Recent progress on Bosonic HEFT:

Renormalization, Matching and Colliders

Universidad Autónoma de Madrid, IFT-UAM

Higgs and Effective Field Theory - HEFT 2024, Bolonia 12-14 June 2024

Maria J. Herrero

Content of this talk based on results in:

- 2312.03877, EPJC 84 (2024)5, 503, Davila, Domenech, Herrero, Morales $(a,b) = (\kappa_V, \kappa_{2V})$ correlations LO 2011.13195, EPJC 81 (2021)3, 260, González-López, Herrero, Martínez-Suárez NLO 2208.05452, Phys. Rev. D 106 (2022)11, 115027, Domenech, Herrero, Morales, Ramos $(a_i \text{ NLO coeffs}, (\eta, \delta) \text{ the most relevant})$ NLO+loops
 - 2208.05900, Phy.Rev.D 106 (2022)7, 073008, Herrero, Morales (WW to HH) Renorm. in $R_{\mathcal{E}}$ (Seríes of works ín R_{ε} : 2005.03537, 2107.07890, 2208.05900, 2405.05385)

2307.15693, Phys.Rev.D 108 (2023)9, 095013, Arco, Domenech, Herrero, Morales Matching Amplitudes 2208.05452, Phys. Rev. D 106 (2022)11, 115027, Domenech, Herrero, Morales, Ramos ____ Matching

Tools used: FeynArts, FeynRules, FormCalc, Looptools, MG5, VBFNLO, HEFT model file included

María Herrero, HEFT 2024, Bolonia, 13 June 2024

2405.05385 Anisha, Domenech, Englert, Herrero, Morales (gg to HH and HHH)

HH (HHH) within HEFT

Introducing loops via 1Pls

HEFT-SMEFT

Focus here: relevant HEFT issues for HH and HHH

María Herrero, HEFT 2024, Bolonia, 13 June 2024

Correlations within SM : $V_{HWW} = v V_{HHWW}$ $V_{HHH} = vV_{HHHH}$

What about BSM? $\Delta \eta_{ii} > 4$, $M_{ii} > 500$ GeV

Do we learn anything comparing HH and HHH production?

$$\mathscr{LO}_{\text{HEFT}} = \frac{v^2}{4} \left[1 + 2 \partial_{\mu} \left(\frac{H}{v} \right) + b \left(\frac{H}{v} \right)^2 + c \left($$

^[1]ATLAS, Phys. Rev. D **101** (2020) [1909.02845]

^[2a]CMS, PLB 842,137531 (2023) [2206.09401] ^(2b) CMS, PRL129, 081802(2022) [2202.09617] ^(2c) ATLAS, PRD108, 052003(2023) [2301.03212]

María Herrero, HEFT 2024, Bolonia, 13 June 2024

^[3a]ATLAS (PLB 843 (2023)137745 ^[3b]CMS (Nature 607, 7917, 2022)

HH (EW) with NLO-HEFT (15 a_i 's coeffs. + LO a, b, κ_3)

$$\mathscr{L}_{\text{HEFT}}^{\text{NLO}} = \cdots -a_{dd\mathcal{V}\mathcal{V}1} \frac{\partial^{\mu} H \, \partial^{\nu} H}{v^{2}} \operatorname{Tr} \left[\mathcal{V}_{\mu} \mathcal{V}_{\nu} \right] - a_{dd\mathcal{V}\mathcal{V}2} \frac{\partial^{\mu} H \, \partial_{\mu} H}{v^{2}} \operatorname{Tr} \left[\mathcal{V}^{\nu} \mathcal{V}_{\nu} \right] \\ - \frac{m_{\text{H}}^{2}}{4} \left(2a_{H\mathcal{V}\mathcal{V}} \frac{H}{v} + a_{HH\mathcal{V}\mathcal{V}} \frac{H^{2}}{v^{2}} \right) \operatorname{Tr} \left[\mathcal{V}^{\mu} \mathcal{V}_{\mu} \right] \\ - \left(a_{HWW} \frac{H}{v} + a_{HHWW} \frac{H^{2}}{v^{2}} \right) \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] + i \left(a_{d2} + a_{Hd2} \frac{H}{v} \right) \frac{\partial^{\nu} H}{v} \operatorname{Tr} \left[\hat{W}_{\mu\nu} \mathcal{V}^{\mu} \right] \\ + \left(a_{\Box\mathcal{V}\mathcal{V}} + a_{H\Box\mathcal{V}\mathcal{V}} \frac{H}{v} \right) \frac{\Box H}{v} \operatorname{Tr} \left[\mathcal{V}_{\mu} \mathcal{V}^{\mu} \right] + a_{d3} \frac{\partial^{\nu} H}{v} \operatorname{Tr} \left[\mathcal{V}_{\nu} \mathcal{D}_{\mu} \mathcal{V}^{\mu} \right] \\ + \left(a_{\Box\Box} + a_{H\Box\Box\mathcal{V}} \frac{H}{v} \right) \frac{\Box H \, \Box H}{v^{2}} + a_{dd\Box} \frac{\partial^{\mu} H \, \partial_{\mu} H \, \Box H}{v^{3}} + a_{Hdd} \frac{m_{H}^{2}}{v^{2}} \frac{H}{v} \partial^{\mu} H \, \partial_{\mu} H$$

