- the SM gauge group, SMEFT, and generalized symmetries

Ling-Xiao Xu

 $Based \ on \ hep-ph/2404.04229 \ in \ collaboration \ with \ Hao-Lin \ Li$

Renaissance of global symmetries

- Generalized symmetries: a mini revolution happened in the last 10 years in hep-th and condensed matter community.
- Global symmetries in QFT are defined as topological operators/ defects. In this view, people found many generalizations.

Renaissance of global symmetries

— a particle physicist's view

- Can generalized symmetries be used to solve open problems in particle physics?
- Are there implications of generalized symmetries in particle physics?

Two perspectives

heavy particles (with infinite mass) = line operators

Toy Model

• They are sometimes use interchangeably

- They are sometimes use interchangeably
- But we have to keep in mind they are not exactly the same, namely $SO(3) \sim \frac{SU(2)}{\mathbb{Z}_2}$, where $\mathbb{Z}_2 = (e^{i\pi}, e^{2\pi i} = 1)$ is the center

- They are sometimes use interchangeably
- But we have to keep in mind they are not exactly the same, namely $SO(3) \sim \frac{SU(2)}{\mathbb{Z}_2}$, where $\mathbb{Z}_2 = (e^{i\pi}, e^{2\pi i} = 1)$ is the center
- The consequence of the \mathbb{Z}_2 quotient:

SO(3) only has integer spin representations,

SU(2) can have both half-integer and integer spin representations

- They are sometimes use interchangeably
- But we have to keep in mind they are not exactly the same, namely $SO(3) \sim \frac{SU(2)}{\mathbb{Z}_2}$, where $\mathbb{Z}_2 = (e^{i\pi}, e^{2\pi i} = 1)$ is the center
- The consequence of the \mathbb{Z}_2 quotient:

SO(3) only has integer spin representations,

SU(2) can have both half-integer and integer spin representations

• In general, one can define $G \sim \frac{\tilde{G}}{H}$, where *H* is a subgroup of the center and all the allowed reps. are invariant under the *H* group [Aharony, Seiberg, Tachikawa, 13]

• Consider a low-energy theory with all the matter fields (including gauge bosons and Dirac fermions) in the adjoint representation of SU(2). Suppose this is what has been discovered experimentally.

- Consider a low-energy theory with all the matter fields (including gauge bosons and Dirac fermions) in the adjoint representation of SU(2). Suppose this is what has been discovered experimentally.
- The gauge group appears to be SU(2). But this is not quite true.

- Consider a low-energy theory with all the matter fields (including gauge bosons and Dirac fermions) in the adjoint representation of SU(2). Suppose this is what has been discovered experimentally.
- The gauge group appears to be SU(2). But this is not quite true.
- Instead, the gauge group can be either SU(2) or SO(3)
- In fancier language, the gauge group $G = \frac{SU(2)}{\Gamma}$, where $\Gamma = 1$, \mathbb{Z}_2 (The difference of the two theories can be rephrased in one-form symmetry.)

- Consider a low-energy theory with all the matter fields (including gauge bosons and Dirac fermions) in the adjoint representation of SU(2). Suppose this is what has been discovered experimentally.
- The gauge group appears to be SU(2). But this is not quite true.
- Instead, the gauge group can be either SU(2) or SO(3)
- In fancier language, the gauge group $G = \frac{SU(2)}{\Gamma}$, where $\Gamma = 1$, \mathbb{Z}_2 (The difference of the two theories can be rephrased in one-form symmetry.)
- When it's SO(3), since $\Gamma = \mathbb{Z}_2$ acts trivially in the full theory, this implies all the heavy particles have to be in the integer spin representations.

