On the Nature of Yrast States in Neutron-Rich Polonium Isotopes

Presented by: Razvan Lica, IFIN-HH

Experiment spokespersons:

R. Lica, *IFIN-HH (Romania)* **A.N. Andreyev,** *University of York (UK)*

Theory:

H. Naidja, Universite Constantine (Algeria)
 A. Blazhev, IKP Koln (Germany)
 On behalf of the IS650 and IDS Collaborations

International Symposium on Nuclear Science Sep 9–13, 2024, Sofia, Bulgaria

- Po isotopes (Z = 84)
- \rightarrow text-book example for studying the seniority scheme
- \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po

- Po isotopes (Z = 84)
- → text-book example for studying the seniority scheme → presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po
- Po isotopes with N>126
- \rightarrow shell-model test using ^{208}Pb as an inert core \rightarrow study the filling of the $vg_{9/2}$ orbital

• Po isotopes (Z = 84)

→ text-book example for studying the seniority scheme → presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po

• Po isotopes with N>126

→ shell-model test using ²⁰⁸Pb as an inert core → study the filling of the $vg_{9/2}$ orbital

^{214,216,218}Po

→ Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams

Po isotopes (Z = 84) •

3d

2g

11

1h

 \rightarrow text-book example for studying the seniority scheme \rightarrow presence of $\pi(h_{q/2})$ 8⁺ isomers in the even-even Po

184

126

82

Po isotopes with N>126

3d 3/2

3d 5/2

2f 5/2 2f 7/2

3p 1/2 3p 3/2

2g 7/2

09/2

1h 9/2

 \rightarrow shell-model test using ²⁰⁸Pb as an inert core \rightarrow study the filling of the vg_{9/2} orbital

1 i 11/2

1i 13/2

214,216,218**P**O

 \rightarrow Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams

 \rightarrow Recent measurement by Astier et al. [1] of the 8_1^+ state half-life $T_{1/2}^-$ 13(1) ns in ²¹⁴Po indicating a similar excitation mechanism as for ²¹⁰Pb, one-neutron-pair breaking

 $\rightarrow \alpha + ^{208}$ Pb cluster configurations in ²¹²Po ²¹⁹Po ²¹⁵Po ²¹⁶Po ²¹⁷Po ²¹⁸Po [†]Po : 84 n: 130 z: 84 n: 131 z: 84 n: 132 z: 84 n: 133 z: 84 n: 134 z: 84 n: 135 In: 9/2+]п: 0+ Јп: (9/2+) Jп: 0+ 84 of Paris when the T_{1/2}:0.145 s 0.002 /2:164.3 µs 2.0 T_{1/2}:1.781 ms 0.005 T_{1/2}:620 s 59 cay a 100% ecay a 100% cay a 99.980% ecay β- 71.8% β- 2.3E-4% β- 5% β- 0.020% a 28.2% ²¹⁴Bi ²¹⁵Bi 216_{Bi} ²¹⁷Bi 218_{Bi} ²¹³Bi - Change z: 83 n: 130 z: 83 n: 132 z: 83 n: 133 z: 83 n: 134 z: 83 n: 131 z: 83 n: 135 83 п: 9/2-Јп: (9/2-)]п: (6-,7-) Јп: (9/2-) T_{1/2}:33 s 1 1/2:45.59 m 0.06 T_{1/2}:19.9 m 0.4 T_{1/2}:7.6 m 0.2 T_{1/2}:2.25 m 0.05 T_{1/2}:98.5 s 1.3 cay β- 97.80% ecay β- 99.979% ecay β- 100% ecay β- 100% ecay β- 100% ecay β- 100% a 2.20% a 0.021% 130 132 134

²¹⁴Bi - Previous study of Astier (2011)

¹⁸O + ²⁰⁸Pb reaction at 85-MeV + Euroball IV @IReS (Strasbourg) $T_{1/2}(8^+) = 13(1)$ ns using HPGe detectors $B(E2; 8^+ \rightarrow 6^+) = 0.54(4)$ W.u.

Time distributions between the emissions of γ rays of ²¹⁴Po showing either prompt coincidences [curves in red and green, panel (a)] or delayed ones corresponding to the decay of the 1583-keV state [curves in blue, panels (b), (c), and (d)].

²¹⁴Bi - Previous study of Astier (2011)

2605

2272

1823

T_{1/2} = 13ns 1583

333

1339

1014

609

84

Understand the nature of yrast states in neutron-rich Po: is it really one neutron-pair breaking for the 8⁺?

