

Effective Field Theories of the MSSM

Felix Wilsch

Institute for Theoretical Particle Physics and Cosmology RWTH Aachen University

Based on work in progress with:

Sabine Kraml, Andre Lessa, Suraj Prakash, Lohan Sartore

Higgs and Effective Field Theory — HEFT 2024 | Bologna

Minimal Supersymmetric Standard Model (MSSM)

- Hierarchy problem: $\Delta m_H^2 \sim \left[\frac{M_H}{M_H} \frac{M_H}{M_H} + \frac{M_H}{M_H} \right] \sim \frac{1}{16\pi^2} \left(\lambda_S M_S^2 \lambda_f^2 M_f^2 \right) \gg m_H^2$
- **Solutions:** technicolor/composite Higgs, supersymmetry, ...

For a SUSY/MSSM review see, e.g.: Martin [hep-ph/9709356]

Felix Wilsch

Effective Field Theories of the MSSM — HEFT 2024 | Bologna

Minimal Supersymmetric Standard Model (MSSM)

- Hierarchy problem: $\Delta m_H^2 \sim \prod_{H_{\text{max}}} (\lambda_s M_H^2 \lambda_f^2 M_f^2) + \prod_{H_{\text{max}}} (\lambda_s M_S^2 \lambda_f^2 M_f^2)$
- Solutions: technicolor/composite Higgs, supersymmetry, ...
- Supersymmetry (SUSY): space-time symmetry between scalars and fermions
- Minimal Supersymmetric Standard Model: every scalar/fermion has fermion/scalar partner

2nd Higgs doublet required to:

for exact SUSY

- Produce Yukawa couplings for both up- and down-type fermions with holomorphic super-potential
- Avoid gauge anomalies

For a SUSY/MSSM review see, e.g.: Martin [hep-ph/9709356]

Minimal Supersymmetric Standard Model (MSSM)

- Hierarchy problem: $\Delta m_H^2 \sim \prod_{H_{\text{max}}} (\lambda_s M_H^2 \lambda_f^2 M_f^2) + \prod_{H_{\text{max}}} (\lambda_s M_S^2 \lambda_f^2 M_f^2)$
- **Solutions:** technicolor/composite Higgs, supersymmetry, ...
- Supersymmetry (SUSY): space-time symmetry between scalars and fermions
- Minimal Supersymmetric Standard Model: every scalar/fermion has fermion/scalar partner

- No observation of super-partners \rightarrow SUSY must be broken above electroweak scale
- To solve Hierarchy problem SUSY breaking scale $M_{\rm SUSY}$ should not exceed a few ${\rm TeV}$
- MSSM: best explored BSM theory (direct searches) \rightarrow use also EFT methods ($M_{SUSY} \gg m_W$)

For a SUSY/MSSM review see, e.g.: Martin [hep-ph/9709356]

for exact SUSY

Effective Field Theory scenarios for the MSSM

- <u>So far:</u> mostly model specific searches for MSSM superpartners
- Major developments in EFT community \rightarrow exploit EFT toolbox for the MSSM analyses
- Consider *R*-parity conserving MSSM: even powers of superpartners in all interaction terms
 - Leading MSSM-to-SMEFT matching contribution is at one loop (except for 2nd Higgs)
- Automatic one-loop matching of full MSSM onto SMEFT using MATCHETE → see also Javi's talk

Effective Field Theory scenarios for the MSSM

- <u>So far:</u> mostly model specific searches for MSSM superpartners
- Major developments in EFT community \rightarrow exploit EFT toolbox for the MSSM analyses
- Consider *R*-parity conserving MSSM: even powers of superpartners in all interaction terms
 - Leading MSSM-to-SMEFT matching contribution is at one loop (except for 2nd Higgs)
- Automatic one-loop matching of full MSSM onto SMEFT using **MATCHETE** \rightarrow see also Javi's talk
- Possible scenarios:

 - Integrate out all superpartners at a single scale $m_W \ll M_{1,2,3}^{SUSY}$ Integrate out only 3rd gen. of sfermions $m_W \ll M_3^{SUSY} \ll M_{1,2}^{SUSY} \to \infty$ Retain 3rd gen. of sfermions in spectrum and integrate out 1st and 2nd gen. $U(2)^5$ flavor symmetry $m_W \lesssim M_3^{\rm SUSY} \ll M_{1,2}^{\rm SUSY}$

Effective Field Theory scenarios for the MSSM

- <u>So far:</u> mostly model specific searches for MSSM superpartners
- Major developments in EFT community \rightarrow exploit EFT toolbox for the MSSM analyses
- Consider *R*-parity conserving MSSM: even powers of superpartners in all interaction terms
 - Leading MSSM-to-SMEFT matching contribution is at one loop (except for 2nd Higgs) -
- Automatic one-loop matching of full MSSM onto SMEFT using **MATCHETE** -> see also Javi's talk
- Possible scenarios:

Integrate out all superpartners at a single scale $m_W \ll M_{1,2,3}^{\rm SUSY}$ Integrate out only 3rd gen. of sfermions $m_W \ll M_3^{\rm SUSY} \ll M_{1,2}^{\rm SUSY} \to \infty$ Retain 3rd gen. of sfermions in spectrum and integrate out 1st and 2nd gen. $U(2)^5$ flavor symmetry $m_W \lesssim M_3^{\rm SUSY} \ll M_{1.2}^{\rm SUSY}$

- Subtleties & challenges:
 - Many interactions in MSSM complicate matching (partially unknown EFT basis)
 - Lengthy matching conditions complicating mapping to Warsaw basis
 - Higgs sector: 2HDM \rightarrow SM Higgs doublets needs to be identified

MSSM Lagrangian

- Field content: _____
- Gauge symmetry: $SU(3)_c \times SU(2)_L \times U(1)_Y$
- **Global symmetries:** Lorentz invariance, *R*-parity

Names		spi	in 0	spi	in $1/2$	$SU(3)_C, SU(2)_L, U(2)_L$	$1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$		$egin{array}{ccc} (u_L & d_L) \end{array}$		$({f 3},{f 2},{1\over 6})$	
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*		u_R^\dagger		$(\overline{f 3},{f 1},-{2\over3})$	
	\overline{d}	\widetilde{d}_R^*		d_R^\dagger		$(\overline{3},1,rac{1}{3})$	
sleptons, leptons	L	$(\widetilde{ u} \hspace{0.1in} \widetilde{e}_{L})$		$(u \ e_L)$		$({f 1}, {f 2}, -{1\over 2})$	
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*		e_R^\dagger		(1, 1, 1)	
Higgs, higgsinos	H_u	$(H_u^+$	$H_u^0)$	(\widetilde{H}_{i})	$\overset{+}{\iota} \widetilde{H}^0_u)$	$({f 1}, {f 2}, + {1\over 2})$	
	H_d	$(H_d^0$	$H_d^-)$	(\widetilde{H}_{a}^{0})	\widetilde{H}_{d}^{-}	$({f 1}, {f 2}, -{1\over 2})$	
Names	spin	spin $1/2$		spin 1		$_{C},\ SU(2)_{L},\ U(1)_{Y}$	
gluino, gluon	ĺ	\widetilde{g}		g		(8, 1, 0)	
winos, W bosons	\widetilde{W}^{\pm}	\widetilde{W}^0	$W^{\pm} W^0$		(1, 3, 0)		
bino, B boson	\widetilde{B}^0		B^0		(1, 1, 0)		

MSSM Lagrangian

- Field content: —
- Gauge symmetry: $SU(3)_c \times SU(2)_L \times U(1)_Y$
- **Global symmetries:** Lorentz invariance, *R*-parity

• Lagrangian:

Conventionally written in terms of supermultiplets (containing Weyl spinors)

Names		spi	in 0	\mathbf{sp}	in $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$		$egin{array}{ccc} (u_L & d_L) \end{array}$		$(3, 2, \frac{1}{6})$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*		u_R^\dagger		$(\ \overline{3},\ 1,\ -rac{2}{3})$
	\overline{d}	\widetilde{d}_R^*		d_R^\dagger		$(\ \overline{f 3},\ {f 1},\ {1\over 3})$
sleptons, leptons	L	$(\widetilde{ u} \widetilde{e}_L)$		$(u \ e_L)$		$({f 1}, {f 2}, -{1\over 2})$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*		e_R^\dagger		(1, 1, 1)
Higgs, higgsinos	H_u	$(H_u^+ \ H_u^0)$		$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$		$({f 1}, {f 2}, + {1\over 2})$
	H_d	(H_d^0)	$H_d^-)$	(\widetilde{H}_{a}^{0})	\widetilde{H}_{d}^{-}	$({f 1}, {f 2}, -{1\over 2})$
Names	spin	1/2	spin	1	SU(3)	$_C,\ SU(2)_L,\ U(1)_Y$
gluino, gluon	\widetilde{g}		g			(8, 1, 0)
winos, W bosons	\widetilde{W}^{\pm}	\widetilde{W}^0	$W^{\pm} W^0$			(1 , 3 , 0)
bino, B boson	\widetilde{B}^0		B^0			(1, 1, 0)

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{chiral}} - \sqrt{2}g \left[(\phi^* T^a \psi) \lambda_a + \text{h.c.} \right] + g \left(\phi^* T^a \phi \right) D_a \\ \mathcal{L}_{\text{gauge}} &= \mathcal{L}_{\text{gauge, kin}} + \frac{1}{2} D_a D^a \\ \mathcal{L}_{\text{chiral}} &= \mathcal{L}_{\text{chiral, kin}} - \frac{1}{2} \left(W^{ij} \psi_i \psi_j + \text{h.c.} \right) - W_i^* W^i \\ \mathcal{L}_{\text{chiral}} &= -g \left(\phi^* T_a \phi \right) \quad W_{\text{MSSM}} = \overline{u} \mathbf{y}_{\mathbf{u}} Q H_u - \overline{d} \mathbf{y}_{\mathbf{d}} Q H_d - \overline{e} \mathbf{y}_{\mathbf{e}} L H_d + \mu H_u H_d \end{split}$$

• Express in terms of Dirac & Majorana spinors to match onto SMEFT

• MSSM contains 2 Higgs doublets: $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix} \sim (\mathbf{1}, \mathbf{2})_{1/2}$ and $H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix} \sim (\mathbf{1}, \mathbf{2})_{-1/2}$

• Higgs potential:
$$V_{\text{Higgs}}(H_1, H_2) = (|\mu|^2 + m_{H_u}^2) H_u^{\dagger} H_u + (|\mu|^2 + m_{H_d}^2) H_d^{\dagger} H_d + [bH_u^{\dagger} \varepsilon H_d + \text{H.c.}] \\ + \frac{1}{8} \left(g_1^2 + g_2^2\right) \left(H_u^{\dagger} H_u - H_d^{\dagger} H_d\right)^2 + \frac{g_2^2}{2} (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) \,.$$

• MSSM contains 2 Higgs doublets: $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix} \sim (\mathbf{1}, \mathbf{2})_{1/2}$ and $H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix} \sim (\mathbf{1}, \mathbf{2})_{-1/2}$

• Higgs potential:
$$V_{\text{Higgs}}(H_1, H_2) = (|\mu|^2 + m_{H_u}^2) H_u^{\dagger} H_u + (|\mu|^2 + m_{H_d}^2) H_d^{\dagger} H_d + [bH_u^{\intercal} \varepsilon H_d + \text{H.c.}] \\ + \frac{1}{8} \left(g_1^2 + g_2^2\right) \left(H_u^{\dagger} H_u - H_d^{\dagger} H_d\right)^2 + \frac{g_2^2}{2} (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) \,.$$

