Study of neutron rich Si isotopes with ACTAR TPC detector

LISE campaign 2022

CHARLES UNIVERSITY Faculty of mathematics and physics

- Introduction ;
- Physical motivations ;
- Experimental setups;
- Status of the data analysis .

Introduction

Shell evolution far from the stability

PHYSICAL REVIEW C

- The nuclear structure properties are governed by *the interaction between nucleons*, protons and neutrons.
- Until the 1980s, only nuclear systems close to the stability line were experimentally accessible, therefore theoretical models lacked important information on large isospin (T) values.
- Fusion-evaporation studies on systems farther from stability have challenged the classical theoretical approaches: magic numbers are not immutable! [*]
- Since the 1990s, with the development of *radioactive beam facilities*, detailed studies of exotic nuclei helped to reveal the effects of large isospin values in light systems.
- By experimentally determining the properties of *exotic nuclei* comprehensive theoretical models can be put to essential tests.

Direct measurement of the masses of ¹¹Li and ²⁶⁻³²Na with an on-line mass spectrometer [*]

C. Thibault, R. Klapisch, C. Rigaud, A. M. Poskanzer,* R. Prieels,[†] L. Lessard,[‡] and W. Reisdorf[§] Laboratoire René Bernas du Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, 91406 Orsay, France (Received 17 March 1975)

VOLUME 12, NUMBER 2

The use of an on-line mass spectrometer to make direct mass measurements of short-lived isotopes far from the stability line has been improved to yield more accurate mass measurements for $^{27.30}$ Na, new mass measurements for 11 Li, $^{31, 32}$ Na, and to remove a discrepancy between existing mass measurements of 26 Na. The mass excesses (keV) measured are: 11 Li, $^{40940} \pm 80$; 26 Na, -6901 ± 25 ; 27 Na, -5620 ± 60 ; 28 Na, -1140 ± 80 ; 29 Na, 2650 ± 100 ; 30 Na, 8370 ± 200 ; 31 Na, 10600 ± 800 ; 32 Na, 16400 ± 1100 . The 11 Li value indicates that it is bound by only 170 ± 80 keV. The masses of 31 Na and 32 Na imply that these nuclei are more tightly bound than expected from theoretical predictions.

NUCLEAR STRUCTURE ¹¹Li, ²⁶⁻³²Na; measured atomic masses. On-line mass spectrometer. RADIOACTIVITY ¹¹Li; deduced log/t.

How to extend the chart of nuclides?

G. G. Adamian, N. V. Antonenko, A. Diaz-Torres, S. Heinz; Eur. Phys. J. A (2020) 56:47

AUGUST 1975

Grand Accélérateur National d'Ions Lourds (GANIL)

Grand Accélérateur National d'Ions Lourds (GANIL)

Physical motivations

Shell closure indications

Evolution of the N = 28 shell closure: a test bench for nuclear forces, O Sorlin and M-G Porquet, 2012

Shell closure indications

Island of inversion and loss of magicity

Islands of insight in the nuclear chart; B. Alex Brown; 2013

Island of inversion and loss of magicity

- Gradual reduction of N=20 shell gap as one approaches the neutron drip line;
- The configuration for the protons suddenly changing from "closed shell like" in ³⁴Si to "open shell like" in ³²Mg, which leads to stronger proton-neutron correlations.

Islands of insight in the nuclear chart; <u>B. Alex Brown</u>; 2013

Evolution of nuclear structure (as a function of nucleon number) $0^+ \frac{1}{R_{4/2} < 2}$ $0^+ \frac{1}{R_{4/2} < 2}$ $0^+ \frac{1}{R_{4/2} \approx 2.0}$ $0^+ \frac{1}{R_{4/2} \approx 2.0}$ $\overline{R_{4/2}} \approx 3.33$ Magic Magic Mid-shell 111 (ellipsoidal) (sph. vib.) (sph. vib.)