$$\mathscr{L}_{\text{HEFT}}^{\text{NLO}+\text{e.o.m}} = \dots \underbrace{a_{dd\mathcal{V}\mathcal{V}1}}_{v^2} \frac{\partial^{\mu} H \, \partial^{\nu} H}{v^2} \text{Tr} \Big[\mathcal{V}_{\mu} \mathcal{V}_{\nu} \Big] \underbrace{a_{dd\mathcal{V}\mathcal{V}2}}_{v^2} \frac{\partial^{\mu} H \, \partial_{\mu} H}{v^2} \text{Tr} \Big[\mathcal{V}^{\nu} \mathcal{V}_{\nu} \Big] \\ - \frac{m_{\text{H}}^2}{4} \left(2a_{H\mathcal{V}\mathcal{V}} \frac{H}{v} + a_{HH\mathcal{V}\mathcal{V}} \frac{H^2}{v^2} \right) \text{Tr} \Big[\mathcal{V}^{\mu} \mathcal{V}_{\mu} \Big] + a_{Hdd} \frac{m_{\text{H}}^2}{v^2} \frac{H}{v} \partial^{\mu} H \, \partial_{\mu} H \\ - \left(a_{HWW} \frac{H}{v} + a_{HHWW} \frac{H^2}{v^2} \right) \text{Tr} \Big[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Big] + i \left(a_{d2} + a_{Hd2} \frac{H}{v} \right) \frac{\partial^{\nu} H}{v} \text{Tr} \Big[\hat{W}_{\mu\nu} \mathcal{V}^{\mu} \Big]$$

Reduction to 9 a'_is NLO coefficients entering into $WW \rightarrow HH$

María Herrero, HEFT 2024, Bolonia, 13 June 2024

 $\mathcal{V}_{\mu} = (D_{\mu}U)U^{\dagger}$

 $\Box H = -m_h^2 H - \frac{3}{2} \kappa_3 m_h^2 \frac{H^2}{v}$ $- \frac{a}{2} v \operatorname{Tr} \left[\mathcal{V}^{\mu} \mathcal{V}_{\mu} \right] - \frac{b}{2} H \operatorname{Tr} \left[\mathcal{V}^{\mu} \mathcal{V}_{\mu} \right]$ $\operatorname{Tr}\left[\tau^{j}\mathcal{D}_{\mu}\mathcal{V}^{\mu}\right] = -\operatorname{Tr}\left[\tau^{j}\mathcal{V}^{\mu}\right]\frac{2a}{v}\partial_{\mu}H$

Full operators list given in the literature (see, for instance, Brivio et al 1311.1823)

summarized by: $a_{dd\mathcal{V}\mathcal{V}1} \leftrightarrow c_8$, $a_{dd\mathcal{V}\mathcal{V}2} \leftrightarrow c_{20}$, $a_{11} \leftrightarrow c_9$, $a_{HWW} \leftrightarrow a_W$, $a_{HHWW} \leftrightarrow b_W$, $a_{d2} \leftrightarrow c_5$, $a_{Hd2} \leftrightarrow a_5, \ a_{\Box VV} \leftrightarrow c_7, \ a_{H\Box VV} \leftrightarrow a_7, \ a_{d3} \leftrightarrow c_{10}, \ a_{Hd3} \leftrightarrow a_{10}, \ a_{\Box\Box} \leftrightarrow c_{\Box H}, \ a_{H\Box\Box} \leftrightarrow a_{\Box H}$ $a_{dd\Box} \leftrightarrow c_{\Delta H}, a_{HVV} \leftrightarrow a_C \text{ and } a_{HHVV} \leftrightarrow b_C.$

The most relevant $a_{ddVV1} \equiv \eta$, $a_{ddVV2} \equiv \delta$

These operators contain 4 derivatives !!

Including loop corrections within bosonic-HEFT

(Herrero and Morales Seríes of works in R_{ε} : 2005.03537, 2107.07890, 2208.05900)

- - Easy to implement in physical scattering processes

Based on computation of one-loop FDs (graphical/intuitive) easy to implement with usual tools FeynRules, FormCalc, Looptools etc..

Renormalization of the involved 1PI Green functions in generic R_{ε} gauges, with generic off-shell legs (Running Wilson coeffs. is not enough. Complete Loop computation needed)

Master equation to compute renormalized 1PI function within NLO HEFT

Developed a practical program to include one-loop HEFT corrections by means of Green functions 1PIs

Out[•]=

María Herrero, HEFT 2024, Bolonia, 13 June 2024

EW-NLO loop corrections in $gg \rightarrow HH$ and in $gg \rightarrow HHH$ Anísha, D.Domenech, C. Englert, M.J. Herrero, R.A. Morales, 2405.05385 (H. (numerical estimates with VBFNLO)

Renormalized one-loop 1PIs $\hat{\Gamma}_{\text{HEFT}}^{\text{NLO}}$ computed in Feynman 'tHooft gauge = shaded balls contain the EW-NLO loops within HEFT

Corrections at LHC (13 TeV) cross sections

 $\sigma_{\rm LO}^{\rm SM}(HH) = \sigma_{\rm LO}^{\rm ref}(HH) = 17.40 \,\text{fb}; \\ \sigma_{\rm LO}^{\rm SM}(HHH) = \sigma_{\rm LO}^{\rm ref}(HHH) = 0.041 \,\text{fb};$

All simulations done with BVFNLO

Size of the EW loops in $gg \rightarrow HH$ and in $gg \rightarrow HHH$

Anísha, D.Domenech, C. Englert, M.J. Herrero, R.A. Morales, 2405.05385

Most important message: (EW) loop corrections within NLO-HEFT change the sensitivity to κ_3 and κ_4 in HH and HHH production at LHC

> The most relevant change is in κ_3 For $\kappa_3 < 0$, we find relevant enhancements in the NLO/LO prediction $\sigma(HH)$ of ~ 10 % and in $\sigma(HHH)$ of ~ 30 % (~ 80 % if NLO²)

Also large changes in κ_4 For $\kappa_4 > 0$, we find relevant reductions in the NLO/LO prediction $\sigma(HHH)$ of ~ 50 %