- Physical Higgs bosons h^0 : superposition of CP-even components of H_u^0 and H_d^0
- Most general decomposition of Higgs doublets:

$$\begin{pmatrix} H_u^0 \\ H_d^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[R_\beta \begin{pmatrix} v \\ 0 \end{pmatrix} + R_\alpha \begin{pmatrix} h^0 \\ H^0 \end{pmatrix} + i R_{\beta_0} \begin{pmatrix} G^0 \\ A^0 \end{pmatrix} \right] , \quad \begin{pmatrix} H_u^+ \\ H_d^+ \end{pmatrix} = R_{\beta_{\pm}} \begin{pmatrix} G^+ \\ H^+ \end{pmatrix}$$

$$R_{eta} = egin{pmatrix} s_{eta} & -c_{eta} \ c_{eta} & s_{eta} \end{pmatrix}, \quad R_{lpha} = egin{pmatrix} c_{lpha} & s_{lpha} \ -s_{lpha} & c_{lpha} \end{pmatrix}, \quad R_{eta_0} = egin{pmatrix} s_{eta_0} & c_{eta_0} \ -c_{eta_0} & s_{eta_0} \end{pmatrix}, \quad R_{eta_{\pm}} = egin{pmatrix} s_{eta_{\pm}} & c_{eta_{\pm}} \ -c_{eta_{\pm}} & s_{eta_{\pm}} \end{pmatrix}$$

• MSSM contains 2 Higgs doublets: $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix} \sim (\mathbf{1}, \mathbf{2})_{1/2}$ and $H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix} \sim (\mathbf{1}, \mathbf{2})_{-1/2}$

• Higgs potential:
$$V_{\text{Higgs}}(H_1, H_2) = (|\mu|^2 + m_{H_u}^2) H_u^{\dagger} H_u + (|\mu|^2 + m_{H_d}^2) H_d^{\dagger} H_d + [bH_u^{\dagger} \varepsilon H_d + \text{H.c.}] \\ + \frac{1}{8} \left(g_1^2 + g_2^2\right) \left(H_u^{\dagger} H_u - H_d^{\dagger} H_d\right)^2 + \frac{g_2^2}{2} (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) \,.$$

- Physical Higgs bosons h^0 : superposition of CP-even components of H_u^0 and H_d^0
- Most general decomposition of Higgs doublets:

$$\begin{pmatrix} H_u^0 \\ H_d^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[R_\beta \begin{pmatrix} v \\ 0 \end{pmatrix} + R_\alpha \begin{pmatrix} h^0 \\ H^0 \end{pmatrix} + i R_{\beta_0} \begin{pmatrix} G^0 \\ A^0 \end{pmatrix} \right], \quad \begin{pmatrix} H_u^+ \\ H_d^+ \end{pmatrix} = R_{\beta_{\pm}} \begin{pmatrix} G^+ \\ H^+ \end{pmatrix}$$

$$R_\beta = \begin{pmatrix} s_\beta & -c_\beta \\ c_\beta & s_\beta \end{pmatrix}, \quad R_\alpha = \begin{pmatrix} c_\alpha & s_\alpha \\ -s_\alpha & c_\alpha \end{pmatrix}, \quad R_{\beta_0} = \begin{pmatrix} s_{\beta_0} & c_{\beta_0} \\ -c_{\beta_0} & s_{\beta_0} \end{pmatrix}, \quad R_{\beta_{\pm}} = \begin{pmatrix} s_{\beta_{\pm}} & c_{\beta_{\pm}} \\ -c_{\beta_{\pm}} & s_{\beta_{\pm}} \end{pmatrix}$$

• EWSB conditions: $\beta = \beta_0 = \beta_{\pm}$ but $\alpha \neq \beta$, where $\tan \beta = v_u / v_d$ with $\langle H_{u,d} \rangle = v_{u,d} / \sqrt{2}$

$$\sin 2\beta = \frac{2b}{2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2} \qquad \frac{\tan 2\alpha}{\tan 2\beta} = \frac{m_{A^0}^2 + m_Z^2}{m_{A^0}^2 - m_Z^2}$$

 β : rotation angle to <u>Higgs basis</u>,

where only one of the doublets acquires a VEV

• MSSM contains 2 Higgs doublets: $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix} \sim (\mathbf{1}, \mathbf{2})_{1/2}$ and $H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix} \sim (\mathbf{1}, \mathbf{2})_{-1/2}$

• Higgs potential:
$$V_{\text{Higgs}}(H_1, H_2) = (|\mu|^2 + m_{H_u}^2) H_u^{\dagger} H_u + (|\mu|^2 + m_{H_d}^2) H_d^{\dagger} H_d + [bH_u^{\dagger} \varepsilon H_d + \text{H.c.}] \\ + \frac{1}{8} \left(g_1^2 + g_2^2\right) \left(H_u^{\dagger} H_u - H_d^{\dagger} H_d\right)^2 + \frac{g_2^2}{2} (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) \,.$$

- Physical Higgs bosons h^0 : superposition of CP-even components of H_u^0 and H_d^0
- Most general decomposition of Higgs doublets:

$$\begin{pmatrix} H_u^0 \\ H_d^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[R_\beta \begin{pmatrix} v \\ 0 \end{pmatrix} + R_\alpha \begin{pmatrix} h^0 \\ H^0 \end{pmatrix} + i R_{\beta_0} \begin{pmatrix} G^0 \\ A^0 \end{pmatrix} \right], \quad \begin{pmatrix} H_u^+ \\ H_d^+ \end{pmatrix} = R_{\beta_{\pm}} \begin{pmatrix} G^+ \\ H^+ \end{pmatrix}$$

$$R_\beta = \begin{pmatrix} s_\beta & -c_\beta \\ c_\beta & s_\beta \end{pmatrix}, \quad R_\alpha = \begin{pmatrix} c_\alpha & s_\alpha \\ -s_\alpha & c_\alpha \end{pmatrix}, \quad R_{\beta_0} = \begin{pmatrix} s_{\beta_0} & c_{\beta_0} \\ -c_{\beta_0} & s_{\beta_0} \end{pmatrix}, \quad R_{\beta_{\pm}} = \begin{pmatrix} s_{\beta_{\pm}} & c_{\beta_{\pm}} \\ -c_{\beta_{\pm}} & s_{\beta_{\pm}} \end{pmatrix}$$

• EWSB conditions: $\beta = \beta_0 = \beta_{\pm}$ but $\alpha \neq \beta$, where $\tan \beta = v_u / v_d$ with $\langle H_{u,d} \rangle = v_{u,d} / \sqrt{2}$

$$\sin 2\beta = \frac{2b}{2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2} \qquad \frac{\tan 2\alpha}{\tan 2\beta} = \frac{m_{A^0}^2 + m_Z^2}{m_{A^0}^2 - m_Z^2}$$

 β : rotation angle to <u>Higgs basis</u>,

- where only one of the doublets acquires a VEV
- In general we <u>cannot</u> write the SM doublet H as linear combination of $H_{u,d}$

$$\begin{pmatrix} H_u \\ H_d^c \end{pmatrix} = \begin{pmatrix} H_u \\ \varepsilon H_d^* \end{pmatrix} = \begin{pmatrix} \sin \gamma & \cos \gamma \\ -\cos \gamma & \sin \gamma \end{pmatrix} \begin{pmatrix} H \\ \Phi \end{pmatrix}$$

possible only in alignment limit: $\alpha = \beta - \frac{\pi}{2}$

• SMEFT formulated in terms of SM Higgs doublet H

See also:

Dawson, Fontes, Homiller, Sullivan [2205.01561] Dawson, Fontes, Quezada-Calonge, Sanz-Cillero [2305.07689]

- Matching onto SMEFT only possible in **alignment limit**, otherwise match onto HEFT

• SMEFT formulated in terms of SM Higgs doublet H

See also:

Dawson, Fontes, Homiller, Sullivan [2205.01561] Dawson, Fontes, Quezada-Calonge, Sanz-Cillero [2305.07689]

- Matching onto SMEFT only possible in alignment limit, otherwise match onto HEFT

• SMEFT formulated in terms of SM Higgs doublet H

See also:

Dawson, Fontes, Homiller, Sullivan [2205.01561] Dawson, Fontes, Quezada-Calonge, Sanz-Cillero [2305.07689]

- Matching onto SMEFT only possible in alignment limit, otherwise match onto HEFT

• SMEFT formulated in terms of SM Higgs doublet ${\cal H}$

See also:

Dawson, Fontes, Homiller, Sullivan [2205.01561] Dawson, Fontes, Quezada-Calonge, Sanz-Cillero [2305.07689]

- Matching onto SMEFT only possible in alignment limit, otherwise match onto HEFT

 $\Delta = (m_{H_u}^2 - m_{H_d}^2) s_\beta c_\beta + b(s_\beta^2 - c_\beta^2) = m_Z^2 \frac{\sin 4\beta}{4} \rightarrow \mathcal{O}(m_Z) \text{ mixing } \begin{bmatrix} \Delta \sim m_H^2 \ll m_\Phi^2 \\ \text{IR \& UV d.o.f properly separated} \end{bmatrix}$

Diagonalizing the Higgsino mass term

- Higgsinos $\tilde{H}_{u,d}$:
 - <u>Heavy chiral fermions</u> with mixed mass term:

$$\mathscr{L}_{\tilde{H}} \supset \overline{\tilde{H}}_{u} \gamma^{\mu} P_{L} D_{\mu} \tilde{H}_{u} + \overline{\tilde{H}}_{d} \gamma^{\mu} P_{L} D_{\mu} \tilde{H}_{d} + \left(\mu \, \overline{\tilde{H}}_{d}^{c} \varepsilon \, \tilde{H}_{u} + \text{H.c.} \right)$$

- Mass term cannot be diagonalized (chiral fermions cannot be massive)

$$\begin{split} & \left\{ \tilde{H}_u = \left(\tilde{H}_u^+, \, \tilde{H}_u^0 \right)^{\mathsf{T}} \sim (\mathbf{1}, \mathbf{2})_{1/2} \\ & \tilde{H}_d = \left(\tilde{H}_d^0, \, \tilde{H}_d^- \right)^{\mathsf{T}} \sim (\mathbf{1}, \mathbf{2})_{-1/2} \\ & \text{chiral fermions chosen as left-handed} \end{split}$$

Diagonalizing the Higgsino mass term

- Higgsinos $\tilde{H}_{u,d}$:
 - <u>Heavy chiral fermions</u> with mixed mass term:

$$\mathscr{L}_{\tilde{H}} \supset \overline{\tilde{H}}_{u} \gamma^{\mu} P_{L} D_{\mu} \tilde{H}_{u} + \overline{\tilde{H}}_{d} \gamma^{\mu} P_{L} D_{\mu} \tilde{H}_{d} + \left(\mu \,\overline{\tilde{H}}_{d}^{c} \varepsilon \, \tilde{H}_{u} + \text{H.c.} \right)$$

- Mass term cannot be diagonalized (chiral fermions <u>cannot</u> be massive)
- Combine both Higgsinos into a vectorlike fermion Σ
 - Use that $\varepsilon \tilde{H}_d^c \sim (\mathbf{1}, \mathbf{2})_{1/2}$
 - Define vectorlike fermion by $\Sigma = P_L \tilde{H}_u + \varepsilon P_R \tilde{H}_d^c$
 - $\tilde{H}_u = P_L \Sigma$ and $\tilde{H}_d = \varepsilon P_L \Sigma^c$
- Final Higgsino Lagrangian given by

 $\mathcal{L}_{\tilde{H}} \supset \overline{\Sigma} \gamma^{\mu} D_{\mu} \Sigma - \mu^2 \overline{\Sigma} \Sigma$

$$\begin{split} & \tilde{H}_u = \left(\tilde{H}_u^+, \, \tilde{H}_u^0 \right)^{\mathsf{T}} \sim (\mathbf{1}, \mathbf{2})_{1/2} \\ & \tilde{H}_d = \left(\tilde{H}_d^0, \, \tilde{H}_d^- \right)^{\mathsf{T}} \sim (\mathbf{1}, \mathbf{2})_{-1/2} \\ & \text{chiral fermions chosen as left-handed} \end{split}$$

