Impact of SMEFT renormalisation group running on Higgs production at the LHC

Giuseppe Ventura

with F. Maltoni and E. Vryonidou, based on 2406.06670

Higgs and Effective Field Theory 2024

MANCHESTER 1824

The University of Manchester

Bologna, 13/06/2024

Giuseppe Ventura

Effects of RGEs in the SMEFT

Upon renormalisation, operators run and mix as dictated by the RGEs

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sum_{i} \frac{c_i(\mu)}{(\Lambda/1 \text{ TeV})^2} \sigma_i(\mu) + \sum_{i < j} \frac{c_i(\mu)c_j(\mu)}{(\Lambda/1 \text{ TeV})^4} \sigma_{ij}(\mu)$$

$$\frac{\mathrm{d}c_i(\mu)}{\mathrm{d}\log\mu^2} = \gamma_{ij}c_j(\mu)$$

Jenkins, Manohar and Trott [1308.2627, 1310.4838, 1312.2014]

Bound for $O_{Qq}^{(8,3)}$ and O_{Qu}^{8}

Plot from Aoude, Maltoni, Mattelaer, Severi and Vryonidou [arXiv:2212.05067] See also: Battaglia, Grazzini, Spira and Wiesemann [arXiv: 2109.02987], Di Noi, Gröber [arXiv: 2312.11327]

Different choices of the renormalisation scale μ can impact observables and bounds on Wilson coefficients

Effects of RGEs in the SMEFT

Upon renormalisation, operators run and mix as dictated by the RGEs

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sum_{i} \frac{c_i(\mu)}{(\Lambda/1 \text{ TeV})^2} \sigma_i(\mu) + \sum_{i < j} \frac{c_i(\mu)c_j(\mu)}{(\Lambda/1 \text{ TeV})^4} \sigma_{ij}(\mu)$$

No running

$$\frac{\mathrm{d}c_i(\mu)}{\mathrm{d}\log\mu^2} = \gamma_{ij}c_j(\mu)$$

Jenkins, Manohar and Trott [1308.2627, 1310.4838, 1312.2014]

Bound for $O_{Qq}^{(8,3)}$ and O_{Qu}^{8}

Different choices of the renormalisation scale μ can impact observables and bounds on Wilson coefficients

We extend the study of (QCD-induced) RG effects by considering the impact on Higgs observables at the LHC, and on constraints of relevant Wilson coefficients

Plot from Aoude, Maltoni, Mattelaer, Severi and Vryonidou [arXiv:2212.05067] See also: Battaglia, Grazzini, Spira and Wiesemann [arXiv: 2109.02987], Di Noi, Gröber [arXiv: 2312.11327]

SMEFT contribution to Higgs observables

Leading contribution from:

$$\mathcal{O}_{\varphi G} = \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right) G^a_{\mu\nu} G^{\mu\nu}_a$$

$$\mathcal{O}_{t\varphi} = \left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) \bar{Q} \tilde{\varphi} t + \text{h.c.}$$

$$\mathcal{O}_{tG} = ig_s(\bar{Q}\tau^{\mu\nu}T^a\tilde{\varphi}t)G^a_{\mu\nu} + \text{h.c.}$$

SMEFT contribution to Higgs observables

SMEFT contribution to Higgs observables

Impact of scale choice on distributions

SM and EFT cross-sections computed with MadGraph and SMEFT@NLO ($\mu_0 = 1 \text{ TeV}$)

Scale choices

- Dynamical scale (event-by-event variation)
- Fixed scale ($\mu_0 \rightarrow \mu$)
- No running ($\mu_0 = \mu = 1 \text{ TeV}$)

Impact of scale choice on distributions

SM and EFT cross-sections computed with MadGraph and SMEFT@NLO ($\mu_0 = 1 \text{ TeV}$)

Scale choices

- Dynamical scale (event-by-event variation)
- Fixed scale ($\mu_0 \rightarrow \mu$)
- No running ($\mu_0 = \mu = 1 \text{ TeV}$)

 \mathcal{O}_{tG} causes the biggest impact in loop-induced processes

Mixing effects in loop-induced processes

When $c_{tG}(\mu_0) \neq 0$, the RGEs will activate $\mathcal{O}_{\varphi G}$ inducing tree-level contributions resulting in a strong mixing among different terms

Impact of RGEs on bounds : current data

Toy fit of differential p_T^H spectrum to inclusive data from ATLAS and CMS* ($p_T^H > 200$ GeV)