María Herrero, HEFT 2024, Bolonia, 13 June 2024

Matching amplitudes

- We do matching at amplitude level (more useful to compare with data).
- In contrast to other approaches: matching Lagrangians, matching Effective Actions ...etc
 - Setting the HEFT order (LO, NLO,..)
 - Setting the n-loop order $\mathcal{O}(\hbar^n)$, same in both sides
 - Setting the input parameters, in both sides
 - Setting the proper large mass expansion in the UV theory
 - LO $h \to WW^* \to Wff'$ $h \to ZZ^* \to Zff$ LO $W^+W^- \to hh$ LO LO $ZZ \rightarrow hh$ $\begin{pmatrix} m_h, m_W, m_Z, m_{12} \text{ (light)} \\ m_H, m_A, m_{H^{\pm}} \text{ (heavy)} \end{pmatrix}$ $hh \rightarrow hh$ LO NLO $h \rightarrow \gamma \gamma$ $R_{\mathcal{E}}$ $\left(\tan \beta, \cos(\beta - \alpha) \right)$ (free) $\left(NLO \quad h \to \gamma Z \right)$ Proper large mass expansion is in $\left(\frac{m_{\text{light}}}{m_{\text{heavy}}} \right)^n$. Other parameters are derived $(\lambda_{h_i h_j h_{k'}}, \dots)$

Solution to the matching equations: HEFT versus 2HDM

2307.15693, Phys.Rev.D 108 (2023)9, 095013, Arco, Domenech, Herrero, Morales

$$\begin{aligned} (a = 1 - \Delta a, b = 1 - \Delta b, \kappa_3 = 1 - \Delta \kappa_3, \kappa_4 = 1 - \Delta \kappa_4) \\ \Delta a|_{\text{2HDM}} &= 1 - s_{\beta-\alpha}, \\ \Delta b|_{\text{2HDM}} &= -c_{\beta-\alpha}^2 (1 - 2c_{\beta-\alpha}^2 + 2c_{\beta-\alpha}s_{\beta-\alpha}\cot 2\beta), \\ \Delta \kappa_3|_{\text{2HDM}} &= 1 - s_{\beta-\alpha} (1 + 2c_{\beta-\alpha}^2) - c_{\beta-\alpha}^2 \left(-2s_{\beta-\alpha}\frac{m_{12}^2}{m_h^2 s_\beta c_\beta} + 2c_{\beta-\alpha}\cot 2\beta \left(1 - \frac{m_{12}^2}{m_h^2 s_\beta c_\beta} \right) \right), \\ \Delta \kappa_4|_{\text{2HDM}} &= -\frac{c_{\beta-\alpha}^2}{3} \left(-7 + 64c_{\beta-\alpha}^2 - 76c_{\beta-\alpha}^4 + 12 \left(1 - 6c_{\beta-\alpha}^2 + 6c_{\beta-\alpha}^4 \right) \frac{m_{12}^2}{m_h^2 s_\beta c_\beta} \right. \\ &\qquad + 4c_{\beta-\alpha}s_{\beta-\alpha}\cot 2\beta \left(-13 + 38c_{\beta-\alpha}^2 - 3(-5 + 12c_{\beta-\alpha})\frac{m_{12}^2}{m_h^2 s_\beta c_\beta} \right) \\ &\qquad + 4c_{\beta-\alpha}^2\cot^2 2\beta \left(3c_{\beta-\alpha}^2 - 16s_{\beta-\alpha}^2 + 3(-1 + 6s_{\beta-\alpha}^2)\frac{m_{12}^2}{m_h^2 s_\beta c_\beta} \right) \right), \end{aligned}$$

$$a_{h\gamma\gamma}|_{2\text{HDM}} = -\frac{s_{\beta-\alpha}}{48\pi^2},$$

 $a_{h\gamma Z}|_{2\text{HDM}} = -\frac{(2c_w^2 - 1)s_{\beta-\alpha}}{96c_w^2\pi^2}.$

Posterior computations within HEFT are in agreement with ours: 2311.16897 (PC-3), 2312.13885

These non-decoupling effects from the heavy bosons are not obtained in the SMEFT where all effects are decoupling

Interesting correlations found

$$\left(\frac{m_{\text{light}}}{m_{\text{heavy}}}\right)^n, n \ge 2$$

María Herrero, HEFT 2024, Bolonia, 13 June 2024

Solving the matching equations implies identifying all momenta and Lorentz structures involved and extracting the corresponding HEFT $c_i's$ coeffs

These contributions are

 $\mathcal{O}\left(\frac{m_{\text{light}}}{m_{\text{light}}}\right)^{0}$

Leading terms in the large m_{heavy} expansion

Summarize the Non-Decoupling effects of the heavy Higgs bosons at low energies

They are valid for arbitrary

$$t_{\beta}, c_{\beta-\alpha}$$

when $c_{\beta-\alpha} \ll 1$ is required

(quasi-alignement)

 $\Delta a|_{\rm 2HDM}^{\rm qal} = -\frac{1}{2}\Delta b|_{\rm 2HDM}^{\rm qal}$

 $2\Delta\kappa_3|_{2\text{HDM}}^{\text{qal}} + \Delta\kappa_4|_{2\text{HDM}}^{\text{qal}}$

