

The University of Manchester

The Automation of SMEFT-Assisted constraints on UV-complete models

HEFT 2024

Bologna, Italy 14 June 2024

Alejo N. Rossia

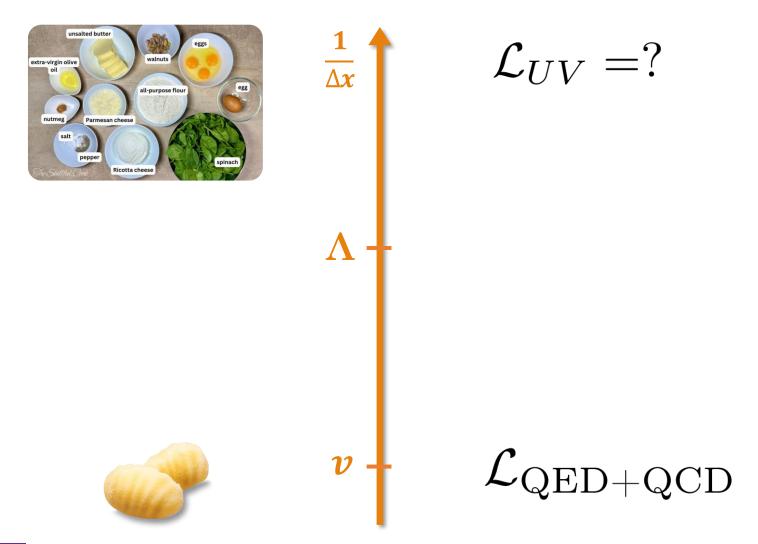
On behalf of the **SMEFIT** Collaboration

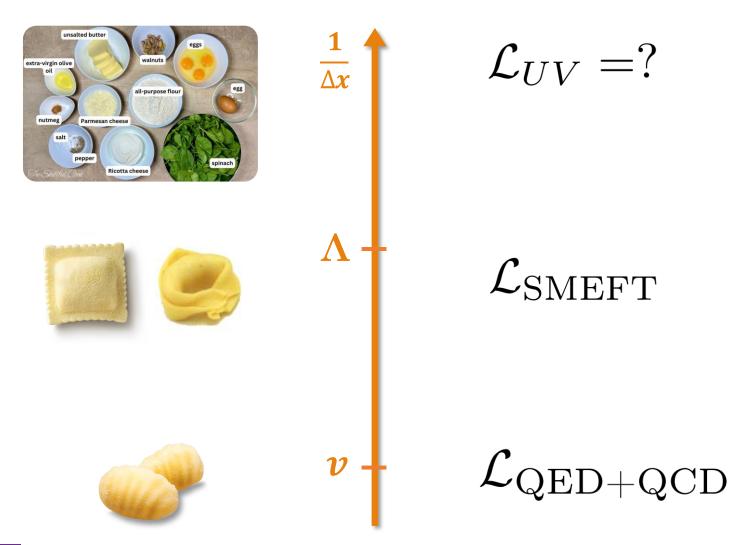
Department of Physics and Astronomy
The University of Manchester


Based on:

[2309.04523] JHEP 01 (2024) 179 (w/ J. ter Hoeve, G. Magni, J. Rojo, and E. Vryonidou) [2404.12809] (w/ E. Celada, T. Giani, J. ter Hoeve, L. Mantani, J. Rojo, M. Thomas and E. Vryonidou)

Effective Field Theory (EFT)





Effective Field Theory (EFT)

Effective Field Theory (EFT)

Effective Find Theory (Find

Filled Pasta

(EFPT)

$$\mathcal{L}_{UV} = ?$$

Λ

 $\mathcal{L}_{ ext{SMEFT}}$

 $\mathcal{L}_{ ext{QED}+ ext{QCD}}$

[2212. 04510]

[2112.10787]

[See J. Fuentes-Martín's, A. Thomsen's, P. Olgoso's talks]

MATCHETE

[2212. 04510]

[2112.10787]

[See J. Fuentes-Martín's, A. Thomsen's, P. Olgoso's talks]

[2012. 11343]

SMEFT@NLO

[2008. 11743]

[1405.0301]

Data

Apologies for not including all tools/codes due to space-time restrictions.

Fitmaker

[2302.06660]

[2208. 08454]

[2012. 02779]

[1910.14012]

[See V. Miralles's talk]

Apologies for not including all tools/codes due to space-time restrictions.

EFT

Generated with AI

Fitmaker

[2302.06660]

[2208. 08454]

[2012. 02779]

[1910.14012]

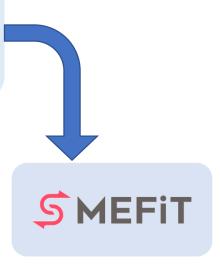
[See V. Miralles's talk]

Apologies for not including all tools/codes due to space-time restrictions.

Bridging the gap

Original image by Twice25, CC BY-SA 2.5, Wikimedia

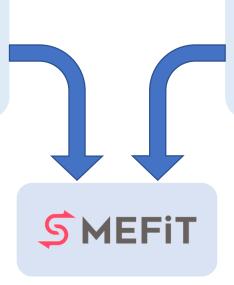
Thanks to V. Miralles for telling me about this finestrella sul canale.