Implementation in Matchete

• Implement MSSM Lagrangian in an automatic matching tool

Input

Automated matching

see also: Carmona, Lazopoulos, Olgoso, Santiago [2112.10787]

→ see also Javi's talk

- Lagrangian implemented using:
 - Dirac spinors for sfermions
 - Majorana spinors for gauginos
 - Vectorlike fermion for Higgsinos
 - Higgs basis for Higgs doublets

Fuentes-Martín, König, Pagès, Thomsen, FW [2212.04510] https://gitlab.com/matchete/matchete

Implementation in Matchete

• Implement MSSM Lagrangian in an automatic matching tool

see also: Carmona, Lazopoulos, Olgoso, Santiago [2112.10787]

 \rightarrow see also Javi's talk

- Lagrangian implemented using:
 - Dirac spinors for sfermions
 - Majorana spinors for gauginos
 - Vectorlike fermion for Higgsinos
 - Higgs basis for Higgs doublets

RWTHAACHE

Felix Wilsch

- Automatic tree-level and one-loop matching
- Automatic reduction of redundant EFT operators
 - Using off-shell (IbP, Fierz, ...) and on-shell (field redefinitions) identities

Input

Automated matching

- Proper treatment of evanescent operators
 Proper treatment of evanescent operators
 Fuentes-Martín, König, Pagès, Thomsen, FW [2211.09144]
- Output: matching conditions in Warsaw basis

Fuentes-Martín, König, Pagès, Thomsen, FW [2212.04510] https://gitlab.com/matchete/matchete

MSSM Lagrangian in Matchete (part 1)

$$\frac{1}{4} \frac{\theta^{\mu\nu^2}}{\theta^{\mu\nu^2}} - \frac{1}{4} \frac{\theta^{\nu\mu^2}}{\theta^{\mu\nu^2}} + \theta_{\mu\nu} \frac{\partial \xi^{\mu}}{\partial \xi^{\mu}} \frac{\partial \xi^{\mu\nu}}{\partial \theta^{\mu\nu}} - Md^2 \frac{\partial \xi^{\mu}}{\partial \xi^{\mu}} \frac{\partial \xi^{\mu\nu}}{\partial \xi^{\mu\nu}} \frac{\partial \xi^{\mu\nu}}$$

Felix Wilsch

Effective Field Theories of the MSSM — HEFT 2024 | Bologna

MSSM Lagrangian in Matchete (part 2)

 $\left(-\overline{Yu}^{ps}Yu^{rs}s\beta^2 - \frac{1}{3}c2\beta g1^2\delta^{pr}\right)\overline{ut}_a^rut^{ap}\overline{\phi}_i\phi^i -$ $\frac{1}{4} c2\beta \left(g1^{2} + g2^{2}\right) \overline{lt}_{i}^{r} lt^{ip} \overline{\phi}_{j} \phi^{j} \delta^{pr} +$ $\left(-\overline{Yu}^{sr} Yu^{sp} s\beta^{2} + \frac{1}{12} c2\beta \left(g1^{2} - 3g2^{2}\right) \delta^{pr}\right) \overline{qt}_{ai}^{r} qt^{aip} \overline{\phi}_{j} \phi^{j} +$ **MSSM Lagrangian:** $\frac{1}{8} \left(gl^2 \left(-1 + c4\beta \right) + g2^2 \left(3 + c4\beta \right) \right) \overline{\Phi}_j \overline{\Phi}^i \overline{\phi}_i \phi^j +$ 117 different terms $\frac{1}{8} \left(g \mathbf{1}^2 \left(\mathbf{1} + c 4 \beta \right) + g \mathbf{2}^2 \left(-3 + c 4 \beta \right) \right) \overline{\Phi}_j \overline{\Phi}_j \overline{\phi}_i \phi^i +$ (excluding Hermitian conjugates) $\frac{1}{36} \left(-2 g 1^2 \delta^{\text{pt}} \delta^{\text{rs}} + 3 g 3^2 \left(\delta^{\text{pt}} \delta^{\text{rs}} - 3 \delta^{\text{ps}} \delta^{\text{rt}} \right) \right) \overline{dt}_a^s \overline{dt}_b^t dt^{ar} dt^{bp} -$ $\frac{1}{3} gl^2 \overline{dt}_a^s dt^{ap} \overline{et}^t et^r \delta^{ps} \delta^{rt} - \frac{1}{2} gl^2 \overline{et}^s \overline{et}^t et^p et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^t et^p et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^t et^p et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s \overline{et}^s et^r \delta^{ps} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s \overline{et}^s et^s \delta^{rt} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s \overline{et}^s et^s \delta^{rt} \delta^{rt} + \frac{1}{2} gl^2 \overline{et}^s \overline{et}^s \overline{et}^s \overline{et}^s et^s \delta^{rt} \delta^{rt}$ $\frac{1}{6} gl^2 \overline{dt}_a^s dt^{ap} \overline{lt}_i^t lt^{ir} \delta^{ps} \delta^{rt} + \left(-\overline{Ye}^{pt} Ye^{sr} + \frac{1}{2} gl^2 \delta^{ps} \delta^{rt}\right) \overline{et}^s et^p \overline{lt}_i^t lt^{ir} + \frac{1}{2} gl^2 \delta^{ps} \delta^{rt}$ $\frac{1}{8} \left(-gl^2 \, \delta^{pt} \, \delta^{rs} + g2^2 \, \left(\delta^{pt} \, \delta^{rs} - 2 \, \delta^{ps} \, \delta^{rt} \right) \right) \, \overline{lt}_i^s \, \overline{lt}_j^t \, lt^{ir} \, lt^{jp} +$ $\left(-\overline{Yd}^{pt}Yd^{sr} + \frac{1}{2}g3^{2}\delta^{ps}\delta^{rt}\right)\overline{dt}_{a}^{s}dt^{bp}\overline{qt}_{bi}^{t}qt^{air} - \frac{1}{6}g1^{2}\overline{et}^{s}et^{p}\overline{qt}_{ai}^{t}qt^{air}\delta^{ps}\delta^{rt} - \frac{1}{6}g1^{2}\overline{et}^{s}et^{p}\overline{qt}\delta^{ps}\delta^{rt}\delta^{ps}\delta^{rt}$ $\frac{1}{2} g2^{2} \overline{lt}_{i}^{s} lt^{jp} \overline{qt}_{aj}^{t} qt^{air} \delta^{ps} \delta^{rt} + \frac{1}{12} \left(g1^{2} + 3 g2^{2}\right) \overline{lt}_{i}^{s} lt^{ip} \overline{qt}_{aj}^{t} qt^{ajr} \delta^{ps} \delta^{rt} - \frac{1}{12} \left(g1^{2} + 3 g2^{2}\right) \overline{lt}_{i}^{s} dt^{ip} \overline{qt}_{aj}^{t} qt^{ajr} \delta^{ps} \delta^{rt} dt^{ip} \overline{qt}_{aj}^{t} qt^{ip} \delta^{ps} \delta^{rt} dt^{ip} \overline{qt}_{aj}^{t} qt^{ip} \overline{qt}_{aj}^{t} qt^{ip} \delta^{ps} \delta^{rt} dt^{ip} \overline{qt}_{aj}^{t} qt^{ip} \overline{qt}_$ $\frac{1}{18} \left(gl^2 + 3 g3^2 \right) \overline{dt}_a^s dt^{ap} \overline{qt}_{bi}^t qt^{bir} \delta^{ps} \delta^{rt} + \frac{1}{4} \left(-g3^2 \delta^{pt} \delta^{rs} - g2^2 \delta^{ps} \delta^{rt} \right) \overline{qt}_{ai}^s \overline{qt}_{bj}^t qt^{ajp} qt^{bir} - \frac{1}{4} \left(-g3^2 \delta^{pt} \delta^{rs} - g2^2 \delta^{ps} \delta^{rt} \right) \overline{qt}_{ai}^s \overline{qt}_{bj}^t qt^{ajp} qt^{bir} - \frac{1}{4} \left(-g3^2 \delta^{pt} \delta^{rs} - g2^2 \delta^{ps} \delta^{rt} \right) \overline{qt}_{ai}^s \overline{qt}_{bj}^t qt^{ajp} qt^{bir} - \frac{1}{4} \left(-g3^2 \delta^{pt} \delta^{rs} - g2^2 \delta^{ps} \delta^{rt} \right) \overline{qt}_{ai}^s \overline{qt}_{bj}^t qt^{ajp} qt^{bir} dt^{ajp} qt^{bir} dt^{ajp} qt^{ajp} qt^{bir} dt^{ajp} qt^{ajp} qt^{ajp}$ $\frac{1}{72} \left(g1^2 - 9 g2^2 - 6 g3^2\right) \overline{qt}_{ai}^s \overline{qt}_{bj}^t qt^{aip} qt^{bjr} \delta^{ps} \delta^{rt} - \frac{1}{2} g3^2 \overline{dt}_a^s dt^{bp} \overline{ut}_b^t ut^{ar} \delta^{ps} \delta^{rt} + \frac{1}{72} g3^2 \overline{dt}_a^s dt^{bp} \overline{ut}_b^t ut^{ar} \delta^{ps} \delta^{rt} dt^{bp} dt^{bp} \overline{dt}_b^s dt^{bp} \overline{dt}_b^s dt^{bp} dt^{bp} \delta^{rt} dt^{bp} dt^{bp} \delta^{rt} dt^{bp} dt^{bp} \delta^{rt} dt^{bp} \delta^{rt} dt^{bp} \delta^{rt} dt^{bp} \delta^{rt} dt^{bp} \delta^{rt} \delta^{ps} \delta^{rt} dt^{bp} \delta^{rt} dt^{bp} \delta^{rt} dt^{bp} \delta^{rt} \delta^{ps} \delta^{rt} dt^{bp} \delta^{rt} \delta^{ps} \delta^{rt} dt^{bp} \delta^{rt} dt^{bp} \delta^{rt} \delta^{ps} \delta^{rt} dt^{bp} \delta^{rt} \delta^{rt} \delta^{ps} \delta^{rt} dt^{bp} \delta^{rt} \delta^{ps} \delta^{rt} dt^{bp} \delta^{rt} \delta^{ps} \delta^{rt} dt^{bp} \delta^{rt} \delta^{rt} \delta^{ps} \delta^{rt} \delta^{rt} \delta^{ps} \delta^{rt} \delta^{rt} \delta^{rt} \delta^{ps} \delta^{rt} \delta^{rt$ $\frac{2}{3} g1^{2} \overline{et}^{s} et^{p} \overline{ut}_{a}^{t} ut^{ar} \delta^{ps} \delta^{rt} - \frac{1}{3} g1^{2} \overline{lt}_{i}^{s} lt^{ip} \overline{ut}_{a}^{t} ut^{ar} \delta^{ps} \delta^{rt} +$ $\left(-\overline{Yu}^{rs}Yu^{tp} + \frac{1}{2}g3^{2}\delta^{ps}\delta^{rt}\right)\overline{qt}_{ai}^{s}qt^{bip}\overline{ut}_{b}^{t}ut^{ar} + \frac{1}{36}\left(-8g1^{2}\delta^{pt}\delta^{rs} + 3g3^{2}\left(\delta^{pt}\delta^{rs} - 3\delta^{ps}\delta^{rt}\right)\right)\overline{ut}_{a}^{s}\overline{ut}_{b}^{t}ut^{ar}ut^{bp} + \frac{1}{36}\left(-8g1^{2}\delta^{pt}\delta^{rs} + 3g3^{2}\left(\delta^{pt}\delta^{rs} - 3\delta^{ps}\delta^{rt}\right)\overline{ut}_{b}^{s}\overline{ut}_{b}^{t}ut^{ar}ut^{bp} + \frac{1}{36}\left(-8g1^{2}\delta^{pt}\delta^{rs} + 3g3^{2}\left(\delta^{pt}\delta^{rs} - 3\delta^{ps}\delta^{rt}\right)\right)\overline{ut}_{a}^{s}\overline{ut}_{b}^{t}ut^{ar}ut^{bp} + \frac{1}{36}\left(-8g1^{2}\delta^{pt}\delta^{rs} + 3g3^{2}\left(\delta^{pt}\delta^{rs} - 3\delta^{ps}\delta^{rt}\right)\right)\overline{ut}_{a}^{s}\overline{ut}_{b}^{t}ut^{ar}ut^{bp} + \frac{1}{36}\left(-8g1^{2}\delta^{pt}\delta^{rs} + 3g3^{2}\left(\delta^{pt}\delta^{rs} - 3\delta^{ps}\delta^{rt}\right)\right)\overline{ut}_{a}^{s}\overline{ut}_{b}^{t}ut^{ar}ut^{bp} + \frac{1}{36}\left(-8g1^{2}\delta^{pt}\delta^{rs} + 3g3^{2}\left(\delta^{pt}\delta^{rs} - 3\delta^{ps}\delta^{rt}\right)\right)\overline{ut}_{a}^{s}\overline{ut}_{b}^{t}ut^{b}ut^{bp} + \frac{1}{36}\left(-8g1^{2}\delta^{pt}\delta^{rs} + 3g3^{2}\left(\delta^{pt}\delta^{rs} - 3\delta^{ps}\delta^{rt}\right)\overline{ut}_{b}^{s}ut^{b}ut^{$ $\frac{1}{18} \left(4 \text{gl}^2 + 3 \text{g3}^2 \right) \overline{\text{dt}}_a^s \text{dt}^{ap} \overline{\text{ut}}_b^t \text{ut}^{br} \delta^{ps} \delta^{rt} + \frac{1}{18} \left(2 \text{gl}^2 - 3 \text{g3}^2 \right) \overline{\text{qt}}_{ai}^s \text{qt}^{aip} \overline{\text{ut}}_b^t \text{ut}^{br} \delta^{ps} \delta^{rt} + \frac{1}{18} \left(2 \text{gl}^2 - 3 \text{g3}^2 \right) \overline{\text{qt}}_{ai}^s \overline{\text{qt}}_{ai}^s \overline{\text{ut}}_b^t \overline{\text{ut}}_b^r \delta^{ps} \delta^{rt} + \frac{1}{18} \left(2 \text{gl}^2 - 3 \text{g3}^2 \right) \overline{\text{qt}}_{ai}^s \overline{\text{qt}}_{ai}^s \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \delta^{ps} \delta^{rt} + \frac{1}{18} \left(2 \text{gl}^2 - 3 \text{g3}^2 \right) \overline{\text{qt}}_{ai}^s \overline{\text{qt}}_{ai}^s \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \delta^{ps} \delta^{rt} + \frac{1}{18} \left(2 \text{gl}^2 - 3 \text{g3}^2 \right) \overline{\text{qt}}_a^s \overline{\text{qt}}_a^r \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \delta^{ps} \delta^{rt} \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \delta^{ps} \delta^{rt} \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \overline{\text{ut}}_b^r \delta^{ps} \delta^{rt} \overline{\text{ut}}_b^r \overline{\text{ut}}_$ $\left(-\overline{\mathrm{Yd}}^{\mathrm{ps}}\,\mathrm{Yd}^{\mathrm{rs}}\,\mathrm{s}\beta^{2}-\frac{1}{6}\,\mathrm{c}2\beta\,\mathrm{gl}^{2}\,\delta^{\mathrm{pr}}\right)\,\overline{\mathrm{dt}}_{\mathrm{a}}^{\mathrm{r}}\,\mathrm{dt}^{\mathrm{ap}}\,\overline{\Phi}_{\mathrm{i}}\,\Phi^{\mathrm{i}}+\left(-\overline{\mathrm{Ye}}^{\mathrm{ps}}\,\mathrm{Ye}^{\mathrm{rs}}\,\mathrm{s}\beta^{2}-\frac{1}{2}\,\mathrm{c}2\beta\,\mathrm{gl}^{2}\,\delta^{\mathrm{pr}}\right)\,\overline{\mathrm{et}}^{\mathrm{r}}\,\mathrm{et}^{\mathrm{p}}\,\overline{\Phi}_{\mathrm{i}}\,\Phi^{\mathrm{i}}+\left(-\overline{\mathrm{Ye}}^{\mathrm{ps}}\,\mathrm{Ye}^{\mathrm{rs}}\,\mathrm{s}\beta^{2}-\frac{1}{2}\,\mathrm{c}2\beta\,\mathrm{gl}^{2}\,\delta^{\mathrm{pr}}\right)\,\overline{\mathrm{et}}^{\mathrm{r}}\,\mathrm{et}^{\mathrm{p}}\,\Phi^{\mathrm{i}}\,\mathrm{et}^{\mathrm{i}}+\left(-\overline{\mathrm{Ye}}^{\mathrm{ps}}\,\mathrm{Ye}^{\mathrm{rs}}\,\mathrm{s}\beta^{2}-\frac{1}{2}\,\mathrm{c}\beta\,\mathrm{gl}^{2}\,\delta^{\mathrm{pr}}\right)\,\overline{\mathrm{et}}^{\mathrm{r}}\,\mathrm{et}^{\mathrm{ps}}\,\Phi^{\mathrm{i}}\,\mathrm{et}^{\mathrm{i}}+\mathrm{et}^{\mathrm{ps}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{s}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{s}\,\mathrm{et}^{\mathrm{s}\,\mathrm{s}\,\mathrm{et}^{\mathrm{s}\,\mathrm{et}^{\mathrm{s}}\,\mathrm{et}^{\mathrm{s$ $\left(-\overline{Ye}^{sr} Ye^{sp} s\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{lt}_i^r lt^{jp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{ajp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{ajp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{ajp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{ajp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{ajp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{ajp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{ajp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{ajp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{sp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{sp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{sp} \overline{\Phi}_j \Phi^i + \left(-\overline{Yd}^{sr} Yd^{sp} s\beta^2 + \overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{2} c2\beta g2^2 \delta^{pr}\right) \overline{qt}_{ai}^r qt^{sp} \overline{\Phi}_j \Phi^i qt^{sp} qt^{$ $-\overline{Yu}^{ps} Yu^{rs} c\beta^{2} + \frac{1}{3} c2\beta g1^{2} \delta^{pr} \int \overline{ut}_{a}^{r} ut^{ap} \overline{\Phi}_{i} \Phi^{i} + \frac{1}{4} c2\beta \left(g1^{2} + g2^{2}\right) \overline{lt}_{i}^{r} lt^{ip} \overline{\Phi}_{j} \Phi^{j} \delta^{pr} + \frac{1}{4} c2\beta \left(g1^{2} + g2^{2}\right) \overline{lt}_{i}^{r} dt^{ip} \overline{\Phi}_{j} \Phi^{j} \delta^{pr} dt^{ip} dt^{ip} \overline{\Phi}_{j} \Phi^{j} \delta^{pr} dt^{ip} dt^{ip} \overline{\Phi}_{j} \Phi^{j} \delta^{pr} dt^{ip} dt^{ip} dt^{ip} dt^{ip} \overline{\Phi}_{j} \Phi^{j} \delta^{pr} dt^{ip} dt^{ip}$ $\left(-\overline{Yu}^{sr} Yu^{sp} c\beta^2 - \frac{1}{12} c2\beta \left(g1^2 - 3 g2^2\right) \delta^{pr}\right) \overline{qt}^r_{ai} qt^{aip} \overline{\Phi}_j \Phi^j - \frac{1}{8} c2\beta^2 \left(g1^2 + g2^2\right) \overline{\Phi}_i \overline{\Phi}_j \Phi^i \Phi^j$

