁰⁸Pb [1] $215AC$ $216AC$ $217AC$ $218AC$ 213д_с 214д_с $226AC$ $219AC$ $220AC$ $221AC$ $222AC$ $223AC$ $224AC$ $225AC$ $227AC$ 170 ms 330 us 69 _{ns} $1.1 \,\mu s$ 215 Ra 217 Ra 216 Ra ²¹⁸Ra $2^{19}Ra$ $2^{20}Ra$ $2^{21}Ra$ $2^{22}Ra$ 223Ra 224Ra 225Ra ²¹²Ra ²¹³Ra ²¹⁴Ra 226 Ra 1.6_{ms} **180 ns** $1.6_{µs}$ $26 \text{ }\mu\text{s}$ $216Fr$ $215 Fr$ $217Fr$ $218Fr$ $212Fr$ 213 Fr 214 Fr $219Fr$ 220Fr 221Fr 222Fr 223Fr 224Fr 225Fr 211 Fr 700 ns $22 \mu s$ 5 ms 86 ns 1_{ms} $218Rn$ $215Rn$ $217Rn$ 214 Rn 219Rn220Rn 221Rn 222Rn 223Rn 211 Rn 212 Rn 213 Rn $210Rn$ $224Rn$ $45 \,\mathrm{u\ddot{s}}\sqrt{0.54 \,\mathrm{ms}}$ $2.3 \mu s$ 35 ms $215At$ $216At$ $217At$ $218At$ $214At$ $219At 220At$ $221At$ $209At$ 210 At $211A₁$ $212A₁$ $213A₁$ $222At | 223At$ $32 ms$ 0.1 ms $300 \text{ }\mu\text{s}$ $215P_O$ $216P_O$ $218P_O$ $|219P_O|$ $220P_O$ $208P_O$ 209P₀ 210P₀ 211P₀ 212P₀ 213P₀ 214P₀ 3.1_m 1.7_{ms} 150 ms $1.5 s$ 216 Bi $217Bi$ 218 Bi 215 Bi $|213B|$ $\sqrt{214}$ Bi $208Bi$ $209Bi$ $211Bi$ $212Bi$ 207 Ri $210Bj$ $7.7 m$ $2.2 m$ 1.6_m 33_s 19.9 m $Z=82$ 206Pb 207Pb 208Ph 209Pb 210Pb 211Pb 212Pb 213Pb 214Pb 215Pb | 208 $_{\text{T}}$ | 209 $_{\text{T}}$ | 210 $_{\text{T}}$ | 211 $_{\text{T}}$ | 212 $_{\text{T}}$ | 206 TI 207 TI 205 TI

The pulsed release technique [1]: the different time scales for the α decay of the contaminants and the $β⁻$ decay under investigation allow for a selective suppression.

[1] H. De Witte, PhD Thesis, KU Leuven (2004) [2] U. Koster et al., Nucl. Instr. and Meth. B204, 347-352 (2003).

Beam production (July 2018)

- Old proven method of producing up to ²¹⁸Bi [1,2]: **UCx** target + **RILIS**
- Yields **2x** better than previously extracted during IS608 at MR-ToF in 2016.
- Short-lived contaminants such as **Fr** were easily removed using the pulsed release technique and the **High Resolution Separator (HRS)**

FIG. 1. β -gated γ -ray spectra recorded by the HPGe (black) and LaBr₃(Ce) (red) detectors following the β^- decay of ²¹⁴Bi (a), ²¹⁶Bi (b) and ²¹⁸Bi (c). The yrast transitions in $214,216,218$ Po are labeled.

²¹⁴Bi - direct identification and spectroscopy of the (8-) beta-decaying isomer

- Half-life measurement: $T_{1/2}$ (8⁻) = 9.39(10) min
- Extended decay scheme of $214PQ$ (4 new levels, 7 new transitions)
- Deduced the most likely $I^{\pi} = (8^{\circ}, 9^{\circ})$ in agreement with Shell model calculations predicting $I^{\pi} = 8^{-}$

PHYSICAL REVIEW C 104, 054301 (2021)