THEORY

SM: (N)NLO QCD + NLO EW

SMEFT: NLO QCD, quadratic in WCs

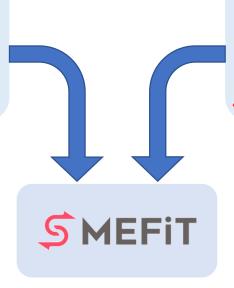


THEORY

SM: (N)NLO QCD + NLO EW

SMEFT: NLO QCD, quadratic in WCs

DATA

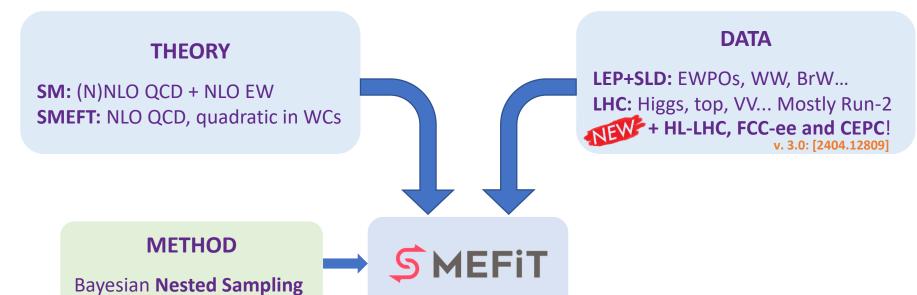

LEP+SLD: EWPOs, WW, BrW...

LHC: Higgs, top, VV... Mostly Run-2

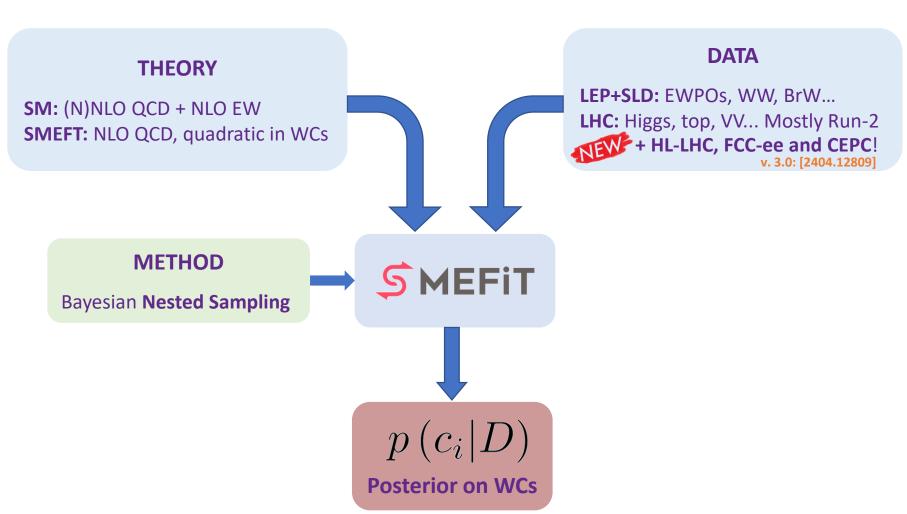
THEORY

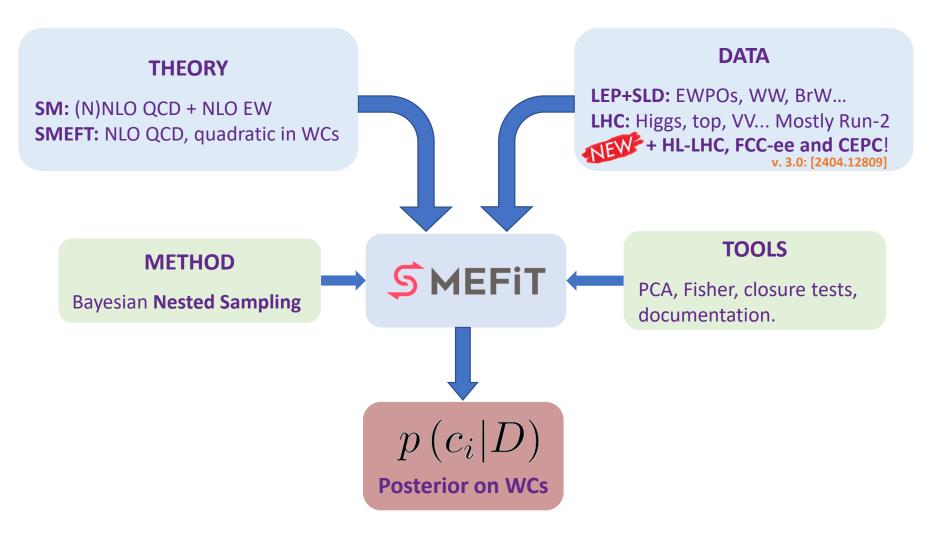
SM: (N)NLO QCD + NLO EW

SMEFT: NLO QCD, quadratic in WCs


DATA

LEP+SLD: EWPOs, WW, BrW...