Felix Wilsch

Tree-level matching

• Tree-level matching of $\mathscr{L}_{\mathrm{MSSM}}$ to $\mathscr{L}_{\mathrm{SMEFT}}$

LEFT0 = Match[LMSSM, EFTOrder → 6, LoopOrder → 0]; % // HcSimplify // NiceForm

$$\frac{1}{4} B^{\mu\nu2} - \frac{1}{4} G^{\mu\nuA2} - \frac{1}{4} W^{\mu\nu12} + D_{\mu}\overline{\phi}_{1} D_{\mu} \phi^{1} + \left(-m\phi^{2} + m\phi^{4} s2\beta^{2} \frac{1}{M\overline{\Phi}^{2}}\right) \overline{\phi}_{1} \phi^{1} + i \left(\overline{d}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{a}p\right) \delta^{pr} + i \left(\overline{t}_{1}^{r} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} t^{1p}\right) \delta^{pr} + i \left(\overline{d}_{a}^{r} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} d^{a}p\right) \delta^{pr} + i \left(\overline{u}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} u^{a}p\right) \delta^{pr} + i \left(\overline{u}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} u^{a}p\right) \delta^{pr} + i \left(\overline{t}_{1}^{r} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} t^{1p}\right) \delta^{pr} + i \left(\overline{d}_{a}^{r} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} d^{a}p\right) \delta^{pr} + i \left(\overline{u}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} u^{a}p\right) \delta^{pr} + \left(-\frac{1}{8} c2\beta^{2} \left(g1^{2} + g2^{2}\right) - \frac{1}{4} s2\beta s4\beta m\phi^{2} \frac{1}{M\overline{\Phi}^{2}} \left(g1^{2} + g2^{2}\right)\right) \overline{\phi}_{1} \overline{\phi}_{j} \phi^{1} \phi^{j} + \frac{1}{64} s4\beta^{2} \frac{1}{M\overline{\Phi}^{2}} \overline{\phi}_{1} \overline{\phi}_{j} \phi^{k} \left(g1^{2} + g2^{2}\right)^{2} + \left(\left(-Yd^{rp} c\beta - s2\beta s\beta Yd^{rp} m\phi^{2} \frac{1}{m\overline{\Phi}^{2}}\right) \overline{\phi}_{1} \left(\overline{d}_{a}^{r} \cdot P_{L} \cdot q^{a}p\right) + \left(-Ye^{rp} c\beta - s2\beta s\beta Ye^{rp} m\phi^{2} \frac{1}{m\overline{\Phi}^{2}}\right) \overline{\phi}_{1} \left(\overline{w}^{r} \cdot P_{L} \cdot d^{a}p\right) + \left(\frac{1}{M\overline{\Phi}^{2}} \left(g1^{2} + g2^{2}\right) \overline{\phi}_{1} \overline{\phi}_{j} \phi^{i} \left(\overline{d}_{a}^{r} \cdot P_{L} \cdot q^{a}p\right) + \frac{1}{8} s4\beta s\beta Ye^{rp} \frac{1}{M\overline{\Phi}^{2}} \left(g1^{2} + g2^{2}\right) \overline{\phi}_{1} \overline{\phi}_{j} \phi^{i} \left(\overline{d}_{a}^{r} \cdot P_{L} \cdot q^{a}p\right) + \frac{1}{8} s4\beta s\beta Ye^{rp} \frac{1}{M\overline{\Phi}^{2}} \left(g1^{2} + g2^{2}\right) \overline{\phi}_{1} \overline{\phi}_{j} \phi^{i} \left(\overline{w}^{r} \cdot P_{L} \cdot q^{a}p\right) - \frac{1}{8} s4\beta Yu^{rp} c\beta \frac{1}{M\overline{\Phi}^{2}} \left(g1^{2} + g2^{2}\right) \overline{\phi}_{1} \phi^{i} \phi^{i} \left(\overline{u}_{a}^{r} \cdot P_{L} \cdot q^{a}p\right) \overline{e}_{jk} + \overline{Yd}^{pt} Ye^{sr} s\beta^{2} \frac{1}{M\overline{\Phi}^{2}} \left(\overline{e}^{s} \cdot P_{L} \cdot 1^{ir}\right) \left(\overline{q}_{a}^{t} \cdot P_{R} \cdot d^{a}p\right) - s\beta Ye^{sp} Yu^{tr} c\beta \frac{1}{M\overline{\Phi}^{2}} \left(\overline{e}^{s} \cdot P_{L} \cdot 1^{jp}\right) \left(\overline{u}_{a}^{t} \cdot P_{L} \cdot q^{a}p\right) \overline{e}_{jk} + \overline{Yd}^{pt} Ye^{sr} s\beta^{2} \frac{1}{M\overline{\Phi}^{2}} \left(\overline{e}^{s} \cdot P_{L} \cdot 1^{ir}\right) \left(\overline{u}_{b}^{t} \cdot P_{L} \cdot q^{a}p\right) + \overline{Yd}^{pt} Yd^{sr} s\beta^{2} \frac{1}{M\overline{\Phi}^{2}} \left(\overline{d}_{a}^{s} \cdot P_{L} \cdot q^{a}p\right) \left(\overline{u}_{b}^{t} \cdot P_{L} \cdot q^{b}p\right) + \overline{Yd}^{sr} s\beta^{2} \frac{1}{M\overline{\Phi}^{2}} \left(\overline{d}_{a}^{s} \cdot P_{L} \cdot q^{a}p\right) \left(\overline{u}_{b}^{t} \cdot P_{L} \cdot q^{b}p\right) + \overline{Yd}^{sr} s\beta^{2} \frac{$$