\rightarrow T _{1/2} (8+) can be re-checked using fast-timing detectors
\rightarrow measure other yrast states
\rightarrow go to heavier masses
ightarrow compare with Shell Model calculations

¹⁸O + ²⁰⁸Pb reaction at 85-MeV + Euroball IV @IReS (Strasbourg) $T_{1/2}(8^+) = 13(1)$ ns using HPGe detectors $B(E2; 8^+ \rightarrow 6^+) = 0.54(4)$ W.u.

Time distributions between the emissions of y rays of ²¹⁴Po showing either prompt coincidences [curves in red and green, panel (a)] or delayed ones corresponding to the decay of the 1583-keV state [curves in blue, panels (b), (c), and (d)].

Lifetime estimates

• Half-lives for yrast states in ^{214,216,218}Po estimated using:

B(E2) < 10 W.u. for 2,4,6⁺ states

B(E2) \sim 0.5 W.u. for 8⁺ states

Nucleus/Yield	J^{π}	$E_{\gamma} (keV)$	$T_{1/2}$	Events/shift
²¹⁴ Po	2^{+}_{1}	609.0	>9 ps	4.9×10^{4}
10^4 ions/s	4_1^{+}	405.4	>68 ps	$9.5{ imes}10^4$
	6^{+}_{1}	324.4	>210 ps	$1.7{ imes}10^5$
	8^+_1	244.1	13(1) ns [6]	$7.7{ imes}10^5$
²¹⁶ Po	2^{+}_{1}	549.7	>15 ps	5.9×10^{3}
10^3 ions/s	4_1^+	418.8	>58 ps	9.7×10^{3}
	6_{1}^{+}	359.5	>120 ps	$1.7{ imes}10^4$
	8^{+}_{1}	223.4	$\sim 27 \text{ ns}$	$7.6{ imes}10^4$
²¹⁸ Po	2^{+}_{1}	509.7	>21 ps	6.5×10^{2}
10^2 ions/s	4_1^+	425.5	>52 ps	1.1×10^{3}
	6_{1}^{+}	385.7	>86 ps	1.4×10^{3}
	8^+_1	263.0	$\sim 12 \text{ ns}$	6.1×10^{3}

- Within the reach of the fast-timing setup available at IDS (> 10 ps)
- Can be populated via β⁻ decay from high-spin states in ²¹⁴⁻²¹⁸Bi

The ISOLDE Decay Station

Permanent setup at the low-energy branch of ISOLDE

• Physics programme

- Nuclear structure physics (80%)
- Nuclear astrophysics (10%)
- Nuclear industry and medicine (5%)
- Solid state physics (5%)

Previously

MISTRAL beamline

VETO Polarized beam - β-NMI lical Application

Hall Overview

WITCH

Fundamental Interactions

ON SOUF

≈150 researchers from 19 institutions

- Belgium (KU Leuven)
- Denmark (Aarhus University, Department of Physics and Astronomy)
- Finland (University of Jyväskylä)
- Germany (Institut für Kernphysik Universität zu Köln)
- Italy (Università degli Studi e INFN Milano)
- Poland (Faculty of Physics, University of Warsaw)
- Romania (IFIN-HH Bucharest)
- South Africa (iThemba LABS; University of the Western Cape)
- Spain (IEM-CSIC Madrid; IFIC-CSIC Valencia; UCM Madrid)
- Sweden (Lund University)
- Switzerland (CERN ISOLDE)
- UK (STFC Daresbury Laboratory; University of Liverpool; University of York; University
- of Surrey)
- USA (University of Tennessee)

IDS is supported by 19 institutes across the world, and used by many more globally.

Core IDS setup

Six HPGE clover detectors (+6 Aug. 2024)

- 4 crystals / clover
- 20% relative eff. / crystal
- 2 thin-carbon window detectors for low-E (~10 keV)

Flexible + dynamic support structure (2023)

- Minimise material around implantation position
- Detectors mounted on vertical gantries, 3 clovers per gantry, gantries mounted on circular rails
- Can move detectors radially + vertically, tilt vertically, rotate on axes

Digital XIA pixie-16 acquisition system

- ¹⁶ channels per module
- 12-16 bit ADC
- ¹ 100, 250 and 500 MHz modules
- 208 channels/crate

Movable tape system

- Reel-to-reel aluminsed mylar tape (~2.5 km)
- Fully automated system
- Integrated with ISOLDE beam logic, RILIS laser system, and our DAQ
- Primary "implantation" position
 For main aims of experiments
- Secondary "decay" position Free "bonus" experiment, long-lived activity

Fast-timing studies at IDS

- Well established technique at IDS since 2014
- Detection system comprising of:
 - 4 Clover HPGe 7% abs. eff. at 500keV
 - 2 LaBr₃(Ce) 3% abs. eff. at 500keV
 - 1 Plastic Scintillator 20% abs. eff.