LHC: Higgs, top, VV... Mostly Run-2

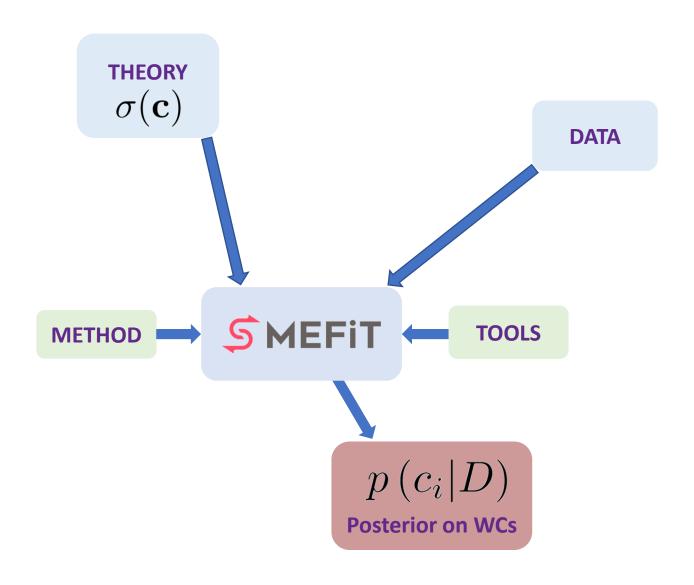

+ HL-LHC, FCC-ee and CEPC! v. 3.0: [2404.12809]

Non-linear UV constrains on WCs from matching

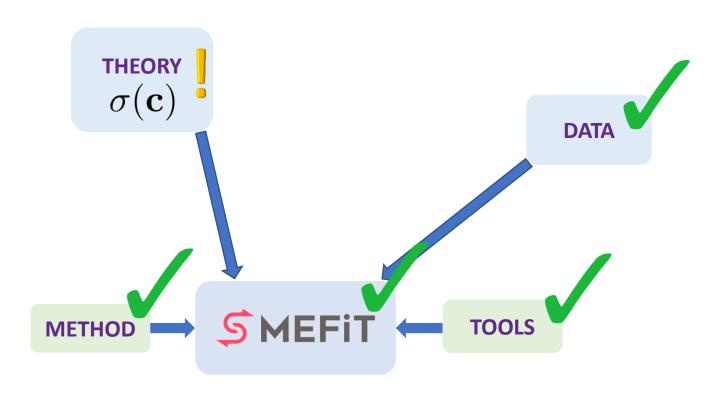
Tree-level matching

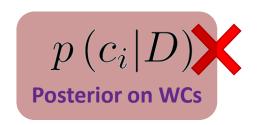
$$\frac{\left(c_{qd}^{(1)}\right)_{3333}}{\Lambda^2} = -\frac{\left(y_{\phi}^d\right)_{33}^2}{6\,m_{\phi}^2}, \quad \frac{\left(c_{qd}^{(8)}\right)_{3333}}{\Lambda^2} = -\frac{\left(y_{\phi}^d\right)_{33}^2}{m_{\phi}^2}, \qquad \frac{\left(c_{d\varphi}\right)_{33}}{\Lambda^2} = \frac{\lambda_{\phi}\left(y_{\phi}^d\right)_{33}}{m_{\phi}^2}, \quad \frac{c_{\varphi}}{\Lambda^2} = \frac{\lambda_{\phi}^2}{m_{\phi}^2}$$

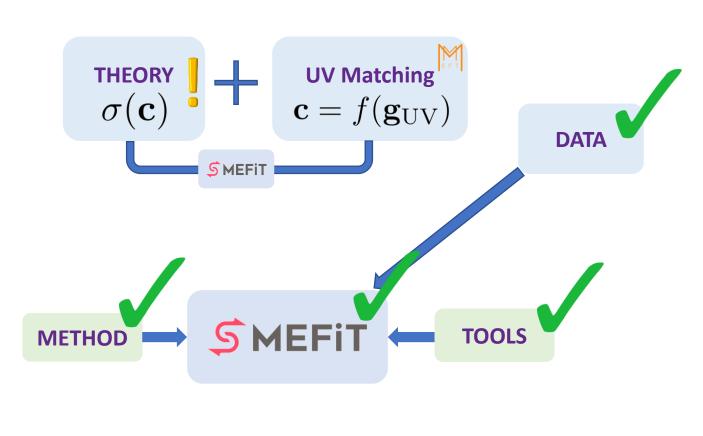
Non-linear UV constrains on WCs from matching

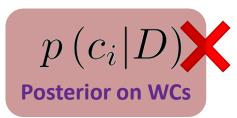

Tree-level matching

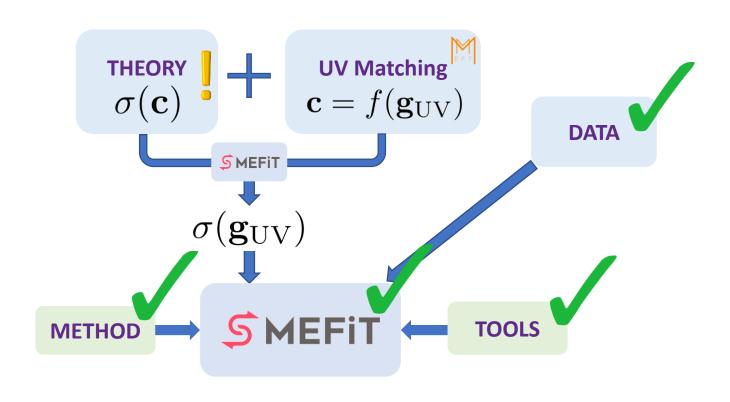
$$\frac{\left(c_{qd}^{(1)}\right)_{3333}}{\Lambda^2} = -\frac{\left(y_{\phi}^d\right)_{33}^2}{6\,m_{\phi}^2}, \quad \frac{\left(c_{qd}^{(8)}\right)_{3333}}{\Lambda^2} = -\frac{\left(y_{\phi}^d\right)_{33}^2}{m_{\phi}^2}, \qquad \frac{\left(c_{d\varphi}\right)_{33}}{\Lambda^2} = \frac{\lambda_{\phi}\,\left(y_{\phi}^d\right)_{33}}{m_{\phi}^2}, \quad \frac{c_{\varphi}}{\Lambda^2} = \frac{\lambda_{\phi}^2}{m_{\phi}^2}$$