• Contributions only by 2^{nd} heavy Higgs Φ , superpartner contributions forbidden by *R*-parity

Tree-level matching

• Tree-level matching of $\mathscr{L}_{\mathrm{MSSM}}$ to $\mathscr{L}_{\mathrm{SMEFT}}$

LEFT0 = Match[LMSSM, EFTOrder → 6, LoopOrder → 0]; % // HcSimplify // NiceForm

Bologna

$$\frac{1}{4} B^{\mu\nu2} - \frac{1}{4} G^{\mu\nuA2} - \frac{1}{4} W^{\mu\nu12} + D_{\mu} \overline{\phi}_{i} D_{\mu} \phi^{i} + \left(-m\phi^{2} + m\phi^{4} s2\beta^{2} \frac{1}{M\bar{\varpi}^{2}} \right) \overline{\phi}_{i} \phi^{i} + i \left(\overline{d}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{i}^{r} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} t^{ip} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} q^{aip} \right) \delta^{pr} + i \left(\overline{d}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot P_{R} \cdot d^{ap} \right) \delta^{pr} + i \left(\overline{t}_{a}^{r} \cdot P_{R} \cdot d^{a} d^{p} \right) \delta^{p} \phi^{r} \delta^{r} \delta^{r$$

- Contributions only by 2^{nd} heavy Higgs Φ , superpartner contributions forbidden by *R*-parity
- Only 3 operators <u>not</u> part of Warsaw basis

Felix Wilsch

- Fierz identity $(\bar{\psi}_L^1 \psi_R^2) (\bar{\psi}_R^3 \psi_L^4) = (\bar{\psi}_L^1 \gamma_\mu \psi_L^4) (\bar{\psi}_R^3 \gamma^\mu \psi_R^2)/2$ (only valid in D = 4)
- Generates evanescent operators in $D = 4 2\epsilon$ Buras, Weisz [Nucl. Phys. B 333 (1990) 66–99] Herrlich, Nierste [hep-ph/9412375]
 - \rightarrow need to be absorbed by finite renormalization at one loop

Fuentes-Martín, König, Pagès, Thomsen, FW [2211.09144]

$\frac{1}{5}O_{qu1}^{ptsr} - O_{qu8}^{ptsr} + \hbar \left(\frac{3}{2}\overline{Y_e^{pr}}\overline{V_u^{pr}}\overline{O_{lequ1}^{uvts}} - \frac{3}{2}\overline{Y_d^{uv}}\overline{Y_u^{pr}}\overline{O_{quqd1}^{tsuv}} + \left(-\frac{1}{2}\overline{O_{quqd1}^{tsvu}} + \frac{1}{12}\overline{O_{quqd1}^{vstu}} + \frac{1}{2}\overline{O_{quqd1}^{vstu}}\right)\overline{Y_d^{pu}}\overline{Y_u^{pr}} - \frac{3}{8}g_L\overline{Y_u^{pr}}\overline{O_{uB}^{ts}} - \frac{3}{2}\lambda\overline{Y_u^{pr}}\overline{O_{uH}^{ts}} - \frac{3}{2}\mu^2\overline{Y_u^{pr}}\overline{O_{Yu}^{ts}} + 3Y_u^{vu}\overline{Y_u^{pu}}\overline{Y_u^{pr}}\overline{O_{uH}^{ts}} + \frac{3}{2}Y_e^{uv}\overline{Y_e^{rr}}\overline{O_{uH}^{ts}} + \frac{3}{2}Y_e^{uv}\overline{Y_e^{rr}}O_{$	Yu ^{ts} O ^{uvpr} -
$\frac{1}{8}Y_{u}^{vs}\overline{Y_{u}^{ur}}O_{qq1}^{vtpu} - \frac{1}{8}Y_{u}^{vs}\overline{Y_{u}^{ur}}O_{qq3}^{vtpu} - \frac{1}{4}Y_{u}^{tv}\overline{Y_{u}^{ur}}O_{qu1}^{pusv} + \frac{1}{4}Y_{u}^{ts}\overline{Y_{u}^{uv}}O_{qu1}^{puvr} + \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{utsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtur} + \frac{3}{4}Y_{u}^{vs}\overline{Y_{u}^{uv}}O_{qu8}^{puvr} + \frac{3}{2}Y_{u}^{ts}\overline{Y_{u}^{uv}}O_{qu8}^{puvr} - \frac{3}{2}Y_{d}^{uv}Y_{u}^{ts}O_{quq1}^{pruv} - \frac{1}{2}Y_{d}^{tu}Y_{u}^{vs}O_{quq1}^{prvu} + \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{utsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtur} + \frac{3}{2}Y_{u}^{ts}\overline{Y_{u}^{uv}}O_{qu8}^{puvr} + \frac{3}{2}Y_{u}^{uv}\overline{Y_{u}^{pr}}O_{qu8}^{utsv} - \frac{3}{2}Y_{d}^{uv}Y_{u}^{ts}O_{quq1}^{pruv} - \frac{1}{2}Y_{d}^{tu}Y_{u}^{vs}O_{quq1}^{prvu} + \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtur} + \frac{3}{2}Y_{u}^{ts}\overline{Y_{u}^{vs}}O_{qu8}^{puvr} + \frac{3}{2}Y_{u}^{uv}\overline{Y_{u}^{pr}}O_{qu8}^{utsv} - \frac{3}{2}Y_{d}^{uv}Y_{u}^{ts}O_{quq1}^{prvu} - \frac{1}{2}Y_{d}^{tu}Y_{u}^{vs}O_{quq1}^{prvu} + \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} + \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} + \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} + \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} + \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu1}^{vtsv} - \frac{1}{4}Y_{u}^{vs}\overline{Y_{u}^{pr}}O_{qu$	
$\frac{1}{12}Y_{d}^{tu}Y_{u}^{vs}O_{quqd1}^{vrpu} + \frac{1}{2}Y_{d}^{tu}Y_{u}^{vs}O_{quqd8}^{vrpu} - \frac{5}{8}g_{Y}Y_{u}^{ts}O_{uB}^{pr} - \frac{1}{6}Y_{d}^{tv}\overline{Y_{d}^{pu}}O_{ud1}^{sruv} - Y_{d}^{tv}\overline{Y_{d}^{pu}}O_{ud8}^{sruv} + \left(-\frac{3}{2}Y_{u}^{ts}\lambda + 3Y_{u}^{tv}Y_{u}^{us}\overline{Y_{u}^{uv}}\right)O_{uH}^{pr} - \frac{1}{2}Y_{u}^{tv}\overline{Y_{u}^{pu}}O_{uu}^{ursv} - \frac{3}{8}g_{L}Y_{u}^{ts}O_{uW}^{pr} - \frac{3}{2}Y_{u}^{ts}\mu^{2}O_{Yu}^{pr}\right)\}$	

Effective Field Theories of the MSSM — HEFT 2024 |

Tree-level matching conditions for the Warsaw basis

MapEffectiveCouplings[GreensSimplify[∠EFT0, TypeofIdentities → FourDimensional], LoadModel["SMEFT"] Preliminary (w.i.p)]// NiceForm $\mathsf{mH} \rightarrow \sqrt{-\mathsf{m}\phi^2 + \mathsf{m}\phi^4 \mathrm{s}2\beta^2 \frac{1}{\mathrm{M}\pi^2}}$ $Yd^{i1}_{i2} \rightarrow \overline{Yd}^{i2i1} c\beta + s2\beta s\beta \overline{Yd}^{i2i1} m\phi^2 \frac{1}{M\pi^2}$ $Ye^{i1}_{i2} \rightarrow Ye^{i2i1} c\beta + s2\beta s\beta Ye^{i2i1} m\phi^2 \frac{1}{mr^2}$ $Yu^{i1}_{i2} \rightarrow -s2\beta \overline{Yu}^{i2i1} c\beta m\phi^2 \frac{1}{M\pi^2} + s\beta \overline{Yu}^{i2i1}$ $\lambda \to -2 \left(-\frac{1}{8} g 1^2 c 2\beta^2 - \frac{1}{8} g 2^2 c 2\beta^2 - \frac{1}{4} s 2\beta s 4\beta g 1^2 m \phi^2 \frac{1}{M \sigma^2} - \frac{1}{4} s 2\beta s 4\beta g 2^2 m \phi^2 \frac{1}{M \sigma^2} \right)$ $cdH^{i1}_{i2} \rightarrow \frac{1}{8} s4\beta s\beta \overline{Yd}^{i2i1} g1^2 \frac{1}{M\pi^2} + \frac{1}{8} s4\beta s\beta \overline{Yd}^{i2i1} g2^2 \frac{1}{M\pi^2}$ $ceH^{i1}_{i2} \rightarrow \frac{1}{8} s4\beta s\beta \overline{Ye}^{i2i1} g1^2 \frac{1}{M\pi^2} + \frac{1}{8} s4\beta s\beta \overline{Ye}^{i2i1} g2^2 \frac{1}{M\pi^2}$ $CH \rightarrow \frac{1}{64} g1^4 s4\beta^2 \frac{1}{M\pi^2} + \frac{1}{32} g1^2 g2^2 s4\beta^2 \frac{1}{M\pi^2} + \frac{1}{64} g2^4 s4\beta^2 \frac{1}{M\pi^2}$ $cle^{i1}_{i2}_{i3}_{i4} \rightarrow -\frac{1}{2} \overline{Ye}^{i4i1} Ye^{i3i2} s\beta^2 \frac{1}{M^2}$ $cledq^{i1}_{i2}_{i3}_{i4} \rightarrow Yd^{i3i4} \overline{Ye}^{i2i1} s\beta^2 \frac{1}{M_{\pi}^2}$ $cqdl^{i1}_{i2}_{i3}_{i4} \rightarrow -\frac{1}{6} \overline{Yd}^{i4i1} Yd^{i3i2} s\beta^2 \frac{1}{M\pi^2}$ $cqd8^{i1}_{i2}_{i3}_{i4} \rightarrow -\overline{Yd}^{i4i1} Yd^{i3i2} s\beta^2 \frac{1}{M\pi^2}$ $cqul^{i1_i2_i3_i4_} \rightarrow -\frac{1}{6} \overline{Yu}^{i4i1} Yu^{i3i2} \frac{1}{M_{\pi}^2} c\beta^2$ $cqu8^{i1}_{i2}_{i3}_{i4} \rightarrow -\overline{Yu}^{i4i1} Yu^{i3i2} \frac{1}{M\sigma^2} c\beta^2$ cquqd1^{i1_i2_i3_i4_} $\rightarrow -s\beta \overline{Yd}^{i4i3} \overline{Yu}^{i2i1} c\beta \frac{1}{M\pi^2}$ $cuH^{i1}_{i2} \rightarrow -\frac{1}{8} s4\beta \overline{Yu}^{i2i1} c\beta g1^2 \frac{1}{M\pi^2} - \frac{1}{8} s4\beta \overline{Yu}^{i2i1} c\beta g2^2 \frac{1}{M\pi^2}$