Ranges:	
Centroid shift method:	- 10 ps - 100 ps
Slope method	- 50 ps - 50 ns (or longer)
[H. Mach et al. NIM A 28	30, 49 (1989)]

Beam production (July 2018)

- Old proven method of producing up to ²¹⁸Bi [1,2]: UCx target + RILIS
- Yields **2x** better than previously extracted during IS608 at MR-ToF in 2016.
- Short-lived contaminants such as **Fr** were easily removed using the pulsed release technique and the **High Resolution Separator (HRS)**

N=12(Chart of nuclides for the isotopes north-east of ²⁰⁸Pb [1] 217AC ²¹⁸AC ²¹⁵Ac ²¹⁶Ac ²¹³Ac 214Ac ²¹⁹Ac ²²⁰Ac ²²¹Ac 222AC ²²⁴Ac ²²⁵Ac ²²⁶Ac ²²⁷Ac ²²³Ac 170 ms 330 us 69 <mark>ns</mark> 1.1 μs ²¹⁵Ra ²¹⁷Ra ²¹⁶Ra ²¹⁸Ra ²¹⁹Ra ²²⁰Ra ²²¹Ra ²²²Ra ²²³Ra ²²⁴Ra ²²⁵Ra ²²⁶Ra ²¹²Ra 213Ra 214Ra 180 ns 1.6 ms 1.6 μs 26 μs ²¹⁵Fr ²¹⁶Fr ²¹⁷Fr ²¹⁸Fr 212**Fr** ²²¹Er ²¹³Fr ²¹⁴Fr ²¹⁹Fr ²²⁰Fr 222Fr 223Fr 224Fr 225Fr ²¹¹ Fr 700 ns 22 μs 5 ms 86 ns 1 ms ²¹⁸Rn 219Rn 220Rn 221Rn 222Rn 223Rn ²¹⁵Rn ²¹⁷Rn ¹⁶Rn 214 Rp ²¹¹Rn ²¹²Rn ²¹³Rn ²¹⁰Rn ²²⁴Rn 2.3 μs 45 μs 0.54 ms 35 ms 215At 216At 217At ²¹⁸At 213At 214At ²¹⁹At ²²⁰At ²²¹At ²¹¹At ²¹²At ²²²At ²²³At ²⁰⁹At 210At 300 µs 32 ms 0.1 ms 216Po ²¹⁵Po 218P0 208Po 209Po 210Po 211Po 212Po 213Po 214Po ²¹⁹Po ²²⁰Po 3.1 m 1.5 s 150 ms 1.7 ms ²¹⁵Bi ²¹⁶Bi ²¹⁷Bi ²¹⁸Bi ²¹³Bi ²¹⁴Bi ²⁰⁸Bi ²⁰⁹Bi ²¹¹Bi ²¹²Bi ²⁰⁷Bi ²¹⁰Bi 2.2 m 1.6 m 7.7 m 33 s 19.9 m Z=82 206Pb 207Pb 208Ph 209Ph 210Ph 211Ph 212Ph 213Ph 214Ph 215Ph 208TI 209TI 210TI 211TI 212TI ²⁰⁶TI ²⁰⁷TI 205**TI**

Isotope	Rate (ions/uC)	Runtime (h)
²¹⁴ Bi	> 2 x 10 ⁴	3.0
²¹⁶ Bi	1.5 x 10 ³	6.5
²¹⁸ Bi	2 x 10 ²	13.0

The pulsed release technique [1]: the different time scales for the α decay of the contaminants and the β^- decay under investigation allow for a selective suppression.

[1] H. De Witte, PhD Thesis, KU Leuven (2004)
[2] U. Koster et al., Nucl. Instr. and Meth. B204, 347-352 (2003).

Beam production (July 2018)

- Old proven method of producing up to ²¹⁸Bi [1,2]: UCx target + RILIS
- Yields **2x** better than previously extracted during IS608 at MR-ToF in 2016.
- Short-lived contaminants such as **Fr** were easily removed using the pulsed release technique and the **High Resolution Separator (HRS)**

FIG. 1. β -gated γ -ray spectra recorded by the HPGe (black) and LaBr₃(Ce) (red) detectors following the β^- decay of ²¹⁴Bi (a), ²¹⁶Bi (b) and ²¹⁸Bi (c). The yrast transitions in ^{214,216,218}Po are labeled.