Evolution of the N=28 shell closure: a test bench for nuclear forces, O. Sorlin, M.-G. Porquet 2012

Evolution of the N=28 shell closure: a test bench for nuclear forces, O. Sorlin, M.-G. Porquet 2012

Derivation of the Mn/Mp ratio in exotic nuclei

Nuclear excitations

Multipole 2⁺ transition matrix element

$$M = b_n^F M_n + b_p^F M_p$$

The parameters $b_{n(p)}$ represent the external-field neutron (proton) interaction strengths.

$$M = \left\langle J_f, T_f, T_{fz} \left| \left| O_L^F \right| \right| J_i, T_i, T_{iz} \right\rangle$$
$$M_{n(p)} = \int \rho_{fi}^{n(p)}(r) r^{l-2} dr$$

- A priori for homogeneous collective model Mn/Mp = N/Z
- M_p can be checked by direct comparison of the microscopic calculations to charge transition densities measured by electron scattering (e,e'), or with COULEX experiments.
- **M**_n can be determined by (p,p') scattering.

The ratios of the neutron and proton transition matrix elements (Mn/Mp) were studied for 0⁺ -> 2⁺ transitions in single-closed-shell (SCS) nuclei by comparing inelastic hadron scattering and electromagnetic transition rates.

	Field	Energy	$\mathrm{bn/bp}$
	EM	-	0
	р	$10\text{-}50\mathrm{MeV}$	~3
For EM transition b_=0 and b_=1	n	$10\text{-}50\mathrm{MeV}$	$\sim 1/3$

For EWI transition $b_n = 0$ and $b_p = 1$

Bernstein, A. M. et al. (1983) Comments Nucl. Part. Phys., 11, 203215

From the cross section to the Mn/Mp ratio

From the elastic (p,p) analysis:

• Entrance channel potential;

From the inelastic (p,p') analysis:

• Neutron transition matrix, Mn;

From the COULEX EXCITATION analysis:

Proton transition matrix, Mp;

$$B(E2, J_i \to J_f) = e^2 \frac{1}{(2J_i + 1)} |M_p|$$

Generalized Bernstein Formula

N Alamanos et al 1998 J.. Inelastic proton scattering and nuclear structure towards the drip lines. Phys. G: Nucl. Part. Phys. 24 1541 C. Jouanne, V. Lapoux, F. Auger, N. Alamanos, A. Drouart, et al.. Structure of low-lying states of 10,11C from proton elastic and inelastic scattering. Physical Review C, 2005, 72, pp.014308.ff10.1103/PhysRevC.72.014308ff. ffin2p3-00024409f

Experimental setups

"Brochette" setup

ACtive TARget Time Projection Chamber setup

The ACTAR TPC chamber and me during the setup mounting process.

PAD plane ACTAR TPC

ACTAR TPC performance with GET electronics; J. Giovinazzo, J. Pancin, J. Pibernat, T. Roger; 2020

PAD plane ACTAR TPC

ACTAR TPC performance with GET electronics; J. Giovinazzo, J. Pancin, J. Pibernat, T. Roger; 2020

Si detectors setup

^{34,36,38}Si(p,p')^{34,36,38}Si^{*} (Ex 2⁺)

ACTAR TPC gas mixture: Isobutane (C_4H_{10}) 10% H_2 90% Pressure = 980 mbar Si HV = 50 V ACTAR settings: $V_{mesh} = -610 V$ $V_{drift} = -6000 V$ $V_{low} = -610 V$ $V_{pads} = -90 V$

TRIGGER = SiOR + SiOL & CFA

Event by event information

PAD plane ACTAR TPC

Si detectors

Data analysis

____ Data analysis structure

Beam production and identification	 Lise beam consisting of different ions requires a proper identification.
Proton detection	 The reaction products can be identified using the pad plane of ACTAR and the silicon detectors.
Kinematics and excitation energy spectra	 To obtain the kinematics information it' necessary the tracks reconstruction.
Cross sections	 The (p,p) and (p,p') cross section analysis give us the proper parameters to extract the Mn/Mp ratio.