 Apply 4-dimensional Fierz identities at tree level to project onto Warsaw basis

Correction to SM parameters

Warsaw basis Wilson coefficients

without one-loop contribution from renormalizing evanescent operators

• Automatic one-loop matching of $\mathcal{L}_{\mathrm{MSSM}}$

 \mathcal{L} EFT1 = Match[\mathcal{L} MSSM, EFTOrder $\rightarrow 6$, LoopOrder $\rightarrow 1$] /. $\epsilon^{-1} \rightarrow 0$;

approximate & preliminary values for the case of mass degenerate sfermions $\rightarrow 10 \text{ min}, 93 \text{ MB}$

- Automatic one-loop matching of $\mathscr{L}_{\mathrm{MSSM}}$

 \mathcal{L} EFT1 = Match[\mathcal{L} MSSM, EFTOrder \rightarrow 6, LoopOrder \rightarrow 1] /. $\epsilon^{-1} \rightarrow 0$;

• Automatic off-shell simplifications (incl. evanescent operators) of $\mathscr{L}_{ ext{SMEFT}}$

LEFT1 = GreensSimplify[LEFT1, TypeofIdentities → Evanescent];

approximate & preliminary values for the case of mass degenerate sfermions $\rightarrow 10 \text{ min}, 93 \text{ MB}$

 \rightarrow 3 min, 12 MB*

• Automatic one-loop matching of \mathscr{L}_{MSSM} $\pounds EFT1 = Match[\pounds MSSM, EFT0rder \rightarrow 6, Loop0rder \rightarrow 1] /. \epsilon^{-1} \rightarrow 0;$ *approximate & preliminary values for the case of mass degenerate sfermions $\rightarrow 10 \text{ min}, 93 \text{ MB*}$

• Automatic off-shell simplifications (incl. evanescent operators) of $\mathscr{L}_{\mathrm{SMEFT}}$

 \mathcal{L} EFT1 = GreensSimplify[\mathcal{L} EFT1, TypeofIdentities \rightarrow Evanescent];

- \rightarrow 3 min, 12 MB*
- Automatic on-shell simplifications (field redefinitions) of $\mathscr{L}_{\mathrm{SMEFT}}$

LEFT1 = EOMSimplify[LEFT1];

 \rightarrow 35 min, 28 MB*

• Automatic one-loop matching of \mathscr{L}_{MSSM} $\pounds EFT1 = Match[\pounds MSSM, EFT0rder \rightarrow 6, Loop0rder \rightarrow 1] /. e^{-1} \rightarrow 0;$ *approximate & preliminary values for the case of mass degenerate sfermions $\rightarrow 10 \text{ min}, 93 \text{ MB*}$

- Automatic off-shell simplifications (incl. evanescent operators) of $\mathscr{L}_{\text{SMEFT}}$ $\pounds \text{EFT1} = \text{GreensSimplify}[\pounds \text{EFT1}, \text{TypeofIdentities} \rightarrow \text{Evanescent}]; \rightarrow 3 \min, 12 \text{ MB}^*$
- Automatic on-shell simplifications (field redefinitions) of $\mathscr{L}_{\text{SMEFT}}$ $\checkmark 35 \text{ min}, 28 \text{ MB}^*$
- Matching conditions in Warsaw basis MatchingCondition = MapEffectiveCouplings[\pounds EFT1, LoadModel["SMEFT"]]; $\rightarrow 35 \text{ min}, 66 \text{ MB}^*$

approximate & preliminary values Automatic one-loop matching of $\mathscr{L}_{\mathrm{MSSM}}$ for the case of mass degenerate sfermions \mathcal{L} EFT1 = Match[\mathcal{L} MSSM, EFT0rder \rightarrow 6, Loop0rder \rightarrow 1] /. $\epsilon^{-1} \rightarrow 0$; \rightarrow 10 min, 93 MB Automatic off-shell simplifications (incl. evanescent operators) of $\mathscr{L}_{\text{SMEFT}}$ LEFT1 = GreensSimplify[LEFT1, TypeofIdentities → Evanescent]; \rightarrow 3 min. 12 MB* Automatic on-shell simplifications (field redefinitions) of $\mathscr{L}_{\text{SMEFT}}$ \rightarrow 35 min, 28 MB* LEFT1 = EOMSimplify[LEFT1]; Matching conditions in Warsaw basis MatchingCondition = MapEffectiveCouplings[\mathcal{L} EFT1, LoadModel["SMEFT"]]; $\rightarrow 35 \text{ min}, 66 \text{ MB}^*$ Example: $Q_{HG} = (H^{\dagger}H)G_{\mu\nu}G^{\mu\nu}$ Leading terms cross checked with: Drozd, Ellis, Quevillon, You [1504.02409] cHG[] /. MatchingCondition // RelabelIndices // NiceForm $-\frac{1}{48}\hbar c2\beta g1^{2} g3^{2} \frac{1}{Md^{2}} - \frac{1}{48}\hbar c2\beta g1^{2} g3^{2} \frac{1}{Ma^{2}} - \frac{1}{24}\hbar \overline{ad}^{pr} ad^{pr} g3^{2} \frac{1}{Md^{2}} \frac{1}{Ma^{2}} c\beta^{2} + \frac{1}{24}\hbar c2\beta g1^{2} g3^{2} \frac{1}{Mu^{2}} - \frac{1}{24}\hbar c\beta^{2} g3^{2} \frac{1}{Ma^{2}} \frac{1}{Ma^{2}} d\beta^{2} g3^{2} \frac{1}{Ma^{2}} \frac{1}{Ma^{2}} d\beta^{2} g3^{2} \frac{1}{Ma^{2}} \frac{1}{Ma^{2}} \frac{1}{Ma^{2}} d\beta^{2} g3^{2} \frac{1}{Ma^{2}} \frac{1}{Ma^{$ $\frac{1}{24} \hbar \overline{au}^{pr} au^{pr} g3^2 s\beta^2 \frac{1}{Mq^2} \frac{1}{Mu^2} + \frac{1}{24} \hbar \overline{Yd}^{pr} Yd^{pr} g3^2 \frac{1}{Md^2} c\beta^2 + \frac{1}{24} \hbar \overline{Yd}^{pr} Yd^{pr} g3^2 \frac{1}{Mq^2} c\beta^2 + \frac{1}{24} \hbar \overline{Yu}^{pr} Yu^{pr} g3^2 s\beta^2 \frac{1}{Mq^2} + \frac{1}{24} \hbar \overline{Yu}^{pr} yu^{pr} g3^2 \frac{1}{Mq^2} + \frac{1}{24} \hbar \overline{Yu}^{pr} yu^{pr} yu^{pr} g3^2 \frac{1}{Mq^2} + \frac{1}{24} \hbar \overline{Yu}^{pr} yu^{pr} yu^$ $\frac{1}{24} \hbar \overline{Yu}^{pr} Yu^{pr} g3^2 s\beta^2 \frac{1}{Mu^2} + \frac{1}{24} \hbar s\beta \overline{Yd}^{pr} \mu ad^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{Mq^2} + \frac{1}{24} \hbar s\beta \overline{Yu}^{pr} \mu au^{pr} c\beta g3^2 \frac{1}{Mq^2} \frac{1}{Mu^2} + \frac{1}{24} \hbar s\beta Yd^{pr} \mu \overline{ad}^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{Mq^2} + \frac{1}{24} \hbar s\beta \overline{Yu}^{pr} \mu au^{pr} c\beta g3^2 \frac{1}{Mq^2} \frac{1}{Mq^2} + \frac{1}{24} \hbar s\beta \overline{Yd}^{pr} \mu \overline{ad}^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{Mq^2} + \frac{1}{24} \hbar s\beta \overline{Yd}^{pr} \mu \overline{ad}^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{Mq^2} + \frac{1}{24} \hbar s\beta \overline{Yd}^{pr} \mu \overline{ad}^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{Mq^2} + \frac{1}{24} \hbar s\beta \overline{Yd}^{pr} \mu \overline{ad}^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{Mq^2} + \frac{1}{24} \hbar s\beta \overline{Yd}^{pr} \mu \overline{ad}^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{Mq^2} + \frac{1}{24} \hbar s\beta \overline{Yd}^{pr} \mu \overline{ad}^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{Md^2} + \frac{1}{24} \hbar s\beta \overline{Yd}^{pr} \mu \overline{ad}^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1$ $\frac{1}{24} \hbar s\beta Yu^{pr} \mu \overline{au}^{pr} c\beta g3^2 \frac{1}{Mq^2} \frac{1}{Mu^2} - \frac{1}{24} \hbar \overline{Yd}^{pr} Yd^{pr} g3^2 s\beta^2 \frac{1}{Md^2} \frac{1}{Mq^2} \mu^2 - \frac{1}{24} \hbar \overline{Yu}^{pr} Yu^{pr} g3^2 \frac{1}{Mq^2} \frac{1}{Mu^2} \mu^2 c\beta^2$ preliminary (w.i.p) Example: $Q_H = (H^{\dagger}H)^3 \rightarrow \sim 4500$ terms and 16.5 MB