Isotope	Rate (ions/uC)	Runtime (h)
²¹⁴ Bi	> 2 x 10 ⁴	3.0
²¹⁶ Bi	1.5 x 10 ³	6.5
²¹⁸ Bi	2 x 10 ²	13.0

²¹⁴Bi - direct identification and spectroscopy of the (8⁻) beta-decaying isomer

- Half-life measurement: $T_{1/2}$ (8⁻) = 9.39(10) min
- Extended decay scheme of ²¹⁴Po (4 new levels, 7 new transitions)
- Deduced the most likely $I^{\pi} = (8^{-}, 9^{-})$ in agreement with Shell model calculations predicting $I^{\pi} = 8^{-}$

PHYSICAL REVIEW C 104, 054301 (2021)

New β -decaying state in ²¹⁴Bi

B. Andel^O,^{1,2,*} P. Van Duppen,¹ A. N. Andreyev,^{3,4} A. Blazhev,⁵ H. Grawe,^{6,7} R. Lică,⁷ H. Naïdja,⁸ M. Stryjczyk,^{1,9}
A. Algora,^{10,11} S. Antalic,² A. Barzakh,¹² J. Benito,¹³ G. Benzoni,¹⁴ T. Berry,¹⁵ M. J. G. Borge,¹⁶ K. Chrysalidis,¹⁷ C. Clisu,⁷ C. Costache,⁷ J. G. Cubiss,³ H. De Witte,¹ D. V. Fedorov,¹² V. N. Fedosseev,¹⁷ L. M. Fraile,¹³ H. O. U. Fynbo,¹⁸
P. T. Greenlees,⁹ L. J. Harkness-Brennan,¹⁹ M. Huyse,¹ A. Illana,²⁰ J. Jolie,⁵ D. S. Judson,¹⁹ J. Konki,⁹ I. Lazarus,²¹
M. Madurga,¹⁷ N. Marginean,⁷ R. Marginean,⁷ C. Mihai,⁷ B. A. Marsh,¹⁷ P. Molkanov,¹² P. Mosat,² J. R. Murias,^{13,22}
E. Nacher,¹⁰ A. Negret,⁷ R. D. Page,¹⁹ S. Pascu,⁷ A. Perea,¹⁶ V. Pucknell,²¹ P. Rahkila,⁹ E. Rapisarda,¹⁷ K. Rezynkina,^{1,23}
V. Sánchez-Tembleque,¹³ K. Schomacker,⁵ M. D. Seliverstov,¹² C. Sotty,⁷ L. Stan,⁷ C. Sürder,²⁴ O. Tengblad,¹⁶ V. Vedia,¹³

²¹⁶Bi - Extended level scheme of ²¹⁶Po following the decay of both ground state and isomer

PHYSICAL REVIEW C 109, 064321 (2024)

β decay of the ground state and of a low-lying isomer in ²¹⁶Bi

B. Andel[•],^{1,*} A. N. Andreyev[•],^{2,3} A. Blazhev[•],⁴ R. Lică[•],⁵ H. Naïdja,⁶ M. Stryjczyk[•],^{7,8} P. Van Duppen,⁷ A. Algora,^{9,10} S. Antalic[•],¹ A. Barzakh,¹¹ J. Benito,¹² G. Benzoni[•],¹³ T. Berry,¹⁴ M. J. G. Borge[•],¹⁵ K. Chrysalidis,¹⁶ C. Clisu,⁵ C. Costache,⁵ J. G. Cubiss,² H. De Witte,⁷ D. V. Fedorov[•],¹¹ V. N. Fedosseev,¹⁶ L. M. Fraile[•],¹² H. O. U. Fynbo,¹⁷ P. T. Greenlees,⁸ L. J. Harkness-Brennan,¹⁸ M. Huyse,⁷ A. Illana[•],¹⁹ J. Jolie,⁴ D. S. Judson,¹⁸ J. Konki,⁸ I. Lazarus,²⁰ M. Madurga,¹⁶ N. Marginean,⁵ R. Marginean[•],⁵ B. A. Marsh,^{16,†} C. Mihai,⁵ P. L. Molkanov[•],¹¹ P. Mosat,¹ J. R. Murias,^{12,21} E. Nacher,⁹ A. Negret,⁵ R. D. Page[•],¹⁸ S. Pascu,⁵ A. Perea,¹⁵ V. Pucknell,²⁰ P. Rahkila,⁸ E. Rapisarda,¹⁶ K. Rezynkina,^{7,22} V. Sánchez-Tembleque,¹² K. Schomacker,⁴ M. D. Seliverstov,¹¹ C. Sotty,⁵ L. Stan,⁵ C. Sürder,²³ O. Tengblad,¹⁵ V. Vedia,¹² S. Viñals,¹⁵ R. Wadsworth,² and N. Warr[•]