Matching amplitudes: HEFT versus SMEFT

2208.05452, Phys. Rev. D 106 (2022) 115027, Domenech, Herrero, Morales, Ramos

Requiring matching of the amplitudes for WW—>HH (similar for ZZ —>HH) and identifying all momenta and Lorentz structures involved

$$\mathcal{A}(WW \to HH)|_{\mathrm{HEFT}} = \mathcal{A}^{(2)} + \mathcal{A}^{(4)} \qquad \longleftrightarrow \qquad \mathcal{A}(WW \to HH)_{\mathrm{SMEFT}} = \mathcal{A}_{\mathrm{SM}} + \mathcal{A}^{[6]} + + \mathcal{A}^{[6]}$$

$$\begin{split} \mathcal{A}^{(2)}|_{S} &= \frac{g^{2}}{2} 3a \kappa_{3} \frac{m_{H}^{2}}{S - m_{H}^{2}} \epsilon_{+} \cdot \epsilon_{-} \\ \mathcal{A}^{(2)}|_{T} &= g^{2} a^{2} \frac{m_{W}^{2} \epsilon_{+} \cdot \epsilon_{-} + \epsilon_{+} \cdot k_{1} \epsilon_{-} \cdot k_{2}}{T - m_{W}^{2}} \\ \mathcal{A}^{(2)}|_{U} &= g^{2} a^{2} \frac{m_{W}^{2} \epsilon_{+} \cdot \epsilon_{-} + \epsilon_{+} \cdot k_{2} \epsilon_{-} \cdot k_{1}}{U - m_{W}^{2}} \\ \mathcal{A}^{(2)}|_{C} &= \frac{g^{2}}{2} b \epsilon_{+} \cdot \epsilon_{-} \\ \mathcal{A}^{(4)}|_{S} &= \frac{g^{2}}{2v^{2}} \frac{1}{S - m_{H}^{2}} (3\kappa_{3} a_{d} m_{H}^{2} (S\epsilon_{+} \cdot \epsilon_{-} - 2\epsilon_{+} \cdot p_{-}\epsilon_{-} \cdot p_{+}) \\ &+ 6\kappa_{3} a_{HWW} m_{H}^{2} ((S - 2m_{W}^{2})\epsilon_{+} \cdot \epsilon_{-} - 2\epsilon_{+} \cdot p_{-}\epsilon_{-} \cdot p_{+}) - (3\kappa_{3} a_{HVV} m_{H}^{4} + aa_{Hdd} m_{H}^{2} (S + 2m_{H}^{2}))\epsilon_{+} \cdot \epsilon_{-}) \\ \mathcal{A}^{(4)}|_{T} &= \frac{g^{2}}{2v^{2}} \frac{a}{T - m_{W}^{2}} (a_{d2} (4m_{W}^{2} m_{H}^{2} \epsilon_{+} \cdot \epsilon_{-} + 2(T + 3m_{W}^{2} - m_{H}^{2})\epsilon_{+} \cdot k_{1}\epsilon_{-} \cdot k_{2} \\ &- 4m_{W}^{2} (\epsilon_{+} \cdot k_{1}\epsilon_{-} \cdot p_{+} + \epsilon_{+} \cdot p_{-}\epsilon_{-} \cdot k_{2})) \\ &- 8a_{HWV} m_{W}^{2} ((T + m_{W}^{2} - m_{H}^{2})\epsilon_{+} \cdot \epsilon_{-} + \epsilon_{+} \cdot k_{1}\epsilon_{-} \cdot p_{+} + \epsilon_{+} \cdot p_{-}\epsilon_{-} \cdot k_{2}) \\ &- 4a_{HVV} m_{H}^{2} (m_{W}^{2} \epsilon_{+} \cdot \epsilon_{-} + \epsilon_{+} \cdot k_{1}\epsilon_{-} \cdot k_{2}) \\ \mathcal{A}^{(4)}|_{U} &= \mathcal{A}^{(4)}|_{T} \quad \text{with} \quad T \to U \quad \text{and} \quad k_{1} \leftrightarrow k_{2} \\ \mathcal{A}^{(4)}|_{C} &= \frac{g^{2}}{2v^{2}} (-2a_{ddVV1} (\epsilon_{+} \cdot k_{2}\epsilon_{-} \cdot k_{1} + \epsilon_{+} \cdot k_{1}\epsilon_{-} \cdot k_{2}) \\ &+ (-2a_{ddVV2} (S - 2m_{H}^{2}) + 4a_{HHWW} (S - 2m_{W}^{2}) + a_{Hd2} S - a_{HHVV} m_{H}^{2})\epsilon_{+} \cdot \epsilon_{-} \\ &- 2(a_{Hd2} + 4a_{HHWW})\epsilon_{+} \cdot p_{-}\epsilon_{-} \cdot p_{+}) \end{aligned}$$

Solutions to the matching Tree level

$$a - 1 = \frac{1}{4} \frac{v^2}{\Lambda^2} \delta a_{\phi D} \qquad a_{HWW} = -\frac{v^2}{2m_W^2} \frac{v^2}{\Lambda^2} a_{\phi W} \qquad \eta \quad a_{ddVV1} = \frac{v^4}{4\Lambda^4} [a]$$
$$b - 1 = \frac{v^2}{\Lambda^2} \delta a_{\phi D} \qquad \kappa_3 - 1 = \frac{5}{4} \frac{v^2}{\Lambda^2} \delta a_{\phi D} \qquad a_{HHWW} = -\frac{v^2}{4m_W^2} \frac{v^2}{\Lambda^2} a_{\phi W} \qquad \delta \quad a_{ddVV2} = \frac{v^4}{4\Lambda^4}$$

$$a_{\phi^4}^{(1)} + a_{\phi^4}^{(2)}]$$

$$a_{HWW}|_{SMEFT} = 2a_{HHWW}|_{SMEFT}$$

$$a_{HWW}|_{SMEFT} = 2a_{HHWW}|_{SMEFT}$$
María Herrero, HEFT 2024, Bolonia , 13 June 2024

 $(D^{\nu}\phi^{\dagger}D^{\nu}\phi)$ + . . .