New β -decaving state in ²¹⁴Bi

B. Andel^Q,^{1,2,*} P. Van Duppen,¹ A. N. Andreyev,^{3,4} A. Blazhev,⁵ H. Grawe,^{6,†} R. Lică,⁷ H. Naïdja,⁸ M. Stryjczyk,^{1,9} A. Algora, ^{10,11} S. Antalic, ² A. Barzakh,¹² J. Benito,¹³ G. Benzoni,¹⁴ T. Berry,¹⁵ M. J. G. Borge,¹⁶ K. Chrysalidis,¹⁷ C. Clisu,⁷ C. Costache, 7 J. G. Cubiss, 3 H. De Witte, ¹ D. V. Fedorov, ¹² V. N. Fedosseev, ¹⁷ L. M. Fraile, ¹³ H. O. U. Fynbo, ¹⁸ P. T. Greenlees, ⁹ L. J. Harkness-Brennan, ¹⁹ M. Huyse, ¹ A. Illana, ²⁰ J. Jolie, ⁵ D. S. Judson, ¹⁹ J. Konki, ⁹ I. Lazarus, ²¹ M. Madurga,¹⁷ N. Marginean,⁷ R. Marginean,⁷ C. Mihai,⁷ B. A. Marsh,¹⁷ P. Molkanov,¹² P. Mosat,² J. R. Murias,^{13,22} E. Nacher,¹⁰ A. Negret,⁷ R. D. Page,¹⁹ S. Pascu,⁷ A. Perea,¹⁶ V. Pucknell,²¹ P. Rahkila,⁹ E. Rapisarda,¹⁷ K. Rezynkina,^{1,23} V. Sánchez-Tembleque,¹³ K. Schomacker,⁵ M. D. Seliverstov,¹² C. Sotty,⁷ L. Stan,⁷ C. Sürder,²⁴ O. Tengblad,¹⁶ V. Vedia,¹³

²¹⁶Bi - Extended level scheme of ²¹⁶Po following the decay of both ground state and isomer

PHYSICAL REVIEW C 109, 064321 (2024)

β decay of the ground state and of a low-lying isomer in ²¹⁶Bi

B. Andel \otimes , ^{1,*} A. N. Andreyev \otimes , ^{2,3} A. Blazhev \otimes , ⁴ R. Lică \otimes , ⁵ H. Naïdja, ⁶ M. Stryjczyk \otimes , ^{7,8} P. Van Duppen, ⁷ A. Algora, ^{9,10} S. Antalic ⁰, ¹ A. Barzakh,¹¹ J. Benito,¹² G. Benzoni⁰,¹³ T. Berry,¹⁴ M. J. G. Borge⁰,¹⁵ K. Chrysalidis,¹⁶ C. Clisu,⁵ C. Costache, 5 J. G. Cubiss, 2 H. De Witte, 7 D. V. Fedorov \mathbb{Q} , ¹¹ V. N. Fedosseev, ¹⁶ L. M. Fraile \mathbb{Q} , ¹² H. O. U. Fynbo, ¹⁷ P. T. Greenlees, ⁸ L. J. Harkness-Brennan, ¹⁸ M. Huyse, ⁷ A. Illana **0**, ¹⁹ J. Jolie, ⁴ D. S. Judson, ¹⁸ J. Konki, ⁸ I. Lazarus, ²⁰ M. Madurga,¹⁶ N. Marginean,⁵ R. Marginean [®],⁵ B. A. Marsh,^{16,†} C. Mihai,⁵ P. L. Molkanov ®,¹¹ P. Mosat,¹ J. R. Murias,^{12,21} E. Nacher, ⁹ A. Negret, ⁵ R. D. Page 0,¹⁸ S. Pascu, ⁵ A. Perea, ¹⁵ V. Pucknell, ²⁰ P. Rahkila, ⁸ E. Rapisarda, ¹⁶ K. Rezynkina, ^{7,22} V. Sánchez-Tembleque,¹² K. Schomacker,⁴ M. D. Seliverstov,¹¹ C. Sotty,⁵ L. Stan,⁵ C. Sürder,²³ O. Tengblad,¹⁵ V. Vedia,¹²

- 48 new levels, 83 new transitions in ²¹⁶Po
- Ground state and isomer I^{π} proposed based on $I_β$ and SM calculations (H208 and
- The ground state and isomer order is not firmly established

Fast-timing measurement of the 8⁺ state in ²¹⁴Po

Fast-timing measurement of the 8⁺ state in ²¹⁴Po

Fast-timing measurement of the 2,4,6⁺ states in ²¹⁴Po

^{214,216,218}Po - Summary of fast-timing results

Time difference (ns)

214,216,218Po – Summary of fast-timing results

B(E2) values and comparison with Shell Model calculations

• Experimental data was compared to shell-model calculations using H208 [1] and KHPE [2] effective interactions.

B(E2) values and comparison with Shell Model calculations

- Experimental data was compared to shell-model calculations using H208 [1] and KHPE [2] effective interactions.
- Good agreement for low-lying transitions but deviations in the case of 8^+ \rightarrow 6⁺ and 6⁺ \rightarrow 4⁺ transitions.