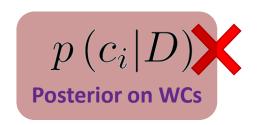

One-loop level matching

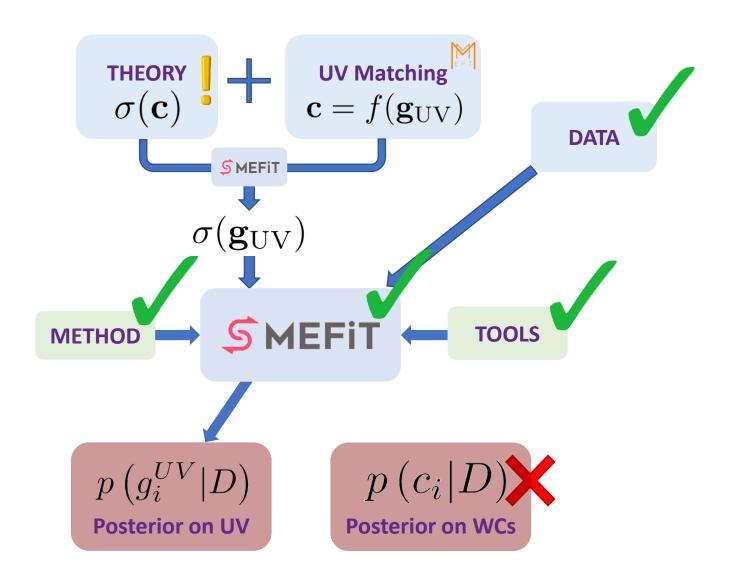

$$\begin{split} \frac{c_{\varphi\square}}{\Lambda^2} &= -\frac{g_1^4}{7680\pi^2} \frac{1}{m_{\phi}^2} - \frac{g_2^4}{2560\pi^2} \frac{1}{m_{\phi}^2} - \frac{3}{32\pi^2} \frac{\lambda_{\phi}^2}{m_{\phi}^2}, \\ \frac{c_{t\varphi}}{\Lambda^2} &= -\frac{\lambda_{\phi} \left(y_{\phi}^u\right)_{33}}{m_{\phi}^2} - \frac{g_2^4 y_t^{\text{SM}}}{3840\pi^2} \frac{1}{m_{\phi}^2} + \frac{y_t^{\text{SM}}}{16\pi^2} \frac{\lambda_{\phi}^2}{m_{\phi}^2} + \frac{\left(4 \left(y_b^{\text{SM}}\right)^2 - 13 \left(y_t^{\text{SM}}\right)^2\right) \lambda_{\phi} \left(y_{\phi}^u\right)_{33}}{64\pi^2} \\ &- \left(12\lambda_{\varphi}^{\text{SM}} + \left(y_b^{\text{SM}}\right)^2 - 11 \left(y_t^{\text{SM}}\right)^2\right) \frac{y_t^{\text{SM}}}{64\pi^2} \frac{\left(y_{\phi}^u\right)_{33}^2}{m_{\phi}^2} + \frac{3}{128\pi^2} \frac{\lambda_{\phi} \left(y_{\phi}^u\right)_{33}^3}{m_{\phi}^2}, \end{split}$$











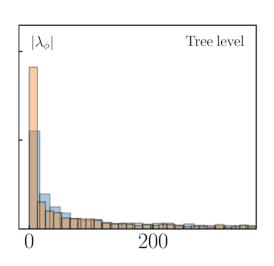
match2fit

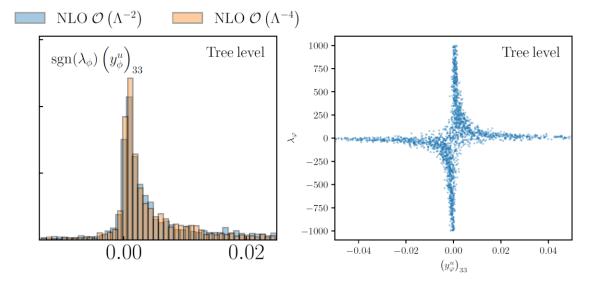
- A Wolfram Mathematica™ package, fully documented.
- Reads results from Matchmakereft and produces run cards that can be fed into smefit to perform a fit.
- Uses the same WC basis than SMEFiT.

$$\mathrm{U}(2)_q \times \mathrm{U}(3)_d \times \mathrm{U}(2)_u \times (\mathrm{U}(1)_\ell \times \mathrm{U}(1)_e)^3 + c_{b\varphi}, c_{\tau\varphi}, c_{c\varphi}$$