 $e^{+}e^{-}(3 \,\text{TeV})$

 $\sigma(e^+ e^- \rightarrow H H \nu \overline{\nu})$ at $\sqrt{s} = 3 \text{ TeV}$

Very characteristic BSM exents, with $q_{3}(\kappa_{\chi}^{2} - \kappa_{2V}) \neq 0$ larger $(\kappa_V^2 - \kappa_{2V}) \rightarrow$ higher peaks \rightarrow more transverse Higgs !!!

María Herrero, HEFT 2024, Bolonia, 13 June 2024

Similar study ongoing at LHC for $pp \rightarrow HHjj$ with good prospects (Cepeda, Domenech, García-Mír, Herrero)

Summary /Conclusions

- Including one-loop corrections within HEFT predictions is important
 - Sensitivity to the HEFT parameters may change in a relevant way
 - Particularly relevant the change in sensitivity to κ_3 and κ_4
 - *a* versus *b*, κ_3 versus κ_4 uncorrelated in HEFT because H is a singlet but correlated in other specific scenarios. Ex.: 2HDM, SMEFT, ... H is part of a doublet, they are correlated
- Both HL-LHC (14 TeV) and CLIC (3TeV) will give the best access to HEFT coeffs. Studying specific difxsections clue in exploring HEFT/SMEFT diffs. Ex: In HH (EW) prod. $d\sigma/d\eta_H$ for $\kappa_V^2 \leftrightarrow \kappa_{2V}(a^2 \leftrightarrow b)$

Back up slides

HH and HHH production from gluon-gluon with NLO-HEFT

Anísha, D.Domenech, C. Englert, M.J. Herrero, R.A. Morales, 2405.05385

The relevant NLO operators are:

$$\begin{aligned} \mathscr{L}_{\text{HEFT}}^{\text{NLO}} &= \dots \left(a_{\square\square} + a_{H\square\square} \frac{H}{v} + a_{HH\square\square} \frac{H^2}{v^2} \right) \frac{\Box H \Box H}{v^2} \\ &+ a_{dd\square} \frac{\partial^{\mu} H \partial_{\mu} H \Box H}{v^3} + \left(a_{Hdd} \frac{m_{\text{H}}^2}{v^2} + a_{ddW} \frac{m_{\text{W}}^2}{v^2} + a_{ddZ} \frac{m_{\text{Z}}^2}{v^2} \right) \frac{H}{v} \partial^{\mu} H \partial_{\mu} H \\ &+ a_{Hdd\square} \frac{H \partial^{\mu} H \partial_{\mu} H \Box H}{v^4} + \left(a_{HHdd} \frac{m_{\text{H}}^2}{v^2} + a_{HddW} \frac{m_{\text{W}}^2}{v^2} + a_{HddZ} \frac{m_{\text{Z}}^2}{v^2} \right) \frac{H^2}{v^2} \partial^{\mu} H \partial_{\mu} H \\ &+ a_{dddd} \frac{\partial^{\mu} H \partial_{\mu} H \partial^{\nu} H \partial_{\nu} H}{v^4} \end{aligned}$$

These modify the HHH and HHHH interactions (with non-trivial momenta dependencies) entering in $gg \rightarrow HH, HHH$ via the NLO 1PIs:

$$\Gamma_{HHHH}^{\text{NLO}}(p_1, p_2, p_3) = \Gamma_{HHH}^{\text{LO}} + \Delta \Gamma_{HHHH}^{a'_i s}(p_1, p_2, p_3) , \quad \Gamma_{HH}^{\text{LO}}$$

$$\Gamma_{HHHH}^{\text{NLO}}(p_1, p_2, p_3, p_4) = \Gamma_{HHHH}^{\text{LO}} + \Delta \Gamma_{HHHH}^{a'_i s}(p_1, p_2, p_3, p_4)$$

These NLO deviations $\Delta\Gamma$ are relevant for phenomenology (see next)

María Herrero, HEFT 2024, Bolonia, 13 June 2024

CTs in NLO $WW \rightarrow HH$ and derived RGEs

M.J. Herrero and R.A Morales, PRD106,073008(2022) 2208.05900

$$\begin{split} \delta_{c}a &= \frac{\Delta_{c}}{16\pi^{2}} \frac{3}{2v^{2}} \left((a^{2} - b)(a - \kappa_{1})m_{1}^{2} + a((1 - 3a^{2} + 2b)m_{W}^{2} + (1 - a^{2})m_{2}^{2} \right). \\ \delta_{b}b &= -\frac{\Delta_{c}}{16\pi^{2}} \frac{3}{2v^{2}} \left((a^{2} - b)(8a^{2} - 2b - 12a\kappa_{1} + 3\kappa_{4})m_{1}^{2} + 6a^{2}b(2m_{W}^{2} + m_{Z}^{2}) - 6b(m_{W}^{2} + m_{Z}^{2}) - 6b^{2}m_{W}^{2} \right). \\ \delta_{c}\kappa_{3} &= -\frac{\Delta_{c}}{16\pi^{2}} \frac{1}{2m_{1}^{2}} \left(\kappa_{3}(a^{2} - b) + 9\kappa_{3}^{2} - 6\kappa_{4})m_{1}^{2} - 3(1 - a^{2})\kappa_{3}m_{1}^{2}(m_{W}^{2} + m_{Z}^{2}) \\ &+ 6(-2ab + 2a^{2}\kappa_{3} + b\kappa_{3})(2m_{W}^{4} + m_{Z}^{4}) \right). \\ \delta_{c}\kappa_{3} &= -\frac{\Delta_{c}}{16\pi^{2}} \frac{1}{2m_{1}^{2}} \left(\kappa_{3}(a^{2} - b) + 9\kappa_{3}^{2} - 6\kappa_{4})m_{1}^{2} - 3(1 - a^{2})\kappa_{3}m_{1}^{2}(m_{W}^{2} + m_{Z}^{2}) \\ &+ 6(-2ab + 2a^{2}\kappa_{3} + b\kappa_{3})(2m_{W}^{4} + m_{Z}^{4}) \right). \\ \delta_{c}a_{ddVV1} &= -\frac{\Delta_{c}}{16\pi^{2}} \frac{1}{4} \cdot b^{2} \\ \delta_{c}a_{ddVV1} &= -\frac{\Delta_{c}}{16\pi^{2}} \frac{1}{4} \cdot b^{2} \\ \delta_{c}a_{ddVV1} &= -\frac{\Delta_{c}}{16\pi^{2}} \frac{1}{4} \cdot b^{2} \\ \delta_{c}a_{d1} &= \frac{\Delta_{c}}{4a^{2} - b^{2}}, \\ \delta_{c}a_{d1} &= \frac{\Delta_{c}}{4a^{2} - b^{2}}, \\ \delta_{c}a_{d1} &= \frac{\Delta_{c}}{4a^{2} - b^{2}} \\ \delta_{c}a_{d1} &= \frac{\Delta_{c}}{16\pi^{2}} \frac{1}{2} \cdot b^{2} \\ \delta_{c}a_{d2} &= -\frac{\Delta_{c}}{16\pi^{2}} \frac{1}{4} \cdot b^{2} \\ \delta$$

