INTERFERENCE - RESURRECTING OBSERVABLES AND WHERE TO FIND THEM

Matteo Maltoni HEFT Workshop, Bologna 12/06/24

Based on arXiv:2403.16894 [hep-ph]

Outline

- What interference suppression is and how to revive it
- **2** Application to the O_W operator
 - \blacksquare EW Zjj Vector Boson Fusion
 - \blacksquare Fully leptonic WZ production
 - \blacksquare Leptonic $W\gamma$ production
- 3 Bounds

The SMEFT parametrises small deviations from the SM

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^{d-4}} O_i^d$$

The SMEFT parametrises small deviations from the SM

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^{d-4}} O_i^d$$

If we truncate the amplitude at $\mathcal{O}(1/\Lambda^2)$:

$$\sigma = \sigma^{SM} + \frac{C_i}{\Lambda^2} \sigma^{1/\Lambda^2} + \left(\frac{C_i}{\Lambda^2}\right)^2 \sigma^{1/\Lambda^4} + \dots$$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^{d-4}} O_i^d$$

If we truncate the amplitude at $\mathcal{O}(1/\Lambda^2)$:

$$\sigma = \sigma^{SM} + \frac{C_i}{\Lambda^2} \sigma^{1/\Lambda^2} + \left(\frac{C_i}{\Lambda^2}\right)^2 \sigma^{1/\Lambda^4} + \dots$$
$$= \int d\Phi \left[|\mathcal{M}_{SM}|^2 + 2\operatorname{Re}\left(\mathcal{M}_{SM}\mathcal{M}_{1/\Lambda^2}^*\right) + |\mathcal{M}_{1/\Lambda^2}|^2 + \dots \right]$$

$$\sigma = \sigma^{SM} + \frac{C_i}{\Lambda^2} \sigma^{1/\Lambda^2} + \left(\frac{C_i}{\Lambda^2}\right)^2 \sigma^{1/\Lambda^4} + \dots$$
$$= \int d\Phi \left[|\mathcal{M}_{SM}|^2 + 2\operatorname{Re}\left(\mathcal{M}_{SM}\mathcal{M}_{1/\Lambda^2}^*\right) + |\mathcal{M}_{1/\Lambda^2}|^2 + \dots \right]$$

The interference can be small even if it is non-zero everywhere

$$\sigma = \sigma^{SM} + \frac{C_i}{\Lambda^2} \sigma^{1/\Lambda^2} + \left(\frac{C_i}{\Lambda^2}\right)^2 \sigma^{1/\Lambda^4} + \dots$$
$$= \int d\Phi \left[|\mathcal{M}_{SM}|^2 + 2\operatorname{Re}\left(\mathcal{M}_{SM}\mathcal{M}_{1/\Lambda^2}^*\right) + |\mathcal{M}_{1/\Lambda^2}|^2 + \dots \right]$$

$$\sigma^{1/\Lambda^2} = \int d\Phi \frac{d\sigma^{1/\Lambda^2}}{d\Phi} = \sum_{i=1}^N w_i$$

 $\overline{7}$

The interference can be small even if it is non-zero everywhere

$$\sigma^{1/\Lambda^2} = \int d\Phi \frac{d\sigma^{1/\Lambda^2}}{d\Phi} = \sum_{i=1}^N w_i$$
$$\sigma^{|\text{int}|} = \int d\Phi \left| \frac{d\sigma^{1/\Lambda^2}}{d\Phi} \right| = \sum_{i=1}^N |w_i|$$

Some quantities can estimate how much of the interference is restorable at experiments

Some quantities can estimate how much of the interference is restorable at experiments

$$R_{w\pm} = \frac{\text{wgt} > 0 - \text{wgt} < 0}{\text{wgt} > 0 + \text{wgt} < 0}$$

Interference suppression is usually due to helicity mismatch

Three-fieldstrength operators are known to produce different helicity configurations than the SM in 2to-2 processes

Three-fieldstrength operators are known to produce different helicity configurations than the SM in 2to-2 processes

go to NLO add extra jets cuts on decay products differential distributions of azimuthal observables

$$O_W = \varepsilon^{IJK} \ W^{I,\nu}_\mu W^{J,\rho}_\nu W^{K,\mu}_\rho$$

The interference between O_W and the SM is sometimes suppressed

C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou, C. Zhang, Automated one-loop computations in the SMEFT, [2008.11743] (2020)