approximate & preliminary values Automatic one-loop matching of $\mathscr{L}_{\mathrm{MSSM}}$ for the case of mass degenerate sfermions \mathcal{L} EFT1 = Match[\mathcal{L} MSSM, EFT0rder \rightarrow 6, Loop0rder \rightarrow 1] /. $\epsilon^{-1} \rightarrow 0$; \rightarrow 10 min, 93 MB Automatic off-shell simplifications (incl. evanescent operators) of $\mathscr{L}_{\mathrm{SMEFT}}$ \rightarrow 3 min. 12 MB* \mathcal{L} EFT1 = GreensSimplify[\mathcal{L} EFT1, TypeofIdentities \rightarrow Evanescent]; Automatic on-shell simplifications (field redefinitions) of $\mathscr{L}_{\text{SMEFT}}$ \rightarrow 35 min, 28 MB* LEFT1 = EOMSimplify[LEFT1]; Matching conditions in Warsaw basis MatchingCondition = MapEffectiveCouplings[\mathcal{L} EFT1, LoadModel["SMEFT"]]; $\rightarrow 35 \text{ min}, 66 \text{ MB}^*$ Example: $Q_{HG} = (H^{\dagger}H)G_{\mu\nu}G^{\mu\nu}$ Leading terms cross checked with: Drozd, Ellis, Quevillon, You [1504.02409] cHG[] /. MatchingCondition // RelabelIndices // NiceForm $-\frac{1}{48}\hbar c2\beta g1^{2} g3^{2} \frac{1}{Md^{2}} - \frac{1}{48}\hbar c2\beta g1^{2} g3^{2} \frac{1}{Ma^{2}} - \frac{1}{24}\hbar \overline{ad}^{pr} ad^{pr} g3^{2} \frac{1}{Md^{2}} \frac{1}{Ma^{2}} c\beta^{2} + \frac{1}{24}\hbar c2\beta g1^{2} g3^{2} \frac{1}{Mu^{2}} - \frac{1}{24}\hbar c\beta^{2} g3^{2} \frac{1}{Ma^{2}} \frac{1}{Ma^{2}} d\beta^{2} g3^{2} \frac{1}{Ma^{2}} \frac{1}{Ma^{2}} d\beta^{2} g3^{2} \frac{1}{Ma^{2}} \frac{1}{Ma^{2}} \frac{1}{Ma^{2}} d\beta^{2} g3^{2} \frac{1}{Ma^{2}} \frac{1}{Ma^{$ $\frac{1}{24} \hbar \overline{au}^{pr} au^{pr} g3^2 s\beta^2 \frac{1}{Mq^2} \frac{1}{Mu^2} + \frac{1}{24} \hbar \overline{Yd}^{pr} Yd^{pr} g3^2 \frac{1}{Md^2} c\beta^2 + \frac{1}{24} \hbar \overline{Yd}^{pr} Yd^{pr} g3^2 \frac{1}{Mq^2} c\beta^2 + \frac{1}{24} \hbar \overline{Yu}^{pr} Yu^{pr} g3^2 s\beta^2 \frac{1}{Mq^2} + \frac{1}{24} \hbar \overline{Yu}^{pr} yu^{pr} g3^2 \frac{1}{Mq^2} + \frac{1}{24} \hbar \overline{Yu}^{pr} yu^{pr} yu^{pr} g3^2 \frac{1}{Mq^2} + \frac{1}{24} \hbar \overline{Yu}^{pr} yu^{pr} yu^$ $\frac{1}{24} \hbar \overline{Yu}^{pr} Yu^{pr} g3^2 s\beta^2 \frac{1}{Mu^2} + \frac{1}{24} \hbar s\beta \overline{Yd}^{pr} \mu ad^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{4} \frac{1}{24} \hbar s\beta \overline{Yu}^{pr} \mu au^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{4} \frac{1}{4} \hbar s\beta Yd^{pr} \mu \overline{ad}^{pr} c\beta g3^2 \frac{1}{Md^2} \frac{1}{4} \frac{1}{4$ $\frac{1}{24} \hbar s\beta Yu^{pr} \mu \overline{au}^{pr} c\beta g3^2 \frac{1}{Mq^2} \frac{1}{Mu^2} - \frac{1}{24} \hbar \overline{Yd}^{pr} Yd^{pr} g3^2 s\beta^2 \frac{1}{Md^2} \frac{1}{Mq^2} \mu^2 - \frac{1}{24} \hbar \overline{Yu}^{pr} Yu^{pr} g3^2 \frac{1}{Mq^2} \frac{1}{Mu^2} \mu^2 c\beta^2$ preliminary (w.i.p) Example: $Q_H = (H^{\dagger}H)^3 \rightarrow \sim 4500$ terms and 16.5 MB

➡ Generating all B- and L-conserving operators without dual field-strength tensors

Conclusions & outlook: phenomenology

- Full MSSM-to-SMEFT matching condition in Warsaw basis computed with
- h

< .

- Need to include flavor indices on sfermion masses, separating of 3rd gen. sfermions
- Need efficient way to isolate leading contributions / restrict matching conditions to subsets
- Make matching conditions available for analyses
- Link to codes for phenomenological analysis \rightarrow e.g. <code>SMEFiT</code>
 - Export matching conditions to C++ for faster evaluation
 - Perform phenomenological analysis by scanning over MSSM parameter space

Conclusions & outlook: phenomenology

- Full MSSM-to-SMEFT matching condition in Warsaw basis computed with
 - Need to include flavor indices on sfermion masses, separating of 3rd gen. sfermions
- Need efficient way to isolate leading contributions / restrict matching conditions to subsets
- Make matching conditions available for analyses
- Link to codes for phenomenological analysis \rightarrow e.g. SMEFiT
 - Export matching conditions to C++ for faster evaluation
 - Perform phenomenological analysis by scanning over MSSM parameter space
- Compare different EFT scenarios \rightarrow investigate EFT validity
- Longterm ideas/goals:
 - Combine with further phenomenological codes (e.g.: flavio/smelli, SFitter, ...)
 - Global MSSM fit using SMEFT

Thank you for your attention!

14

5

Path integral methods for EFT matching

- Lagrangian: $\mathscr{L}_{UV}(\eta)$ with fields $\eta = (\eta_H, \eta_L)^{T}$ and hierarchy $m_H \gg m_L$
- Path integral representation of effective quantum action:

$$\exp\left(i\Gamma_{\rm UV}(\hat{\eta})\right) = \int \mathcal{D}\eta \, \exp\left(i\int {\rm d}^d x \, \mathcal{L}_{\rm UV}(\eta+\hat{\eta})\right)$$

- Perform path integral over η_H (*"integrating out"* the heavy states)
- Expand in powers of m_H^{-1}
- $\Gamma_{\rm EFT}$ containing all higher-dimensional operators and coefficients

Gaillard [Nucl. Phys. B 268 (1986) 669-692];

Cheyette [Nucl. Phys. B 297 (1988) 183-204];

Dittmaier, Grosse-Knetter [hep-ph/9501285] [hep-ph/9505266];

Henning, Lu, Murayama [1412.1837];

Drozd, Ellis, Quevillon, You [1512.03003];

del Aguila, Kunszt, Santiago [1602.00126];

Fuentes-Martin, Portoles, Ruiz-Femenia [1607.02142];

Henning, Lu, Murayama [1604.01019];

Zhang [1610.00710];

Krämer, Summ, Voigt [1908.04798];

Cohen, Lu, Zhang [2011.02484] [2012.07851];

Fuentes-Martín, König, Pagès, Thomsen, FW [2012.08506] [2212.04510];

& many more

• Saddle point approximation of the action:

$$S_{\rm UV}(\eta) \to S_{\rm UV}(\hat{\eta} + \eta) = \left. S_{\rm UV}(\hat{\eta}) \right. + \left. \frac{1}{2} \bar{\eta}_i \left. \frac{\delta^2 S_{\rm UV}}{\delta \bar{\eta}_i \, \delta \eta_j} \right|_{\eta = \hat{\eta}} \eta_j + \mathcal{O}(\eta^3)$$

• Saddle point approximation of the action:

$$S_{\rm UV}(\eta) \to S_{\rm UV}(\hat{\eta} + \eta) = \left[S_{\rm UV}(\hat{\eta}) + \frac{1}{2}\bar{\eta}_i \left.\frac{\delta^2 S_{\rm UV}}{\delta\bar{\eta}_i \,\delta\eta_j}\right|_{\eta = \hat{\eta}} \eta_j + \mathcal{O}(\eta^3)$$

- **Tree-level matching:** $\mathscr{L}_{\text{EFT}}^{(0)} = \mathscr{L}_{\text{UV}}\left(\hat{\eta}_L, \hat{\eta}_H(\hat{\eta}_L)\right)$
 - Substitute $\hat{\eta}_H$ by its EOM and expand in m_H^{-1}

• Saddle point approximation of the action:

fluctuation operator Q_{ij}

$$S_{\rm UV}(\eta) \to S_{\rm UV}(\hat{\eta} + \eta) = \left[S_{\rm UV}(\hat{\eta}) + \frac{1}{2}\bar{\eta}_i \left[\frac{\delta^2 S_{\rm UV}}{\delta\bar{\eta}_i \,\delta\eta_j}\right]_{\eta = \hat{\eta}} \eta_j + \mathcal{O}(\eta^3)$$

- **Tree-level matching:** $\mathscr{L}_{\text{EFT}}^{(0)} = \mathscr{L}_{\text{UV}}\left(\hat{\eta}_L, \hat{\eta}_H(\hat{\eta}_L)\right)$
 - Substitute $\hat{\eta}_H$ by its EOM and expand in m_H^{-1}

• **One-loop matching:**
$$\exp\left(i\Gamma_{\rm UV}^{(1)}\right) = \int \mathcal{D}\eta \exp\left(\int d^d x \frac{1}{2}\bar{\eta}_i \mathcal{Q}_{ij}\eta_j\right)$$

- Gaussian path integral:

$$\Gamma_{\rm UV}^{(1)} = -i\log\left(\text{SDet}\,\mathcal{Q}[\hat{\eta}]\right)^{1/2} = \frac{i}{2}\text{STr}\left(\log\mathcal{Q}[\hat{\eta}]\right)$$

- Expressed through a superdeterminant (SDet) or supertrace (STr)
- Supertraces directly **provide EFT operators**: $\left[d^d x \mathscr{L}_{EFT}^{(1)} = \Gamma_{UV}^{(1)} \right]_{hard}$

• Saddle point approximation of the action:

fluctuation operator Q_{ii}

$$S_{\rm UV}(\eta) \to S_{\rm UV}(\hat{\eta} + \eta) = \left| S_{\rm UV}(\hat{\eta}) + \frac{1}{2} \bar{\eta}_i \left| \frac{\delta^2 S_{\rm UV}}{\delta \bar{\eta}_i \,\delta \eta_j} \right|_{\eta = \hat{\eta}} \eta_j + \mathcal{O}(\eta^3)$$

- **Tree-level matching:** $\mathscr{L}_{\text{EFT}}^{(0)} = \mathscr{L}_{\text{UV}}\left(\hat{\eta}_L, \hat{\eta}_H(\hat{\eta}_L)\right)$
 - Substitute $\hat{\eta}_H$ by its EOM and expand in m_H^{-1}
- **One-loop matching:** $\exp\left(i\Gamma_{\rm UV}^{(1)}\right) = \int \mathcal{D}\eta \exp\left(\int d^d x \frac{1}{2}\bar{\eta}_i \mathcal{Q}_{ij}\eta_j\right)$
 - Gaussian path integral:

$$\Gamma_{\rm UV}^{(1)} = -i \log \left(\text{SDet } \mathcal{Q}[\hat{\eta}] \right)^{1/2} = \frac{i}{2} \text{STr} \left(\log \mathcal{Q}[\hat{\eta}] \right) \longrightarrow \frac{1}{2}$$

Evaluation using:

- Method of regions
- Wilson lines \rightarrow covariance
- Expressed through a superdeterminant (SDet) or supertrace (STr)
- Supertraces directly **provide EFT operators**: $\left| d^d x \mathscr{L}_{EFT}^{(1)} = \Gamma_{UV}^{(1)} \right|_{hard}$

- - Substitute $\hat{\eta}_H$ by its EOM and expand in m_H^{-1}
- **One-loop matching:** $\exp\left(i\Gamma_{\rm UV}^{(1)}\right) = \int \mathscr{D}\eta \exp\left(\int d^d x \frac{1}{2}\bar{\eta}_i \,\mathscr{Q}_{ij} \eta_j\right)$
 - Gaussian path integral:

$$\Gamma_{\rm UV}^{(1)} = -i\log\left(\operatorname{SDet} \mathcal{Q}[\hat{\eta}]\right)^{1/2} = \frac{i}{2}\operatorname{STr}\left(\log \mathcal{Q}[\hat{\eta}]\right) \longrightarrow$$

- Evaluation using:
- Method of regions
- Wilson lines \rightarrow covariance
- Expressed through a superdeterminant (SDet) or supertrace (STr)
- Supertraces directly **provide EFT operators**: $\left| d^d x \mathscr{L}_{EFT}^{(1)} = \Gamma_{UV}^{(1)} \right|_{hard}$

Operator reduction to a 4-dimensional on-shell basis of the EFT

- Some identities for the reduction of redundant operator structures are intrinsically 4-dimensional and do not hold in $D = 4 2\epsilon$ dimensions:
 - Projections onto 4-dimensional Dirac basis $\{\Gamma_N\} = \{P_L, P_R, \gamma^{\mu}P_L, \gamma^{\mu}P_R, \sigma^{\mu\nu}\}$
 - Dirac reduction $X \otimes Y = \sum_{n} b_n(X, Y) \Gamma^n \otimes \tilde{\Gamma}_n$
 - Fierz identities

$$(X) \otimes [Y] = \frac{1}{4} \operatorname{tr} \{ X \tilde{\Gamma}_n Y \tilde{\Gamma}_m \} (\Gamma^m] \otimes [\Gamma^n)$$