María Herrero, HEFT 2024, Bolonia, 13 June 2024

work (see paper)

CTs in NLO $gg \rightarrow HH$, HHH and derived RGEs

Anísha, D.Domenech, C. Englert, M.J. Herrero, R.A. Morales, 2405.05385

NLO Bosonic HEFT operators involved

$\mathcal{O}_{\Box\Box}$	$a_{\Box\Box} \frac{\Box H \Box H}{v^2}$	$\mathcal{O}_{H\Box\Box}$	$a_{H\square\square} \left(\frac{H}{v}\right) \frac{\Box H \Box H}{v^2}$] Noti	
\mathcal{O}_{Hdd}	$a_{Hdd} \frac{m_{\rm H}^2}{v^2} \left(\frac{H}{v}\right) \partial^{\mu} H \partial_{\mu} H$	\mathcal{O}_{HHdd}	$a_{HHdd} \ \frac{m_{\rm H}^2}{v^2} \left(\frac{H^2}{v^2}\right) \ \partial^{\mu} H \partial_{\mu} H$	depe	
\mathcal{O}_{ddW}	$a_{ddW} \; \frac{m_{\rm W}^2}{v^2} \left(\frac{H}{v}\right) \; \partial^{\mu} H \partial_{\mu} H$	\mathcal{O}_{HddW}	$a_{HddW} g_{\varrho_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_$	ext gen	
\mathcal{O}_{ddZ}	$a_{ddZ} \; \frac{m_Z^2}{v^2} \left(\frac{H}{v}\right) \; \partial^\mu H \partial_\mu H$	\mathcal{O}_{HddZ}	$a_{HddZt} \xrightarrow{m_Z^2} (\overset{t}{\overset{H^2}{\overset{2}}}) \overset{u}{\overset{u}{\overset{u}}} \overset{u}{\overset{u}} \overset{u}{\overset{u}}{\overset{u}} \overset{u}{\overset{u}} \overset{u}{\overset{u}}{\overset{u}} \overset{u}{\overset{u}} \overset{u}{\overset$		
$\mathcal{O}_{dd\Box}$	$a_{dd\Box} \ \frac{1}{v^3} \ \partial^{\mu} H \ \partial_{\mu} H \ \Box H$	$\mathcal{O}_{Hdd\Box}$	$a_{Hdd\Box} \frac{\int_{t}^{t} \left(\frac{H}{v}\right)^{t}}{\sqrt{t}} \partial^{\mu} H \partial_{\mu} H \Box H$		
$\mathcal{O}_{HH\square\square}$	$a_{HH\square\square} \left(\frac{H^2}{v^2}\right) \frac{\Box H \Box H}{v^2}$	\mathcal{O}_{dddd}	$a_{dddd} \ \frac{1}{v^4} \partial^{\mu} H \ \partial_{\mu} \overset{(a)}{H} \partial^{\nu} H \ \partial_{\nu} H$	implica	
$\begin{split} \delta_{\epsilon}\kappa_{3} &= -\frac{\Delta_{\epsilon}}{16\pi^{2}}\frac{1}{2m_{\mathrm{H}}^{2}v^{2}}\left(\kappa_{3}(a^{2}-b+9\kappa_{3}^{2}-6\kappa_{4})m_{\mathrm{H}}^{4}-3(1-a^{2})\kappa_{3}m_{\mathrm{H}}^{2}(m_{\mathrm{W}}^{2}+m_{\mathrm{Z}}^{2})\right) \\ &+ 6(-2ab+2a^{2}\kappa_{3}+b\kappa_{3})(2m_{\mathrm{W}}^{4}+m_{\mathrm{Z}}^{4})\right), \\ \delta_{\epsilon}\kappa_{4} &= -\frac{\Delta_{\epsilon}}{16\pi^{2}}\frac{1}{2m_{\mathrm{H}}^{2}v^{2}}\left(\kappa_{4}(2a^{2}-2b+9\kappa_{3}^{2}-6\kappa_{4})m_{\mathrm{H}}^{4}-6(1-a^{2})\kappa_{4}m_{\mathrm{H}}^{2}(m_{\mathrm{W}}^{2}+m_{\mathrm{Z}}^{2})\right) \\ &+ 6(-2b^{2}+2a^{2}\kappa_{4}+b\kappa_{4})(2m_{\mathrm{W}}^{4}+m_{\mathrm{Z}}^{4})\right), \end{split}$					
$\delta_{\epsilon}a_{\Box\Box} = -\frac{\Delta_{\epsilon}}{16\pi^2} \frac{3a^2}{4}, \qquad \delta_{\epsilon}a_{H\Box\Box} = \frac{\Delta_{\epsilon}}{16\pi^2} \frac{3a(2a^2 - b)}{2}, \qquad \qquad \text{Interesting}$					
$\delta_{\epsilon} a_{dd\Box} = \frac{\Delta_{\epsilon}}{16\pi^2} \frac{3a(a^2 - b)}{2}, \delta_{\epsilon} a_{Hdd} = 0, \delta_{\epsilon} a_{ddW}/2 = \delta_{\epsilon} a_{ddZ} = -\frac{\Delta_{\epsilon}}{16\pi^2} 3a(a^2 - b) $ For instance of the second se					
$\delta_\epsilon a_{dddd} = \delta_\epsilon a_{Hdd}$ $\delta_\epsilon a_{HddW}$ $c_i(\mu) = 0$	$= -\frac{\Delta_{\epsilon}}{16\pi^{2}} \frac{3(a^{2} - b)^{2}}{4}, \delta_{\epsilon} a_{HH_{\Box\Box}} = -\frac{\Delta_{\epsilon}}{16\pi^{2}} \frac{3(6a^{4} - 7a^{2}b + b^{2})}{2}, \delta_{\epsilon} a_{H}$ $= -\frac{\Delta_{\epsilon}}{16\pi^{2}} 3(4a^{4} - 5a^{2}b + b^{2}), \delta_{\epsilon} a_{H}$ $= c_{i}(\mu') + \frac{1}{16\pi^{2}} \gamma_{c_{i}} \log\left(\frac{1}{4}\right)$	$-\frac{\Delta_{\epsilon}}{16\pi^2} \frac{3(12a^2)}{a_{HHdd}} = 0,$ $H_{HddZ} = \frac{\Delta_{\epsilon}}{16\pi^2} \frac{3}{2} \left(\frac{\mu^2}{\mu'^2}\right),$	$\frac{4 - 10a^{2}b + b^{2}}{4},$ $\frac{(4a^{4} - 5a^{2}b + b^{2})}{2}$ $\gamma_{\kappa_{3}} =$ $\gamma_{\kappa_{4}} =$ $\delta_{\epsilon}c_{i} = \frac{\Delta_{\epsilon}}{16\pi^{2}}\gamma_{c_{i}}$	$-\frac{1}{2m_{\rm H}^2 v^2} \left(\kappa_3 (9\kappa_3^2 - \frac{1}{2m_{\rm H}^2 v^2} - \frac{1}{2m_{\rm H}^2 v^2} \right) \left(\kappa_4 (9\kappa_3^2 - \frac{1}{2m_{\rm H}^2 v^2} - \frac{1}{2m_{\rm H}^2 v^2} - \frac{1}{2m_{\rm H}^2 v^2} \right)$	