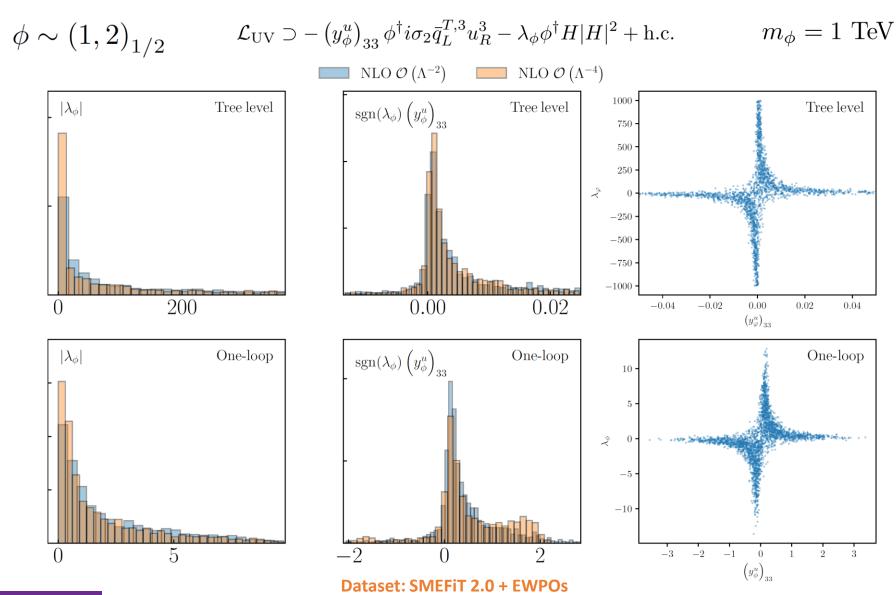
- It can impose UV flavor assumptions and evaluates the masses.
- It can run Matchmakereft to perform the matching and translation at once.

It supports 1-loop matching results.

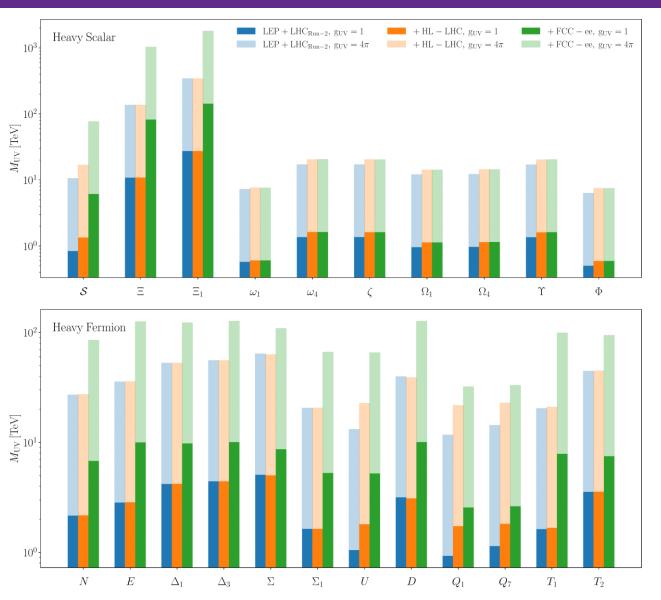



One-loop matching makes a difference

$$\phi \sim (1,2)_{1/2}$$


$$\mathcal{L}_{\text{UV}} \supset -\left(y_{\phi}^{u}\right)_{33} \phi^{\dagger} i \sigma_{2} \bar{q}_{L}^{T,3} u_{R}^{3} - \lambda_{\phi} \phi^{\dagger} H |H|^{2} + \text{h.c.}$$