- Contractions of Levi-Civita tensors

- Some identities for the reduction of redundant operator structures are intrinsically 4-dimensional and do not hold in $D = 4 2\epsilon$ dimensions:
 - Projections onto 4-dimensional Dirac basis $\{\Gamma_N\} = \{P_L, P_R, \gamma^{\mu}P_L, \gamma^{\mu}P_R, \sigma^{\mu\nu}\}$
 - Dirac reduction $X \otimes Y = \sum b_n(X, Y)\Gamma^n \otimes \tilde{\Gamma}_n$
 - Fierz identities $(X) \otimes [Y] = \frac{1}{4} \operatorname{tr} \{ X \tilde{\Gamma}_n Y \tilde{\Gamma}_m \} (\Gamma^m] \otimes [\Gamma^n)$
 - Contractions of Levi-Civita tensors
- Applying these identities in combination with a matching performed using dimensional regularization in $D = 4 2\epsilon$ dimensions introduces order $\mathcal{O}(\epsilon)$ mistake

only in D = 4

- Some identities for the reduction of redundant operator structures are intrinsically 4-dimensional and do not hold in $D = 4 2\epsilon$ dimensions:
 - Projections onto 4-dimensional Dirac basis $\{\Gamma_N\} = \{P_L, P_R, \gamma^{\mu}P_L, \gamma^{\mu}P_R, \sigma^{\mu\nu}\}$
 - Dirac reduction $X \otimes Y = \sum_{n} b_n(X, Y) \Gamma^n \otimes \tilde{\Gamma}_n$
 - Fierz identities $(X) \otimes [Y] = \frac{1}{4} \operatorname{tr} \{ X \tilde{\Gamma}_n Y \tilde{\Gamma}_m \} (\Gamma^m] \otimes [\Gamma^n)$
 - Contractions of Levi-Civita tensors
- Applying these identities in combination with a matching performed using dimensional regularization in $D = 4 2\epsilon$ dimensions introduces order $\mathcal{O}(\epsilon)$ mistake
- Introducing evanescent operators *E* allows us to keep using the 4-dimensional identities

$$R \xrightarrow{D=4 \text{ identities}} Q$$

$$T \qquad T$$

$$redundant \quad D = 4 \text{ basis}$$

only in D = 4

- Some identities for the reduction of redundant operator structures are intrinsically 4-dimensional and do not hold in $D = 4 2\epsilon$ dimensions:
 - Projections onto 4-dimensional Dirac basis $\{\Gamma_N\} = \{P_L, P_R, \gamma^{\mu}P_L, \gamma^{\mu}P_R, \sigma^{\mu\nu}\}$
 - Dirac reduction $X \otimes Y = \sum_{n} b_n(X, Y)\Gamma^n \otimes \tilde{\Gamma}_n + E(X, Y)$
 - Fierz identities $(X) \otimes [Y] = \frac{1}{4} \operatorname{tr} \{ X \tilde{\Gamma}_n Y \tilde{\Gamma}_m \} (\Gamma^m] \otimes [\Gamma^n) + E(X, Y)$
 - Contractions of Levi-Civita tensors
- Applying these identities in combination with a matching performed using dimensional regularization in $D = 4 2\epsilon$ dimensions introduces order $\mathcal{O}(\epsilon)$ mistake
- Introducing evanescent operators E allows us to keep using the 4-dimensional identities

$$R \xrightarrow{D=4 \text{ identities}} Q$$

$$T \xrightarrow{E} = R - Q \sim \mathcal{O}(\epsilon)$$

$$T$$
redundant $D = 4$ basis evanescent

in $D = 4 - 2\epsilon$

Physical Contributions by Evanescent Operators

- Evanescent operators $E \equiv R Q$ are formally of rank ϵ
- Only physical contributions when inserted into a UV-divergent one-loop diagram
 - No physical contributions at tree level
 - One-loop contributions stem from (local) UV poles of the diagrams
- Only finite contributions to one-loop matrix elements

Buras, Weisz [Nucl.Phys.B 333 (1990) 66-99]; Dugan and Grinstein [PLB 256 (1991) 239]; Herrlich, Nierste [hep-ph/9412375]

Physical Contributions by Evanescent Operators

- Evanescent operators $E \equiv R Q$ are formally of rank ϵ
- Only physical contributions when inserted into a UV-divergent one-loop diagram
 - No physical contributions at tree level
 - One-loop contributions stem from (local) UV poles of the diagrams
- Only finite contributions to one-loop matrix elements
- Effect of evanescent operators can be absorbed by a finite renormalization
- We can **drop all evanescent operators** for the computation of one-loop matrix elements if:
 - Projecting redundant operators R onto the physical basis Q and
 - Shifting coefficients of Q by the finite renormalization constants

Buras, Weisz [Nucl.Phys.B 333 (1990) 66-99]; Dugan and Grinstein [PLB 256 (1991) 239]; Herrlich, Nierste [hep-ph/9412375]

Physical Contributions by Evanescent Operators

- Evanescent operators $E \equiv R Q$ are formally of rank ϵ
- Only physical contributions when inserted into a UV-divergent one-loop diagram
 - No physical contributions at tree level
 - One-loop contributions stem from (local) UV poles of the diagrams
- Only finite contributions to one-loop matrix elements
- Effect of evanescent operators can be absorbed by a finite renormalization
- We can **drop all evanescent operators** for the computation of one-loop matrix elements if:
 - Projecting redundant operators R onto the physical basis Q and
 - Shifting coefficients of Q by the finite renormalization constants
- Resulting renormalization scheme is an evanescent-free version of MS

Buras, Weisz [*Nucl.Phys.B* 333 (1990) 66-99]; Dugan and Grinstein [PLB 256 (1991) 239]; Herrlich, Nierste [hep-ph/9412375]

- Match EFT Lagrangian containing redundant operators (*R*) onto EFT Lagrangian containing only physical operators (*Q*), i.e., a 4-dimensional basis: $\Gamma_R[\eta] = \Gamma_Q[\eta]$
- For the one-loop EFT action $S^{(1)}$ we find (\mathscr{P} projection $R \to Q$ using D = 4 identities)

$$\mathscr{P}S_Q^{(1)} = \mathscr{P}S_R^{(1)} + \Delta S^{(1)}, \quad \text{where} \quad \Delta S^{(1)} \equiv \mathscr{P}\left(\overline{\Gamma}_R^{(1)} - \overline{\Gamma}_Q^{(1)}\right)$$

- $\overline{\Gamma}_X^{(1)}$: sum of one-loop diagrams with vertices from X contributing to the effective action
- $\Delta S^{(1)}$: sum of all one-loop diagrams with the insertion of evanescent operators E = R Q

- Match EFT Lagrangian containing redundant operators (*R*) onto EFT Lagrangian containing only physical operators (*Q*), i.e., a 4-dimensional basis: $\Gamma_R[\eta] = \Gamma_Q[\eta]$
- For the one-loop EFT action $S^{(1)}$ we find (\mathscr{P} projection $R \to Q$ using D = 4 identities)

$$\mathscr{P}S_Q^{(1)} = \mathscr{P}S_R^{(1)} + \Delta S^{(1)}, \quad \text{where} \quad \Delta S^{(1)} \equiv \mathscr{P}\left(\overline{\Gamma}_R^{(1)} - \overline{\Gamma}_Q^{(1)}\right)$$

- $\overline{\Gamma}_X^{(1)}$: sum of one-loop diagrams with vertices from X contributing to the effective action
- $\Delta S^{(1)}$: sum of all one-loop diagrams with the insertion of evanescent operators E = R Q
- Compute $\Delta S^{(1)}$ using functional methods

$$\Delta S^{(1)} = -\frac{i}{2} \sum_{n=1}^{\infty} \frac{1}{n} \mathscr{P} \operatorname{STr} \left[\left(\Delta X_R \right)^n - \left(\Delta X_Q \right)^n \right] \Big|_{\text{hard}}$$

• Result: $S_Q^{(1)}$ action containing only operators in physical basis (free of evanescent operators), but reproducing the same physics as $S_R^{(1)}$ obtained from the matching

- Match EFT Lagrangian containing redundant operators (*R*) onto EFT Lagrangian containing only physical operators (*Q*), i.e., a 4-dimensional basis: $\Gamma_R[\eta] = \Gamma_Q[\eta]$
- For the one-loop EFT action $S^{(1)}$ we find (\mathscr{P} projection $R \to Q$ using D = 4 identities)

$$\mathscr{P}S_Q^{(1)} = \mathscr{P}S_R^{(1)} + \Delta S^{(1)}, \quad \text{where} \quad \Delta S^{(1)} \equiv \mathscr{P}\left(\overline{\Gamma}_R^{(1)} - \overline{\Gamma}_Q^{(1)}\right)$$

- $\overline{\Gamma}_X^{(1)}$: sum of one-loop diagrams with vertices from X contributing to the effective action
- $\Delta S^{(1)}$: sum of all one-loop diagrams with the insertion of evanescent operators E = R Q
- Compute $\Delta S^{(1)}$ using functional methods

$$\Delta S^{(1)} = -\frac{i}{2} \sum_{n=1}^{\infty} \frac{1}{n} \mathscr{P} \operatorname{STr} \left[\left(\Delta X_R \right)^n - \left(\Delta X_Q \right)^n \right] \Big|_{\text{hard}}$$

- Result: $S_Q^{(1)}$ action containing only operators in physical basis (free of evanescent operators), but reproducing the same physics as $S_R^{(1)}$ obtained from the matching
- Note: these tools also allow for extracting β functions

Example: Evanescent Operators in the SMEFT

$$\mathscr{L} \supset C_{lqde}^{prst}(\bar{\ell}^p \gamma^{\mu} q^t)(\bar{d}^s \gamma_{\mu} e^r) \xrightarrow{\text{Fierz identity}} \mathscr{L}' \supset -2C_{lqde}^{prst}(\bar{\ell}^p e^r)(\bar{d}^s q^t)$$

- Tree-level: \mathscr{L} & \mathscr{L}' lead to same physics
- One-loop: \mathscr{L} & \mathscr{L}' do not lead to same physics (in dimensional regularization $D = 4 2\epsilon$)

Example: Evanescent Operators in the SMEFT

$$\mathscr{L} \supset C_{lqde}^{prst}(\bar{\ell}^p \gamma^\mu q^t)(\bar{d}^s \gamma_\mu e^r) \xrightarrow{\text{Fierz identity}} \mathscr{L}' \supset -2C_{lqde}^{prst}(\bar{\ell}^p e^r)(\bar{d}^s q^t)$$

- Tree-level: \mathscr{L} & \mathscr{L}' lead to same physics
- One-loop: $\mathscr{L} \& \mathscr{L}'$ do not lead to same physics (in dimensional regularization $D = 4 2\epsilon$)

evanescent operator $\mathcal{O}(\epsilon)$

Example: Evanescent Operators in the SMEFT

$$\mathscr{L} \supset C_{lqde}^{prst}(\bar{\ell}^p \gamma^{\mu} q^t)(\bar{d}^s \gamma_{\mu} e^r) \xrightarrow{\text{Fierz identity}} \mathscr{L}' \supset -2C_{lqde}^{prst}(\bar{\ell}^p e^r)(\bar{d}^s q^t)$$

- Tree-level: \mathscr{L} & \mathscr{L}' lead to same physics
- One-loop: $\mathscr{L} \& \mathscr{L}'$ do not lead to same physics (in dimensional regularization $D = 4 2\epsilon$)

- Computed for the SMEFT in Fuentes-Martin, König, Pages, Thomsen, FW [2211.09144]
- For LEFT: Aebischer, Buras, Kumar [2202.01225]; Aebischer, Pesut [2208.10513]; Aebischer, Pesut, Polonsky [2211.01379]