CTs

Loop diagramas involved in WW -> HH

1PI HHHH one-loop diagrams

+ 2-point functions

ONE-LOOP CORRECTIONS FOR WW TO E

1PI HHH one-loop diagrams

Loop diagramas involved in gg -> HH(HHH)

Large effects from NLO coefficients

Anísha, D.Domenech, C. Englert, M.J. Herrero, R.A.Morales, 2405.05385

$\mathcal{O}_{\Box\Box}$	$a_{\Box\Box} \frac{\Box H \Box H}{v^2}$	$\mathcal{O}_{H\Box\Box}$	$a_{H\square\square} \left(\frac{H}{v}\right) \frac{\Box H}{v^2}$
\mathcal{O}_{Hdd}	$a_{Hdd} \ \frac{m_{\rm H}^2}{v^2} \left(\frac{H}{v}\right) \ \partial^{\mu} H \partial_{\mu} H$	\mathcal{O}_{HHdd}	$a_{HHdd} \ \frac{m_{\rm H}^2}{v^2} \left(\frac{H^2}{v^2}\right) \ \partial^{\mu}$
\mathcal{O}_{ddW}	$a_{ddW} \ \frac{m_W^2}{v^2} \left(\frac{H}{v}\right) \ \partial^{\mu} H \partial_{\mu} H$	\mathcal{O}_{HddW}	$a_{HddW} \; \frac{m_W^2}{v^2} \left(\frac{H^2}{v^2}\right) \; \partial^{\mu}$
\mathcal{O}_{ddZ}	$a_{ddZ} \; \frac{m_Z^2}{v^2} \left(\frac{H}{v}\right) \; \partial^\mu H \partial_\mu H$	\mathcal{O}_{HddZ}	$a_{HddZ} \frac{m_Z^2}{v^2} \left(\frac{H^2}{v^2}\right) \partial^{\mu}$
$\mathcal{O}_{dd\Box}$	$a_{dd\Box} \ \frac{1}{v^3} \ \partial^{\mu} H \ \partial_{\mu} H \ \Box H$	$\mathcal{O}_{Hdd\Box}$	$a_{Hdd\Box} \frac{1}{v^3} \left(\frac{H}{v}\right) \partial^{\mu} H \partial^{\mu}$
$\mathcal{O}_{HH\Box\Box}$	$a_{HH\square\square} \left(\frac{H^2}{v^2}\right) \frac{\Box H \Box H}{v^2}$	\mathcal{O}_{dddd}	$a_{dddd} \ \frac{1}{v^4} \partial^\mu H \ \partial_\mu H \ \partial$

María Herrero, HEFT 2024, Bolonia, 13 June 2024

The largest effects are from operators with higher number of derivatives: $a_{dd\Box}$, $a_{H\Box\Box}$, a_{dddd} ...