We used a 60 MeV/u ⁴⁸Ca primary beam with an intensity of 4 μ A on about 700 μ m Be target to produce ^{34,36,38}Si, using the LISE spectrometer.

Particle Identification: \triangle **E-E silicon telescope detectors**

E_Si0R_cal[0]:E_Si1R_cal[0]

Cluster Algorithm

Cluster Algorithm steps:

- Tracks reconstruction: it scans the space and fill a matrix with the pads volume (VOXELS) containing charge;
- Kinematics conditions: the data points are saved as clusters.
- Fit of the clusters.

RANdom SAmple Consensus

How the algorithm works:

- SAMPLING : sample a small subset of data points, those points will be treated as inliers.
- MODEL PARAMETERS: evaluation of the model parameters:
- SCORE: check on the points number that support the chosen model.

Fit using RANSAC algorithm

An example of a *scattering event* from ACTAR TPC. Upper part: projections of the signal in the 3 planes. The z-axis corresponds to the time and it's derived using the electron drift velocities. Bottom part: xy plane projections and the charge deposited along the proton track and along the beam track.

listing2 tracks	_
139	
ACTIVE: 1	
TYPE : BEAM	
POINTS: 251	
THETA : 0.01227	
PHI : 3.104	
139	
ACTIVE: 1	
TYPE : LEFT	
POINTS: 102	
THETA : 1.448	
PHI : 6.27	
i EVENT IS BINARY	

Run 136: 36Si, 1h measurement. current on CFA 18 nA, VAL = 15 Hz, CFA div = 1:1x10^4

Beam study using RANSAC RECURSIVE algorithm

200

Example of *pileup event* observed in ACTAR TPC, two beam tracks are seen and only one proton track. The two beam tracks have different time (z axis). The beam track below corresponds to a previous beam ion. The color scale indicates the charge deposit.

D RETURNED FROM RECURSIVE RANSAC3D with 16 inliers
i R-TRACKs / TOT-TRACKs: 1 / 3
listing 3 tracks
CCSCCIIIGS CF CCCS 203
PHI : 5,124
203
ACTIVE: 1
TYPE : BEAM
POINTS: 232
THETA : 0.006498
PHI : 0.07066
203
ACTIVE: 1
TYPE : RIGHT
POINTS: 88
THETA : 1.418
PHI : 3.162

Run 136: 36Si, 1h measurement. current on CFA 18 nA, VAL = 15 Hz, CFA div = 1:1x10^4

A preliminary example using the 34Si data and applying the cluster algorithm

PhD students working on LISE campaign 2022 data

Tutor: Dr. Jaromir Mrazek, R. Thomas

ACTAR and COULEX collaboration:

F. De Oliveira, J. Pancin, J. Giovinazzo, A. Ortega, B. Fernandez Dominguez, J. Lois Fuentes, S. Grevy, Q. Delignac, K. Shumpei, R. Lica, R.E. Mihai, S. Calinescu

Special thanks to:

all the LISE operational team, all the Cyclotrons teams, all the many others collaborators and the GANIL students that helped during the experimental campaign.

CHARLES UNIVERSITY Faculty of mathematics and physics

Conclusions

- The brochette setup built in GANIL laboratories was presented, with focus on the ACTAR TPC detection system;
- The setup allowed us to perform two experiments with the same beam, in fact the goal of the experiment is the evaluation of the *proton and neutron transition matrices* that cannot be extracted using only one probe.
- Data analysis structure and status;
- Future code developments and goals were discussed.

Thank you for your attention!