• 48 new levels, 83 new transitions in ²¹⁶Po

- Ground state and isomer I^π proposed based on I_β and SM calculations (H208 and KHPE)
- The ground state and isomer order is not firmly established

Fast-timing measurement of the 8⁺ state in ²¹⁴Po

Fast-timing measurement of the 8⁺ state in ²¹⁴Po

Fast-timing measurement of the 2,4,6⁺ states in ²¹⁴Po

^{214,216,218}Po – Summary of fast-timing results

Time difference (ns)

^{214,216,218}Po – Summary of fast-timing results

B(E2) values and comparison with Shell Model calculations

• Experimental data was compared to shell-model calculations using H208 [1] and KHPE [2] effective interactions.

B(E2) values and comparison with Shell Model calculations

- Experimental data was compared to shell-model calculations using H208 [1] and KHPE [2] effective interactions.
- Good agreement for low-lying transitions but deviations in the case of 8⁺ → 6⁺ and 6⁺ → 4⁺ transitions.

B(E2) values and comparison with Shell Model calculations

- Experimental data was compared to shell-model calculations using H208 [1] and KHPE [2] effective interactions.
- Good agreement for low-lying transitions but deviations in the case of 8⁺ → 6⁺ and 6⁺ → 4⁺ transitions.
- A proton pairing reduction of 100 keV in the interactions addresses the large discrepancies
- The increasing trend was explained through the increase of the collectivity and quadrupole correlations with respect to the neutron number

Reducing the proton pairing strength:

- Inverts of the lowest predicted 8⁺ states in ²¹⁴Po
- confirms the two-proton configuration π(1h_{9/2}1f_{7/2}) of the yrast 8⁺ states dominated by quadrupole correlations.