$$m_{\phi} = 1 \text{ TeV}$$



One-loop matching makes a difference

Tree-level matching

Driven by heavy 4-quark operators

Tree-level

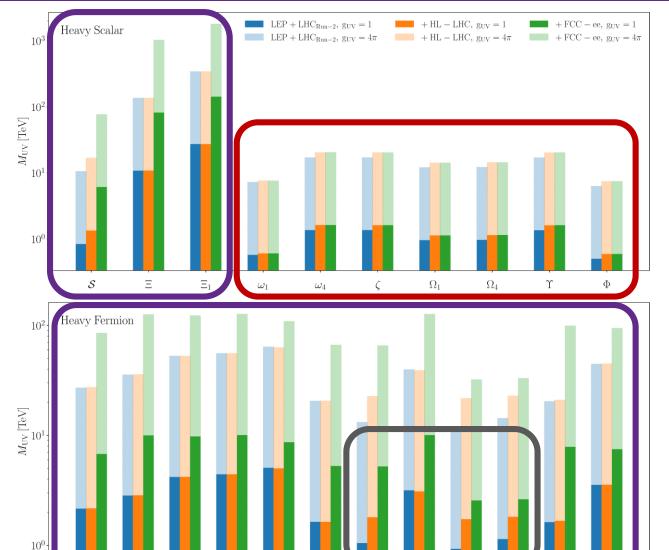
matching

Driven by heavy 4-quark operators

Driven by EWPOs

Tree-level

matching

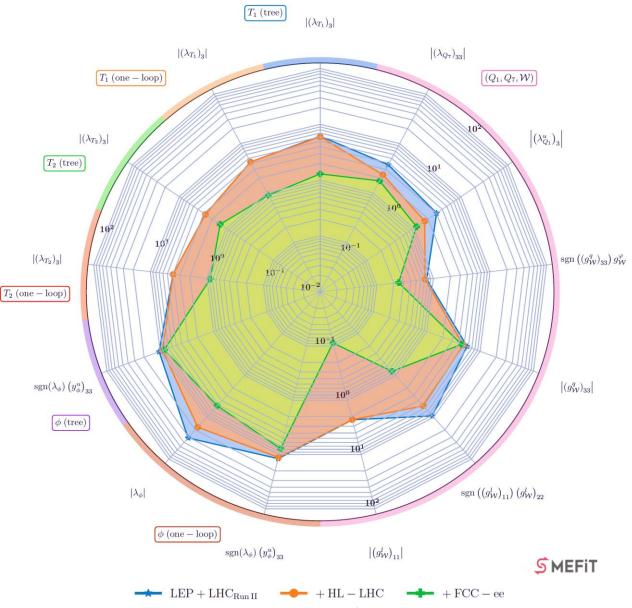


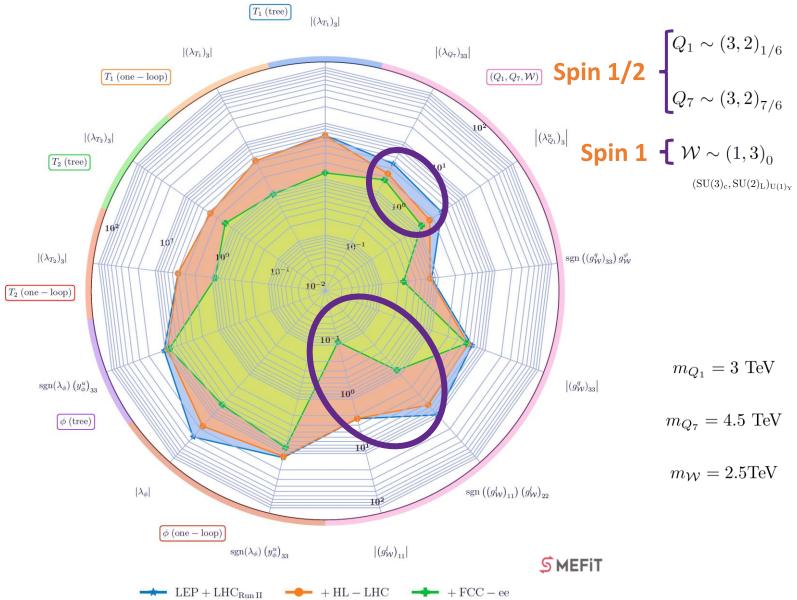
 Q_1

Driven by heavy 4-quark operators

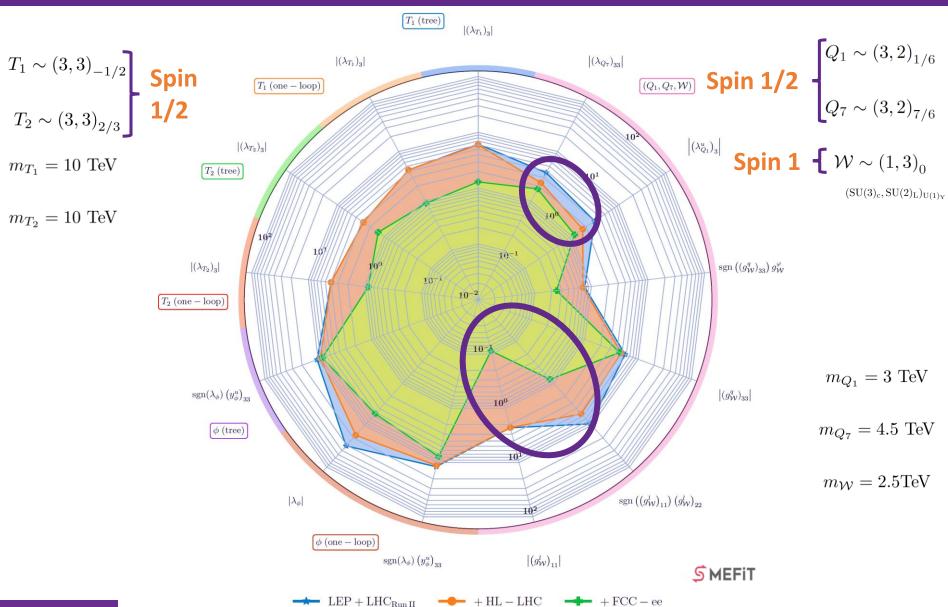
Driven by EWPOs

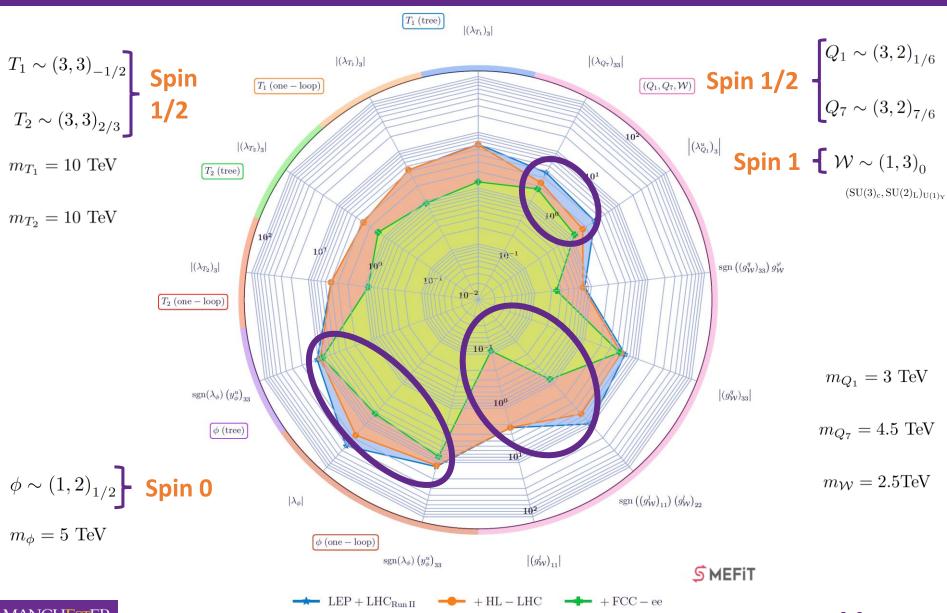
Top partners




10.

Tree-level matching





11.

11.

MANCHESTER 1824 The University of Manchester

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 4 June 24

11.

Conclusions

- We have the tools for the full cycle of the EFT program for BSM Physics.
- SMEFiT allows to interpret LHC data at the EFT and UV model levels from one set of predictions.
- Match2fit provides a simple and flexible SMEFiT-MMEFT interface.
- Useful for pheno studies at current and future colliders.
- Several improvement possibilities: interfacing more codes, flavor data, RGE effects, more general flavor symmetries...

Thanks for your attention!

Contact:

Alejo N. Rossia

HEP Theory Group – Dept. Of Physics and Astronomy

E-mail: alejo dot rossia at manchester dot ac dot uk

Appendix

UV invariants

We are sensitive only to combinations of UV couplings that enter the WCs.