For instance, for $a_{H\square\square} = 0.1$ and $\kappa_3 = 1$ $\sigma^{\text{HEFT}}(HH) \sim 1.5 \sigma^{\text{SM}}(HH)$ (50%) $\sigma^{\text{HEFT}}(HHH) \sim 1.8 \sigma^{\text{SM}}(HHH)$ (80%)

The largest sensitivity to k3 and k4 occurs in ggF, gg —>HH(HHH), see later

HH : Strong enhancement at large \sqrt{s} for $b \neq a^2$ Pert. unitarity viol above few TeV $\kappa_{2V} = 0$ viol unit. above 2.4 TeV ! Max sensitivity to κ_3 close to $2m_H$

HHH : Similar behavior at large \sqrt{s} as in the SM (shifted upwards) No unitarity constraints on κ_3 , κ_4 Max sensitivity to κ_3 close to $3m_H$

HH production: testing $a = \kappa_V$, $b = \kappa_{2V}$ together at colliders (LO-HEFT) Our Bosonic-HEFT model file is implemented in MG5 $e^+e^- \rightarrow HH\nu\bar{\nu}$

cuts, $\Delta \eta_{jj}$ > 4, M_{jj} > 500 GeV BSM signals means deviations in σ and in $d\sigma's$ respect the SM rates. We also explore correlations.

Sensitivity to $a = \kappa_V$, $b = \kappa_{2V} in e^+ e^- \rightarrow HH\nu\bar{\nu}$

Largest sensitivity expected if $a^2 \neq b$

producing the largest deviations compared to SM predictions

The best expectations are for CLIC (3 TeV) where

BSM/SM $\geq \mathcal{O}(10)$

for yet allowed (a,b)

5. (EP)C \$1 (2021)3/260, González-López, Herrero, Martínez-Snárez, 2312.03877 Davíla, Domenech, Herrero, Morales, EPJC 84 (2024)5, 503

Exploring correlations (κ_V, κ_{2V}) at $e^+e^- \rightarrow HH\nu\bar{\nu}$ in $d\sigma/dM_{HH}$ $e^+e^-(3 \,\mathrm{TeV})$ Dávila, Domenech, Herrero, Morales [2312.03877] EPJC 84 (2024)5, 503

TTTT.

In general going BSM with $\kappa_{2V} \neq 1$; $\kappa_{V} \neq 1$ distorts the dist. in M_{HH} producing bumps,

Except close to $\kappa_{2V} = \kappa_V^2$

Sensitivity to κ_3 and κ_4 in $e^+e^- \rightarrow HHH\nu\bar{\nu}$

The best expectations are for CLIC (3 TeV) where BSM/SM $\gtrsim 10$ for $\kappa_3 \gtrsim 2$ ($\kappa_4 = 1$) BSM/SM $\gtrsim 10$ for $\kappa_4 \gtrsim 4$ ($\kappa_3 = 1$)

Higher sensitivity to κ_3 than to κ_4 !!

Conclusions

$$e^+e^- \rightarrow 6b + E_T^{\rm mis}$$

Future expected sensitivity to κ_4 yet poor much higher sensitivity to κ_3 expected

Accessibility to NLO-HEFT (η , δ) at e^+e^-

Minimal detection cuts $p_T^b > 20 \text{ GeV} \qquad |\eta^b| < 2$ $\Delta R_{bb} > 0.4$ $\not\!\!\!E_T > 20 \text{ GeV}$ b-tagging efficiency of 80%

2208.05452, Phys. Rev. D 106 (2022) 115027, Domenech, Herrero, Morales, Ramos

Signal with greater statistics: $e_{+} e_{-} \rightarrow HH \nu \bar{\nu} \rightarrow bbbb \nu \bar{\nu}$

Greater accessibility in CLIC (3TeV)

Expected reach $\eta, \delta \sim \mathcal{O}(10^{-3})$

Accessibility parameter

$$R = \frac{N_{BSM} - N_{SM}}{\sqrt{N_{SM}}}$$

Accesible region: R > 3

CLIC

1 UV= to the right of this point prediction enters in the Unitarity Violating region

2208.05452, Phys. Rev. D 106 (2022) 115027, Domenech, Herrero, Morales, Ramos

enhancement in $WW \to HH$ at large $\sqrt{s} \Rightarrow$ enhancement in $e^+e^- \to HH\bar{\nu}_e\nu_e$ at large invariant mass M_{HH}

Comment:

and BSM. We use MadGraph both for LHC and e^+e^-

EWA is a good approximation for HH, not so good for HHH

EW production of HH and HHH at TeV colliders is dominated by VBS configurations but full computation of all diagrams and no use of EWA are required. Both for SM

2011.13195

Determination of κ_{λ} at future e^+e^- colliders

• Proposed high-energy linear e^+e^- colliders: ILC and CLIC

• Projected sensitivity to κ_{λ} from hhZ and $hh\nu\bar{\nu}$ (better than HL-LHC!):

At ILC: 500 GeV (4 ab⁻¹): ±27% 500 GeV (4 ab⁻¹) ±10% + 1 TeV $(5^* ab^{-1})$:

[Dürig, 16] [Fujii *et al.*, 15]

Until we have these machines... Plenty of room for BSM physics!

$WW \rightarrow HH$ subprocess

$$\phi)((D^{\mu}\phi)^{\dagger}\phi) + c_{\phi W}(\phi^{\dagger}\phi)W^{a}_{\mu\nu}W^{a\mu\nu} \qquad c_{i} \equiv a_{i}/\Lambda^{2}$$

- $c_i \equiv a_i / \Lambda^4$

If matching in amplitudes according to behavior with energy: SMEFT dim 8 (6) <—> HEFT chi-dim 4 (2)