Nucleus	I^{π}	H208	H208-m	48
Nucleus	0+	$76\% \pi 1 h^2 + 14\% \pi 1 i^2$	$77\% \pi 1b^2 + 15\% \pi 1i^2$	3d
	$ _{0^+}^{0_1}$	$\frac{1000}{100} \frac{110}{100} \frac{110}{100} + \frac{1400}{100} \frac{110}{100} \frac{110}{100} \frac{1100}{100}$	$11/0$ $\pi 1/0/2 + 15/0$ $\pi 1/1/3/2$	2g
	$ ^{2_1}$	$9570 \pi 1 h_{9/2}$	$95\% \pi 1 h_{9/2}$	1i—(
210 5	41	$98\% \pi 1h_{9/2}^5$	$98\% \pi 1h_{9/2}$	
²¹⁰ Po	6^+_1	$99\% \pi 1h_{9/2}^2$	$99\% \pi 1 h_{9/2}^2$	2
	8^+_1	$99\% \pi 1 h_{9/2}^2$	$99\% \pi 1 h_{9/2}^2$	3p
	0^+_1	$46\% \; \pi 1 h_{9/2}^2 \otimes \nu 1 g_{9/2}^2$	$46\% \; \pi 1 h_{9/2}^2 \otimes u 1 g_{9/2}^2$	2f
	$ 2_1^+ $	$53\% \; \pi 1 h_{9/2}^2 \otimes u 1 g_{9/2}^2$	$53\% \; \pi 1 h_{9/2}^2 \otimes u 1 g_{9/2}^2$	
	4_{1}^{+}	$57\% \; \pi 1 h_{9/2}^{2'} \otimes u 1 g_{9/2}^{2'}$	$56\% \; \pi 1 h_{9/2}^{2'} \otimes u 1 g_{9/2}^{2'}$	1h
²¹² Po	6^+_1	$58\% \; \pi 1 h_{9/2}^{2'} \otimes u 1 g_{9/2}^{2'}$	$56\% \; \pi 1 h_{9/2}^{2'} \otimes u 1 g_{9/2}^{2'}$	
	$ 8_1^+ $	$54\% \ \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^2 + \ 11\% \ \pi 1f_{7/2}^2 \otimes \nu 1g_{9/2}^2$	$47\% \ \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^2 + 15\% \ \pi 1h_{9/2} 1f_{7/2} \otimes \nu 1g_{9/2}^2$	
	0^{+}_{1}	$22\% \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^4 + 12\% \pi 1f_{7/2}^2 \otimes \nu 1g_{9/2}^4$	$21\% \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^4 + 12\% \pi 1f_{7/2}^2 \otimes \nu 1g_{9/2}^4$	
	2^{+}_{1}	$20\% \ \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^4 + 11\% \ \pi 1f_{7/2}^{2'} \otimes \nu 1g_{9/2}^{4'}$	$19\% \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^4 + 10\% \pi 1f_{7/2}^2 \otimes \nu 1g_{9/2}^4$	
	4_{1}^{+}	$20\% \ \pi 1 h_{9/2}^{2'} \otimes \nu 1 g_{9/2}^{4'} + \ 12\% \ \pi 1 f_{7/2}^{2'} \otimes \nu 1 g_{9/2}^{4'}$	$18\% \pi 1h_{9/2}^{2'} \otimes \nu 1g_{9/2}^{4'} + 11\% \pi 1f_{7/2}^{2'} \otimes \nu 1g_{9/2}^{4'}$	⁶⁰ _ н
²¹⁴ Po	6^{+}_{1}	$23\% \pi 1h_{9/2}^{2'} \otimes \nu 1g_{9/2}^{4'} + 14\% \pi 1f_{7/2}^{2'} \otimes \nu 1g_{9/2}^{4'}$	$18\% \ \pi 1h_{9/2}^{2'} \otimes \nu 1g_{9/2}^{4'} + \ 13\% \ \pi 1f_{7/2}^{2'} \otimes \nu 1g_{9/2}^{4'}$	_% 40 _
	$ 8_1^+ $	$34\% \pi 1h_{9/2}^{2'} \otimes \nu 1g_{9/2}^{4'} + 16\% \pi 1f_{7/2}^{2'} \otimes \nu 1g_{9/2}^{4'}$	$28\% \pi 1h_{9/2} 1f_{7/2} \otimes \nu 1g_{9/2}^4 + 11\% \pi 1h_{9/2} 1f_{7/2} \otimes \nu 1g_{9/2}^2 1i_{11/2}^2$	20 -
	$ 8_{2}^{+} $	$26\% \ \pi 1h_{9/2} 1f_{7/2} \otimes u 1g_{9/2}^4 + \ 10\% \ \pi 1f_{7/2}^{2'} \otimes u 1g_{9/2}^{2'} 1i_{11/2}^2$	$\frac{33\% \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^4 + 16\% \pi 1f_{7/2}^2 \otimes \nu 1g_{9/2}^4}{33\% \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^4}$	0 T(0,0) T(2,0) T
	0^{+}_{1}	$13\% \ \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^4 1i_{11/2}^2$	$12\% \ \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^4 1i_{11/2}^2$	
	2^{+}_{1}	$13\% \; \pi 1 h_{9/2}^{2'} \otimes u 1 g_{9/2}^{4'} 1 i_{11/2}^{2'}$	$12\% \; \pi 1 h_{9/2}^{2'} \otimes u 1 g_{9/2}^{4'} 1 i_{11/2}^{2'}$	60
	$ 4_1^+ $	$12\% \; \pi 1 h_{9/2}^2 \otimes u 1 g_{9/2}^{4'} 1 i_{11/2}^{2'}$	$11\% \; \pi 1 h_{9/2}^{2'} \otimes u 1 g_{9/2}^{4'} 1 i_{11/2}^{2'}$	» 40 -
²¹⁶ Po	6^{+}_{1}	$10\% \; \pi 1 h_{9/2}^{2'} \otimes u 1 g_{9/2}^{4'} 1 i_{11/2}^{2'}$	$10\% \ \pi 1 h_{9/2}^{2'} \otimes u 1 g_{9/2}^{4'} 1 i_{11/2}^{2'}$	20
	8^{+}_{1}	$12\% \; \pi 1 h_{9/2} 1 f_{7/2} \otimes u 1 g_{9/2}^4 1 i_{11/2}^2$	$16\% \ \pi 1h_{9/2} 1f_{7/2} \otimes \nu 1g_{9/2}^4 1i_{11/2}^2$	
	0^{+}_{1}	$13\% \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^6 1i_{11/2}^2 + 11\% \pi 1f_{7/2}^2 \otimes \nu 1g_{9/2}^6 1i_{11/2}^2$	$12\% \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^6 1i_{11/2}^2 + 11\% \pi 1f_{7/2}^2 \otimes \nu 1g_{9/2}^6 1i_{11/2}^2$	1(1,0)1(0,1)1
	2^{+}_{1}	$13\% \pi 1h_{9/2}^{2'} \otimes \nu 1g_{9/2}^{6'} 1i_{11/2}^{2'} + 11\% \pi 1f_{7/2}^{2'} \otimes \nu 1g_{9/2}^{6'} 1i_{11/2}^{2'}$	$12\% \pi 1h_{9/2}^2 \otimes \nu 1g_{9/2}^6 1i_{11/2}^2 + 11\% \pi 1f_{7/2}^2 \otimes \nu 1g_{9/2}^6 1i_{11/2}^2$	60
	$ 4_1^+ $	$12\% \ \pi 1h_{9/2}^{2'} \otimes \nu 1g_{9/2}^{6'} 1i_{11/2}^{2'} + \ 12\% \ \pi 1f_{7/2}^{2'} \otimes \nu 1g_{9/2}^{6'} 1i_{11/2}^{2'}$	$\left 11\% \ \pi 1h_{9/2}^{2'} \otimes \nu 1g_{9/2}^{6'} 1i_{11/2}^{2'} + 12\% \ \pi 1f_{7/2}^{2'} \otimes \nu 1g_{9/2}^{6'} 1i_{11/2}^{2'} \right $	
²¹⁸ Po	6^+_1	$12\% \ \pi 1h_{9/2}^{2'} \otimes \nu 1g_{9/2}^{6'} 1i_{11/2}^{2'} + \ 11\% \ \pi 1f_{7/2}^{2'} \otimes \nu 1g_{9/2}^{6'} 1i_{11/2}^{2'}$	$10\% \pi 1 f_{7/2}^2 \otimes u 1 g_{9/2}^6 1 i_{11/2}^2$	20 -
	$ 8_1^+ $	$12\% \ \pi 1h_{9/2} 1f_{7/2} \otimes \nu 1g_{9/2}^6 1i_{11/2}^2$	$19\% \; \pi 1 h_{9/2} \hat{1} f_{7/2} \otimes \nu \hat{1} g_{9/2}^6 \hat{1} \hat{i}_{11/2}^2$	