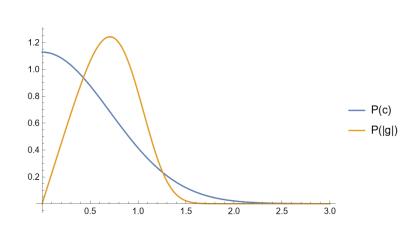
Not necessary to do the fit, but useful to understand the results.

Restrictions from EFT flavor symmetry

- Your model produces an operator that should vanish and does not enter in any fitted process.
 - The bounds from the fit might be suboptimal with respect to bounds from other processes.
- Your model produces an operator that should vanish and enters some processes in the dataset.
 - The bounds from the fit might not be trustworthy and suboptimal.
- The symmetry assumes two WCs to be equal but your model produces them with different values.
 - Match2fit will take only one of those values and ignore the other.
 Unless the difference is small, the bounds from the fit are not trustworthy.

Additional technicalities

SMEFiT supports relations among fit parameters like:


$$\sum_{i} a_{i} (c_{1})^{n_{1,i}} \dots (c_{N})^{n_{N,i}} = 0$$

The exponents can be rational numbers of any sign.
This imposes restrictions on the supported matching relations.

Probability in UV and WC spaces

The relation between PDFs in WC and UV space can be misleading.

$$P(c) = \frac{2}{\sqrt{\pi}} e^{-c^2} , \qquad \int_0^\infty dc \, P(c) = 1$$

$$c = g^2$$

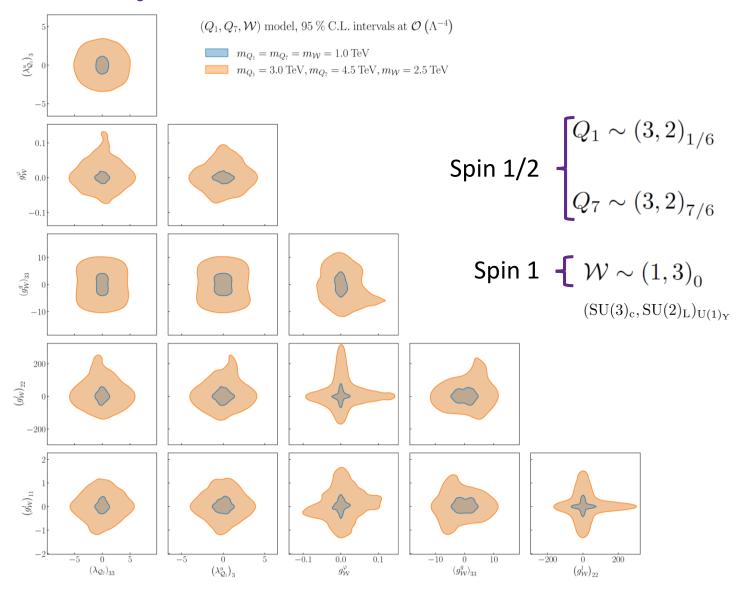
$$P(|g|) = \frac{4}{\sqrt{\pi}} |g| e^{-|g|^4} , \qquad \int_0^\infty d|g| \, P(|g|) = 1$$