Probing Different Characteristics of Shell Evolution Driven by Central, Spin-Orbit, and Tensor Forces; Yutaka Utsuno; 2022

Derivation of the Mn/Mp ratio in exotic nuclei

• Assumptions:

 $U = U_n + U_p$ $R = R_0 + \delta^F$

• Woods-Saxon shape for the potential: $U(R) = \frac{U_0}{1 + e^{r - R_0/a}}$ $\Delta U \cong -\frac{\delta^F U_0}{4a}$ - Optical potential U and transition potential ΔU

$$U(R) = U(R_0 + \delta^F) = U(R_0) + \Delta U$$
$$\frac{\delta^F U_0}{a} = \frac{\delta_p U_p}{a_p} + \frac{\delta_n U_n}{a_n}$$

$$\frac{U_n}{U_p} = \frac{Nb_n}{Zb_p}$$

• Transition 2+ amplitude

$$M = \left\langle J_f, T_f, T_{fz} \left| \left| O_L^F \right| \right| J_i, T_i, T_{iz} \right\rangle$$

$$M = b_n^F M_n + b_p^F M_p$$

$$\frac{M_n}{M_p} = \frac{N\beta_n}{Z\beta_p}$$

ACTAR TPC electronics and signal processing

Beam identification

E_CHIO_E9:GTID

Beam identification

E_CHIO_E9:tac_CFA_HF {GTID==128 & (GTEN-offsetGTEN<13000)}

TTree Level 1 : RDataFrame - ROOT's DataFrame

ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree, CSV and other data formats, in C++ or Python.

<u>RDataFrame</u> is built with a *modular* and *flexible* workflow in mind, summarised as follows:

- Construct a dataframe object by specifying a dataset. <u>RDataFrame</u> supports <u>TTree</u> as well as <u>TChain</u>, <u>CSV files</u>, <u>SQLite files</u>, <u>RNTuples</u>, and it can be extended to custom data formats.
- 2. Transform the dataframe by:
 - <u>Applying filters</u>. This selects only specific rows of the dataset.
 - <u>Creating custom columns</u>. Custom columns can, for example, contain the results of a computation that must be performed for every row of the dataset.
- **3.** <u>Produce results</u>. *Actions* are used to aggregate data into results.

TTree Level 1 :

GLOBAL variables:

- GTID Global Term for ID (linked to Run number);
- GTEN Global Term for Entry Number (linked to the Entry number of each run);
- GTTS Global Term for Time Stamp (linked to the time stamp of each run)

Only one TFile and one TTree for all the runs!

Easy method to overview all the data.

Run 23-55: 46Ar – E[41.9,42.6] MeV/u

Run 34: 46Ar – E[41.9,42.6] MeV/u

TTree Level 1 :

	46Ar-(run 23-55)	38Si-(run 61-118 + run 165-236)	36Si-(run 119-163)	36S-(run 237-275)	34Si-(run 276-354)
Entries	1892386	2903256	2033198	648832	2866376
trigger SiOL	1130238 - 59.73%	929248 - 32.01 %	821595 - 40.41%	333385 - 51.38 %	1345187 -46.93%
trigger SiOR	507623 - 26.82%	870798 - 29.99 %	723732 - 35.60%	247829 - 38.20%	1284459 - 44.81%
trigger CFA div	248756 - 13.15%	1094057 - 37.68 %	479536 - 23.59%	64327 - 9.91 %	222071 - 7.75%
trigger SiOL+SiOR	5766 - 0.30%	9125 - 0.31 %	8330 - 0.41%	3290 - 0.51 %	14651 - 0.51%
other values for trigger	3	28	5	1	8
Si det/CFA (trigger)	0.87	0.61	0.75	0.90	0.92
CFA max - medium	340*10 ⁶ - 179*10 ⁶	72*10 ⁶ - 38*10 ⁶	186*10 ⁶ - 105*10 ⁶	177*10 ⁶ - 90*10 ⁶	219*10 ⁶ - 120*10 ⁶
CHIO - good	448424 – 23%	2081916 - 71%	1396587 - 68%	389087 - 60%	6533 – 0.23%

Multitracks study using RANSAC RECURSIVE algorithm