TABLE II. The principal wave function components ($\geq 10\%$) for yrast states in ^{210,212,214,216,218}Po isotopes, calculated using the two versions of the effective interaction: H208 (initial) and H208-m (reduced pairing).

FIG. 5. The wave-function components of 214 Po states calculated in seniority scheme where T(x, y) represents the number of neutron (x) or proton (y) pairs being broken. The initial and pairing-modified versions of the H208 effective interaction are employed within the NATHAN code.

Thank you for your attention!

On the nature of yrast states in neutron-rich polonium isotopes

R. Lică,^{1,*} A.N. Andreyev,² H. Naïdja,³ A. Blazhev,⁴ P. Van Duppen,⁵ B. Andel,⁶ A. Algora,^{7,8} S. Antalic,⁶ J. Benito,⁹ G. Benzoni,¹⁰ T. Berry,¹¹ M. J. G. Borge,¹² C. Costache,¹ J. G. Cubiss,² H. De Witte,⁵ L. M. Fraile,⁹ H. O. U. Fynbo,¹³ P. T. Greenlees,¹⁴ L. J. Harkness-Brennan,¹⁵ M. Huyse,⁵ A. Illana,¹⁶ J. Jolie,⁴ D. S. Judson,¹⁵ J. Konki,¹⁴ I. Lazarus,¹⁷ M. Madurga,¹⁸ N. Marginean,¹ R. Marginean,¹ C. Mihai,¹ R. E. Mihai,¹ P. Mosat,⁶ J. R. Murias,^{9,19} E. Nacher,⁷ A. Negret,¹ R. D. Page,¹⁵ A. Perea,¹² V. Pucknell,¹⁷ P. Rahkila,¹⁴ K. Rezynkina,^{5,20} V. Sánchez-Tembleque,⁹ K. Schomacker,⁴ M. Stryjczyk,^{5,14} C. Sürder,²¹ O. Tengblad,¹² V. Vedia,⁹ and N. Warr⁴

(IDS Collaboration)