- Consider a low-energy theory with all the matter fields (including gauge bosons and Dirac fermions) in the adjoint representation of SU(2). Suppose this is what has been discovered experimentally.
- The gauge group appears to be SU(2). But this is not quite true.
- Instead, the gauge group can be either SU(2) or SO(3)
- In fancier language, the gauge group $G = \frac{SU(2)}{\Gamma}$, where $\Gamma = 1$, \mathbb{Z}_2 (The difference of the two theories can be rephrased in one-form symmetry.)
- When it's SO(3), since $\Gamma = \mathbb{Z}_2$ acts trivially in the full theory, this implies all the heavy particles have to be in the integer spin representations.
- Distinguishing SU(2) vs. SO(3) requires to discover at least one heavy particle in the half-integer spin representation.

- Consider a low-energy theory with all the matter fields (including gauge bosons and Dirac fermions) in the adjoint representation of SU(2). Suppose this is what has been discovered experimentally.
- The gauge group appears to be SU(2). But this is not quite true.
- Instead, the gauge group can be either SU(2) or SO(3)
- In fancier language, the gauge group $G = \frac{SU(2)}{\Gamma}$, where $\Gamma = 1$, \mathbb{Z}_2 (The difference of the two theories can be rephrased in one-form symmetry.)
- When it's SO(3), since $\Gamma = \mathbb{Z}_2$ acts trivially in the full theory, this implies all the heavy particles have to be in the integer spin representations.
- Distinguishing SU(2) vs. SO(3) requires to discover at least one heavy particle in the half-integer spin representation.
- Coming back to low-energy, heavy particle can be described by high dim. operators in EFT.

The Standard Model

The Standard Model

• The matter content (+ gauge fields in the adjoints)

Table 29.1 Charges of Standard Model fields. Indicates that the field transforms in the fundamental representation, and – indicates that a field is uncharged.									
Field	$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	e _R	ν _R	$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	u _R	d _R	Н		
SU(3)		-					-		
SU(2)		-	10-10			61 - 1			
$U(1)_Y$	$-\frac{1}{2}$	-1	0	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{2}$		

[M. Schwartz QFT & SM textbook]

- The $\tilde{G} = SU(3)_c \times SU(2)_L \times U(1)_Y$ appears to be the gauge group, naively
- Nonetheless, much like the *SU*(2) in the toy model, we are not sure this is the genuine gauge group. To find the genuine gauge group, we need to take a quotient to remove the trivial group elements.

• The ambiguity comes from the following \mathbb{Z}_6 group acting trivially on all SM fields. (This is analogous to the \mathbb{Z}_2 center in the toy model.)

[... O'Raifeartaigh, 86; ... Tong, 17; ...]

$$\mathbb{Z}_{6} = \{\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6} = 1\} \qquad \alpha = \left(e^{\frac{2\pi i}{3}}\mathbb{1}_{3\times 3}, e^{\pi i}\mathbb{1}_{2\times 2}, e^{\frac{2\pi i}{6}}\right)$$

• The ambiguity comes from the following \mathbb{Z}_6 group acting trivially on all SM fields. (This is analogous to the \mathbb{Z}_2 center in the toy model.) [... O'Raifeartaigh, 86; ... Tong, 17; ...]

$$\mathbb{Z}_{6} = \{\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6} = 1\} \qquad \alpha = \left(e^{\frac{2\pi i}{3}}\mathbb{1}_{3\times 3}, e^{\pi i}\mathbb{1}_{2\times 2}, e^{\frac{2\pi i}{6}}\right)$$

• The generator α act on a rep. (R_3, R_2, Q_Y) as

$$U_{\alpha}(R_3, R_2, Q_Y) = e^{\frac{2\pi i}{3}\mathcal{N}(R_3) + i\pi\mathcal{N}(R_2) + \frac{2\pi i}{6}(6Q_Y)} = e^{2\pi i \left(\frac{\mathcal{N}(R_3)}{3} + \frac{\mathcal{N}(R_2)}{2} + Q_Y\right)}$$

• The ambiguity comes from the following \mathbb{Z}_6 group acting trivially on all SM fields. (This is analogous to the \mathbb{Z}_2 center in the toy model.) [... O'Raifeartaigh, 86; ... Tong, 17; ...]