B(E2) values and comparison with Shell Model calculations

- Experimental data was compared to shell-model calculations using H208 [1] and KHPE [2] effective interactions.
- Good agreement for low-lying transitions but deviations in the case of 8^+ \rightarrow 6⁺ and 6⁺ \rightarrow 4⁺ transitions.
- A proton pairing reduction of 100 keV in the interactions addresses the large discrepancies
- The increasing trend was explained through the increase of the collectivity and quadrupole correlations with respect to the neutron number

Reducing the proton pairing strength:

- Inverts of the lowest predicted 8^+ states in 214 Po
- confirms the **two-proton** configuration $\pi(1h_{9/2}1f_{7/2})$ of the yrast 8 ⁺ states dominated by quadrupole correlations.

TABLE II. The principal wave function components ($\geq 10\%$) for yrast states in ^{210,212,214,216,218}Po isotopes, calculated using the two versions of the effective interaction: H208 (initial) and H208-m (reduced pairing).

FIG. 5. The wave-function components of 214 Po states calculated in seniority scheme where $T(x, y)$ represents the number of neutron (x) or proton (y) pairs being broken. The initial and pairing-modified versions of the H208 effective interaction are employed within the NATHAN code.

Thank you for your attention!

On the nature of yrast states in neutron-rich polonium isotopes

R. Lică.^{1,*} A.N. Andrevev.² H. Naïdia.³ A. Blazhev.⁴ P. Van Duppen.⁵ B. Andel.⁶ A. Algora.^{7,8} S. Antalic.⁶ J. Benito.⁹ G. Benzoni.¹⁰ T. Berry.¹¹ M. J. G. Borge.¹² C. Costache.¹ J. G. Cubiss.² H. De Witte.⁵ L. M. Fraile.⁹ H. O. U. Fynbo,¹³ P. T. Greenlees,¹⁴ L. J. Harkness-Brennan,¹⁵ M. Huyse,⁵ A. Illana,¹⁶ J. Jolie,⁴ D. S. Judson,¹⁵ J. Konki,¹⁴ I. Lazarus,¹⁷ M. Madurga,¹⁸ N. Marginean,¹ R. Marginean,¹ C. Mihai,¹ R. E. Mihai,¹ P. Mosat,⁶ J. R. Murias, 9, 19 E. Nacher, ⁷ A. Negret, ¹ R. D. Page, ¹⁵ A. Perea, ¹² V. Pucknell, ¹⁷ P. Rahkila, ¹⁴ K. Rezynkina, ^{5, 20} V. Sánchez-Tembleque,⁹ K. Schomacker,⁴ M. Stryjczyk,^{5,14} C. Sürder,²¹ O. Tengblad,¹² V. Vedia,⁹ and N. Warr⁴

(IDS Collaboration)

¹ Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, RO-077125 Bucharest, Romania 2 School of Physics. Engineering and Technology. University of York, York, YO10 5DD, United Kingdom ³Université Constantine 1, Laboratoire de Physique Mathématique et Physique Subatomique, Constantine 25000, Algeria 4 Institut für Kernphysik. Universität zu Köln. D-50937 Köln. Germany $5 KU$ Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium 6 Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia ⁷Instituto de Física Corpuscular, CSIC - Universidad de Valencia, E-46980, Valencia, Spain ⁸Institute of Nuclear Research (ATOMKI), P.O.Box 51, H-4001 Debrecen, Hungary ⁹ Grupo de Fisica Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, 28040 Madrid, SPAIN 10 Istituto Nazionale di Fisica Nucleare, Sezione di Milano, I-20133 Milano, Italy 11 Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom 12 Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid, Spain ¹³Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark 14 University of Jyväskylä, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL) FI-40014 University of Jyväskylä, Finland 15 Department of Physics. Oliver Lodge Laboratory. University of Liverpool, Liverpool L69 7ZE, United Kingdom ¹⁶Instituto Nazionale di Fisica Nucleare. Laboratori Nazionali di Leanaro, I-35020 Leanaro, Italy ¹⁷ STFC Daresbury, Daresbury, Warrington WA4 4AD, United Kingdom ¹⁸ Dept. of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, US 19 Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France 20 Université de Strasbourg, CNRS, IPHC UMR7178, F-67000, Strasbourg, France 21 Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany

Submitted to Phys. Rev. Lett. (10 Jul 2024)

https://arxiv.org/abs/2407.03839

Happy birthday!

Happy birthday!