List of models

Scalars		Fermions		Vectors		
Particle	Irrep	Particle	Irrep	Particle	Irrep	
\mathcal{S}	$(1,1)_0$	N	$(1,1)_{0}$	\mathcal{B}	$(1,1)_0$	
\mathcal{S}_1	$(1,1)_1$	E	$(1,1)_{-1}$	\mathcal{B}_1	$(1,1)_1$	
ϕ	$(1,2)_{1/2}$	Δ_1	$(1,2)_{-1/2}$	\mathcal{W}	$(1,3)_0$	
Ξ	$(1,3)_0$	Δ_3	$(1,2)_{-3/2}$	\mathcal{W}_1	$(1,3)_1$	
Ξ_1	$(1,3)_1$	Σ	$(1,3)_0$	\mathcal{G}	$(8,1)_0$	
ω_1	$(3,1)_{-1/3}$	Σ_1	$(1,3)_{-1}$	\mathcal{H}	$(8,3)_0$	
ω_4	$(3,1)_{-4/3}$	U	$(3,1)_{2/3}$	\mathcal{Q}_5	$(8,3)_0$	
ζ	$(3,3)_{-1/3}$	D	$(3,1)_{-1/3}$	\mathcal{Y}_5	$(\bar{6},2)_{-5/6}$	
Ω_1	$(6,1)_{1/3}$	Q_1	$(3,2)_{1/6}$			
Ω_4	$(6,1)_{4/3}$	Q_7	$(3,2)_{7/6}$			
Υ	$(6,3)_{1/3}$	T_1	$(3,3)_{-1/3}$			
Φ	$(8,2)_{1/2}$	T_2	$(3,3)_{2/3}$			
		Q_5	$(3,2)_{-5/6}$			

Couplings

Scalars		Fermions		Vectors		
Model	UV couplings	Model	UV couplings	Model	UV couplings	
S	$\kappa_{\mathcal{S}}$	N	$(\lambda_N^e)_3$	\mathcal{B}	$(g_B^u)_{33}, (g_B^q)_{33}, g_B^{\varphi},$	
ϕ	$\lambda_{\phi}, \ (y_{\phi}^u)_{33}$	E	$(\lambda_E)_3$		$(g_B^e)_{11}, (g_B^e)_{22}, (g_B^e)_{33},$	
[1]	κ_Ξ	Δ_1	$(\lambda_{\Delta_1})_3$		$\left(g_B^\ell\right)_{22},\left(g_B^\ell\right)_{33}$	
Ξ_1	κ_{Ξ_1}	Δ_3	$(\lambda_{\Delta_3})_3$	\mathcal{B}_1	$g^{arphi}_{B_1}$	
ω_1	$\left(y_{\omega_1}^{qq}\right)_{33}$	Σ	$(\lambda_\Sigma)_3$	\mathcal{W}	$\left(g_{\mathcal{W}}^l\right)_{11} = 2 \left(g_{\mathcal{W}}^l\right)_{22}, \left(g_{\mathcal{W}}^l\right)_{33}$	
ω_4	$(y_{\omega_4}^{uu})_{33}$	Σ_1	$(\lambda_{\Sigma_1})_3$		$g_{\mathcal{W}}^{arphi},(g_{\mathcal{W}}^q)_{33}$	
ζ	$\left(y_{\zeta}^{qq} ight)_{33}$	U	$(\lambda_U)_3$	\mathcal{W}_1	$g^{arphi}_{\mathcal{W}_1}$	
Ω_1	$\left(y_{\Omega_1}^{qq}\right)_{33}$	D	$(\lambda_D)_3$	\mathcal{G}	$\left(g_{\mathcal{G}}^{q}\right)_{33}, \left(g_{\mathcal{G}}^{u}\right)_{33}$	
Ω_4	$(y_{\Omega_4})_{33}$	Q_1	$\left(\lambda^u_{\mathcal{Q}_1} ight)_3$			
Υ	$(y_\Upsilon)_{33}$	Q_7	$(\lambda_{\mathcal{Q}_7})_3$	\mathcal{H}	$(g_{\mathcal{H}})_{33}$	
Φ	$(y_{\Phi}^{qu})_{33}$	T_1	$(\lambda_{T_1})_3$	\mathcal{Q}_5	$\left(g^{uq}_{\mathcal{Q}_5}\right)_{33}$	
		T_2	$(\lambda_{T_2})_3$	\mathcal{Y}_5	$(g_{\mathcal{Y}_5})_{33}$	



Dataset

Cotomony	Processes	$n_{ m dat}$		
Category	Processes	SMEFIT2.0	SMEFiT3.0	
	$t\bar{t} + X$	94	115	
	$tar{t}Z,tar{t}W$	14	21	
	$tar{t}\gamma$	-	2	
Top quark production	single top (inclusive)	27	28	
	tZ,tW	9	13	
	$tar{t}tar{t},tar{t}bar{b}$	6	12	
	Total	150	191	
	Run I signal strengths	22	22	
Higgs production	Run II signal strengths	40	36 (*)	
and decay	Run II, differential distributions & STXS	35	71	
	Total	97	129	
	LEP-2	40	40	
Diboson production	LHC	30	41	
	Total	70	81	
EWPOs	LEP-2	-	44	
Baseline dataset	Total	317	445	

Multi-particle models at tree level