Constraints extracted at $\mu_0 = 1$ TeV

Marg.	μ dynamical	$\mu = M_H$	$\mu = 1 \ {\rm TeV}$
$c_{t\varphi}$	[-21.00, 50.15]	[-19.56, 46.98]	[-21.17, 53.69]
$c_{arphi G}$	[-0.095, 0.092]	[-0.085, 0.081]	[-0.10, 0.095]
c_{tG}	[-0.68, 0.69]	[-0.70, 0.65]	[-0.77, 0.49]

Enhanced constraints for $c_{t\varphi}$ and $c_{\varphi G}$

*[arXiv: 2006.13251, arXiv: 2111.08340]

Impact of RGEs on bounds : current data

Toy fit of differential p_T^H spectrum to inclusive data from ATLAS and CMS* ($p_T^H > 200$ GeV)

Constraints extracted at $\mu_0 = 1$ TeV

Marg.	μ dynamical	$\mu = M_H$	$\mu = 1 \ {\rm TeV}$
c_{tarphi}	[-21.00, 50.15]	[-19.56, 46.98]	[-21.17, 53.69]
$c_{arphi G}$	[-0.095, 0.092]	[-0.085, 0.081]	[-0.10, 0.095]
c_{tG}	[-0.68, 0.69]	[-0.70, 0.65]	[-0.77, 0.49]

Enhanced constraints for $c_{t\varphi}$ and $c_{\varphi G}$

Different behaviour for c_{tG} , biggest variation when running is activated

*[arXiv: 2006.13251, arXiv: 2111.08340]

Impact of RGEs on bounds : current data

Toy fit of differential p_T^H spectrum to inclusive data from ATLAS and CMS* ($p_T^H > 200$ GeV)

Solid 68% C.L. Dashed 95% C.L.

Constraints extracted at $\mu_0 = 1 \text{ TeV}$

Marg.	μ dynamical	$\mu = M_H$	$\mu = 1 \ {\rm TeV}$
c_{tarphi}	[-21.00, 50.15]	[-19.56, 46.98]	[-21.17, 53.69]
$c_{arphi G}$	[-0.095, 0.092]	[-0.085, 0.081]	[-0.10, 0.095]
c_{tG}	[-0.68, 0.69]	[-0.70,0.65]	[-0.77, 0.49]

Enhanced constraints for $c_{t\varphi}$ and $c_{\varphi G}$

Different behaviour for c_{tG} , biggest variation when running is activated

Impact on correlations between coefficients, flat directions get rotated in the EFT parameter space

*[arXiv: 2006.13251, arXiv: 2111.08340]

Impact of RGEs on bounds : HL-LHC

Toy fit with projected uncertainties for inclusive p_T^H spectrum, $t \bar{t} h$ differential cross-section and *HH* invariant mass spectrum [arXiv: 1902.00134]

Impact of RGEs on bounds : HL-LHC

Toy fit with projected uncertainties for inclusive p_T^H spectrum, $t \bar{t} h$ differential cross-section and *HH* invariant mass spectrum [arXiv: 1902.00134]

N	farginalised	μ dynamical	$\mu = M_H$	$\mu = 1$ TeV (no running)
	c_{tarphi}	[-2.02, 2.24]	[-1.95, 2.18]	[-1.69, 1.59]
	$c_{arphi G}$	[-0.012, 0.012]	[-0.012, 0.012]	[-0.010, 0.0083]
	c_{tG}	[-0.25,0.21]	[-0.26, 0.22]	[-0.13, 0.11]

Bound for c_{tG} widened by a factor of 2 when running is activated

HH production and impact on Higgs self-interaction

Double Higgs production probes Higgs trilinear coupling at hadron colliders, which is modified by \mathcal{O}_{φ}

$$O_{\varphi} = \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)^3$$

HH production and impact on Higgs self-interaction

Double Higgs production probes Higgs trilinear coupling at hadron colliders, which is modified by \mathcal{O}_{φ}

$$O_{\varphi} = \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)^3$$

Does not run under QCD, impact of scale choice through marginalisation

Conclusions

- We studied the effects of running and mixing of SMEFT operators for single and double Higgs production
- The study revealed a major role of mixing in loop-induced observables
- Toy fit showed an impact on correlations between Wilson coefficients

Conclusions

- We studied the effects of running and mixing of SMEFT operators for single and double Higgs production
- The study revealed a major role of mixing in loop-induced observables
- Toy fit showed an impact on correlations between Wilson coefficients

Motivation to include such effects in global fits

Conclusions

- We studied the effects of running and mixing of SMEFT operators for single and double Higgs production
- The study revealed a major role of mixing in loop-induced observables
- Toy fit showed an impact on correlations between Wilson coefficients

Motivation to include such effects in global fits

Thank you

Backup: Running of the couplings

Backup: other 2D fits

Backup: more plots about mixing