In the EW Z_{jj} case, $\Delta \phi_{jj}$ can lift the suppression considerably

In the EW Zjj case, $\Delta \phi_{jj}$ can lift the suppression considerably

In the EW Z_{jj} case, $\Delta \phi_{jj}$ can lift the suppression considerably

17

In the EW Zjj case, $\Delta \phi_{jj}$ can lift the suppression considerably

For WZ, interference is suppressed by neutrino reconstruction and muon helicities

For WZ, interference is suppressed by neutrino reconstruction and muon helicities

For WZ, interference is suppressed by neutrino reconstruction and muon helicities

The interference is known to be proportional to

$$\phi_{WZ} = \cos(2\phi_W) + \cos(2\phi_Z)$$

Suitable phase-space cuts can restore the interference in WZ

Suitable phase-space cuts can restore the interference in WZ

 $\mathcal{O}(1/\Lambda^2)$ @ LO

CMS Collaboration, Measurement of $W^{\pm}\gamma$ differential cross sections in proton-proton collisions at $\sqrt{s} = 13$ TeV and effective field theory constraints, [2111.13948] (2021)

A suitable choice of azimuthal observables can yield more reasonable $K\mbox{-}{\rm factors}$

A suitable choice of azimuthal observables can yield more reasonable $K\mbox{-}{\rm factors}$

Some of these observables can yield $\mathcal{O}(1/\Lambda^2)$ bounds that are competitive with the ones at $\mathcal{O}(1/\Lambda^4)$ level

- The interference cross-section between the SM and some SMEFT operators can be suppressed because of a cancellation over the phase-space
- When this happens at LO, large and negative *K*-factors may result for the interference
- Suitable variables and phase-space cuts can lift the suppression, yielding reasonable K-factors and bounds that can be competitive with the $\mathcal{O}(1/\Lambda^4)$ level
- This method can be used even outside SMEFT and in parallel with Machine Learning techniques

The K-factor sign flips when the cancellation crosses zero

For the O_G operator, the interference in three-jets is restored by event-shape observables

C. Degrande, MM, Reviving the interference: framework and proof-of-principle for the anomalous gluon self-interaction in the SMEFT, [2012.06595] (2020)

For the O_G operator, the interference in three-jets is restored by event-shape observables

$$O_G = g_S f_{abc} \ G^{a,\mu}_{\rho} G^{o,\nu}_{\rho} G^{c,\rho}_{\mu}$$
$$M_{xy} = \sum_{i=1}^{N_{\text{jets}}} \begin{pmatrix} p_{x,i}^2 & p_{x,i} p_{y,i} \\ p_{y,i} p_{x,i} & p_{y,i}^2 \end{pmatrix} \Rightarrow Sph_T = \frac{2\lambda_2}{\lambda_2 + \lambda_1}$$

,

$\Lambda = 1$ TeV, 68% CL

$p_{T,min}$ [GeV]	Distribution	Sph_T cut	Bins	$SM + O(1/\Lambda^2)$	$SM + O(1/\Lambda^2) + O(1/\Lambda^4)$
50	$p_T[j_3]$ vs Sph_T	0.23	34	$[-2.5 \cdot 10^{-1}, 2.5 \cdot 10^{-1}]$	$[-1.2 \cdot 10^{-1}, 1.1 \cdot 10^{-1}]$
200	S_T vs Sph_T	0.27	34	$[-7.5 \cdot 10^{-2}, 7.5 \cdot 10^{-2}]$	$[-2.4 \cdot 10^{-2}, 2.3 \cdot 10^{-2}]$
500	$M[j_2j_3]$ vs Sph_T	0.31	21	$[-5.5 \cdot 10^{-2}, 5.5 \cdot 10^{-2}]$	$[-3.5 \cdot 10^{-2}, 5.3 \cdot 10^{-2}]$
1000	$M[j_2j_3]$ vs Sph_T	0.35	7	$[-2.6 \cdot 10^{-2}, 2.6 \cdot 10^{-2}]$	$[-1.8 \cdot 10^{-2}, 1.9 \cdot 10^{-2}]$

C. Degrande, MM, Reviving the interference: framework and proof-of-principle for the anomalous gluon self-interaction in the SMEFT, [2012.06595] (2020)