¹Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, RO-077125 Bucharest, Romania ²School of Physics. Engineering and Technology. University of York, York, YO10 5DD, United Kingdom ³Université Constantine 1, Laboratoire de Physique Mathématique et Physique Subatomique, Constantine 25000, Algeria ⁴Institut für Kernphysik. Universität zu Köln. D-50937 Köln. Germany ⁵KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium ⁶Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia ⁷Instituto de Física Corpuscular, CSIC - Universidad de Valencia, E-46980, Valencia, Spain ⁸Institute of Nuclear Research (ATOMKI), P.O.Box 51, H-4001 Debrecen, Hungary ⁹Grupo de Fisica Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid. 28040 Madrid. SPAIN ¹⁰Istituto Nazionale di Fisica Nucleare, Sezione di Milano, I-20133 Milano, Italy ¹¹Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ¹²Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid, Spain ¹³Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C. Denmark ¹⁴University of Jyväskylä, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL) FI-40014 University of Jyväskylä, Finland ¹⁵Department of Physics. Oliver Lodge Laboratory. University of Liverpool, Liverpool L69 7ZE, United Kingdom ¹⁶Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy ¹⁷STFC Daresbury, Daresbury, Warrington WA4 4AD, United Kingdom ¹⁸Dept. of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, US ¹⁹Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France ²⁰Université de Strasbourg, CNRS, IPHC UMR7178, F-67000, Strasbourg, France ²¹Institut für Kernphusik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany

Submitted to Phys. Rev. Lett. (10 Jul 2024)

https://arxiv.org/abs/2407.03839

Happy birthday!

Happy birthday!

Balabanski Crag (<u>Bulgarian</u>: Балабански камък, 'Balabanski Kamak' \ba-la-'ban-ski 'ka-m&k\) is the rocky peak rising to 833 m^[1] in eastern <u>Bigla Ridge</u> on <u>Heros</u> <u>Peninsula</u>, <u>Foyn Coast</u> on the <u>Antarctic Peninsula</u>. It surmounts <u>Cabinet Inlet</u> to the northeast. The feature is named after Dimitar Balabanski, physicist at <u>St. Kliment Ohridski Base</u> in 1994/95 and subsequent seasons.

Extra slides

			$B(E2; J^{\pi} \to (J-2)^{\pi})$ (W.u.)				
Nucl.	J^{π}	$T_{1/2}$ (ps)	Exp.	H208	H208	KHPE	KHPE
		Exp.			-m		-m
	2^{+}_{1}	13(5)	7(3)	13.6	14.3	12.3	13.2
	4_1^+	35(5)	18(3)	16.9	18.5	13.3	16.5
214 Po	6^+_1	118(5)	16(1)	11.4	14.7	5.9	12.6
	8^+_1	607(14)	11.3(3)	1.2	9.2	0.1	6.6
		$13(1)\mathrm{ns}$	0.54(4) [14]				
	2^+_1	11(5)	13(6)	18.1	18.9	17.7	18.7
	$ 4_1^+ $	21(5)	26(6)	25.2	27.1	22.1	25.2
²¹⁶ Po	6^+_1	31(5)	37(6)	18.8	25.0	9.8	23.2
	8^+_1	409(16)	24(1)	16.2	17.8	3.2	15.5
	2^+_1	<15	>13	19.2	20.1	14.8	15.3
	4_1^+	$<\!\!15$	>33	29.9	31.5	21.5	22.9
²¹⁸ Po	6^+_1	20(8)	40(16)	28.3	35.0	2.8	3.2
	$ 8_1^+ $	628(25)	7.8(3)	8.5	16.2	1.0	0.003

TABLE I. Experimental $T_{1/2}$ and B(E2) values in ^{214–218}Po measured in the present work and Ref. [14] (bold), compared to calculated B(E2)s using various effective interactions: H208, KHPE, and their pairing-modified versions.

FIG. 3. The calculated $0^+ - 8^+$ yrast energy levels of eveneven $^{210-218}$ Po isotopes using H208, H208-m, KHPE and KHPE-m interactions, compared to the available experimental data [14, 35–39].

8₁ + level in ²¹⁴Po: feeding from above

Previously: $T_{1/2}(8_1^+) = 622(7)$ ps Now: $T_{1/2}(8_1^+; 1584 \text{ keV}) = 607(14)$ ps $T_{1/2}(8^+; 1824 \text{ keV}) = 73(7)$ ps

LaBr

240 keV

HPGe

Before

La₁-Beta TAC (10ps/ch)

La1

1200

La2

1200

1400

1400