Balabanski Crag [\(Bulgarian:](https://en.wikipedia.org/wiki/Bulgarian_language) *Балабански камък*, 'Balabanski Kamak' \ba-la-'ban-ski 'ka-m&k\) is the rocky peak rising to 833 m^{[\[1\]](https://en.wikipedia.org/wiki/Balabanski_Crag)} in eastern **[Bigla Ridge](https://en.wikipedia.org/wiki/Bigla_Ridge) on Heros** [Peninsula,](https://en.wikipedia.org/wiki/Heros_Peninsula) [Foyn Coast](https://en.wikipedia.org/wiki/Foyn_Coast) on the **Antarctic Peninsula**. It surmounts [Cabinet Inlet](https://en.wikipedia.org/wiki/Cabinet_Inlet) to the northeast. The feature is named after Dimitar Balabanski, physicist at [St. Kliment Ohridski Base](https://en.wikipedia.org/wiki/St._Kliment_Ohridski_Base) in 1994/95 and subsequent seasons.

Extra slides

			$B(E2; J^{\pi} \rightarrow (J-2)^{\pi})$ (W.u.)				
Nucl.	J^π	$T_{1/2}$ (ps)	Exp.	H ₂₀₈	H208		
		Exp.			$-m$		$-m$
	2^{+}_{1}	13(5)	7(3)	13.6	14.3	12.3	13.2
$^{214}\mathrm{Po}$	4^{+}_{1}	35(5)	18(3)	16.9	18.5	13.3	16.5
	6^{+}_{1}	118(5)	16(1)	11.4	14.7	5.9	12.6
	8^{+}_{1}	607(14)	11.3(3)	1.2	9.2	0.1	6.6
			$13(1)$ ns $ 0.54(4) 14 $				
	2^{+}_{1}	11(5)	13(6)	18.1	18.9	17.7	18.7
$^{216}\mathrm{Po}$	4^{+}_{1}	21(5)	26(6)	25.2	27.1	22.1	25.2
	6^{+}_{1}	31(5)	37(6)	18.8	25.0	9.8	23.2
	8^{+}_{1}	409(16)	24(1)	16.2	17.8	3.2	15.5
		${<}15$	>13	19.2	20.1	14.8	15.3
	2^{+}_{1} 4 ⁺	≤ 15	>33	29.9	31.5	21.5	22.9
$\rm ^{218}Po$	6^{+}_{1}	20(8)	40(16)	28.3	35.0	2.8	3.2
	8^{+}_{1}	628(25)	7.8(3)	8.5	16.2	1.0	0.003

TABLE I. Experimental $T_{1/2}$ and $B(E2)$ values in ²¹⁴⁻²¹⁸Po measured in the present work and Ref. [14] (bold), compared to calculated $B(E2)$ s using various effective interactions: H208, KHPE, and their pairing-modified versions.

FIG. 3. The calculated $0^+ - 8^+$ yrast energy levels of even- $210-218$ Po isotopes using H208, H208-m, KHPE and even KHPE-m interactions, compared to the available experimental data $[14, 35-39]$.

$(7,8,9^-)$ 9.39(10) min $^{214}_{83}$ Bi^m • HPGe gate: 240 keV • LaBr gate: **245 keV 561**
613
4.6 $6.92(5)$ $5.4(2)$ $2197.6(4)$ 57 $2159.0(4)$ $8.29(8)$ $0.25(4)$ 9 295-ERL 426.1
475.1 $20₂$ $6.51(5)$ $18.7(12)$ $2059.5(4)$ #Events: 1586 335.5
384.7 $7.38(6)$ $3.1(3)$ $1969.1(4)$ $T_{1/2}$ = 680(20) ps -503.1 15 $8.23(9)$ $0.56(11)$ $1843.0(4)$ $21.2(16)$ 8^+ 1824.5(4) $6.66(5)$ 10 -49.7 $(7,8,9^+)$ $7.00(13)$ $14(4)$ $1633.5(4)$ 8^+ $6.60(7)$ $38(5)$ $1584.4(4)$ 324.8 6^+ 1339.9(3) 405.8 4^+ $1015.1(3)$ S $\frac{60}{6}$ 609.3(2) 2^+ 1000 1100 1200 1300 1400 1500 1600 900 0^+ 0.0 $I_{\beta}(\%)$ $^{214}_{84}$ Po E (keV) $log_(ft)$

 $8₁$ + level in ²¹⁴Po: feeding from above

Previously: $T_{1/2}(8_1^{\{+\}}) = 622(7)$ ps **Now:** $T_{1/2}(8^{+}_{1}; 1584 \text{ keV}) = 607(14) \text{ ps}$ $T_{1/2}(8^{\circ}; 1824 \text{ keV}) = 73(7) \text{ ps}$

La₁-Beta TAC (10ps/ch)