$$\mathbb{Z}_{6} = \{\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6} = 1\} \qquad \alpha = \left(e^{\frac{2\pi i}{3}}\mathbb{1}_{3\times 3}, e^{\pi i}\mathbb{1}_{2\times 2}, e^{\frac{2\pi i}{6}}\right)$$

• The generator α act on a rep. (R_3, R_2, Q_Y) as

$$U_{\alpha}(R_3, R_2, Q_Y) = e^{\frac{2\pi i}{3}\mathcal{N}(R_3) + i\pi\mathcal{N}(R_2) + \frac{2\pi i}{6}(6Q_Y)} = e^{2\pi i \left(\frac{\mathcal{N}(R_3)}{3} + \frac{\mathcal{N}(R_2)}{2} + Q_Y\right)}$$

- Hence the condition for the \mathbb{Z}_6 group acting trivially, i.e. $U_{\alpha} = 1$, is $\mathcal{N}(R_3) = 6Q_Y \mod 3$ and $\mathcal{N}(R_2) = 6Q_Y \mod 2$
- All SM fields are invariant under the \mathbb{Z}_6 group (check it!)

• There are *four* SM models, they differ by the global form of the gauge group (or one-form sym):

$$G = \frac{\tilde{G}}{\Gamma} = \frac{SU(3)_c \times SU(2)_L \times U(1)_Y}{\Gamma} \qquad \qquad \Gamma = \mathbb{Z}_6, \ \mathbb{Z}_3, \ \mathbb{Z}_2, \ 1$$

• There are *four* SM models, they differ by the global form of the gauge group (or one-form sym):

$$G = \frac{\tilde{G}}{\Gamma} = \frac{SU(3)_c \times SU(2)_L \times U(1)_Y}{\Gamma} \qquad \qquad \Gamma = \mathbb{Z}_6, \ \mathbb{Z}_3, \ \mathbb{Z}_2, \ 1$$

- Here \mathbb{Z}_2 and \mathbb{Z}_3 are the two nontrivial subgroup of \mathbb{Z}_6 , which are generated by α^3 and α^2 , respectively. They acts trivially when
 - $\mathbb{Z}_2: \qquad \mathcal{N}(R_2) = 6Q_Y \mod 2 \quad \text{and} \quad R_3 \text{ unconstrained} \\ \mathbb{Z}_3: \qquad \mathcal{N}(R_3) = 6Q_Y \mod 3 \quad \text{and} \quad R_2 \text{ unconstrained} \\ \end{array}$

• There are *four* SM models, they differ by the global form of the gauge group (or one-form sym):

$$G = \frac{\tilde{G}}{\Gamma} = \frac{SU(3)_c \times SU(2)_L \times U(1)_Y}{\Gamma} \qquad \qquad \Gamma = \mathbb{Z}_6, \ \mathbb{Z}_3, \ \mathbb{Z}_2, \ 1$$

• Here \mathbb{Z}_2 and \mathbb{Z}_3 are the two nontrivial subgroup of \mathbb{Z}_6 , which are generated by α^3 and α^2 , respectively. They acts trivially when

\mathbb{Z}_2 :	$\mathcal{N}(R_2) = 6Q_Y \bmod 2$	and	R_3 unconstrained
\mathbb{Z}_3 :	$\mathcal{N}(R_3) = 6Q_Y \bmod 3$	and	R_2 unconstrained

 Different realizations of Γ have different constraints on the rep. of heavy particles! (This is in analogous to integer spin rep. vs. half-interger spin rep. in the toy model.)

• Distinguishing them requires to discover new particles not invariant under \mathbb{Z}_6 . (In the paper we call them " \mathbb{Z}_6 exotics".) One can use SMEFT if they are heavy and have decoupling limit.

- Distinguishing them requires to discover new particles not invariant under \mathbb{Z}_6 . (In the paper we call them " \mathbb{Z}_6 exotics".) One can use SMEFT if they are heavy and have decoupling limit.
- No " \mathbb{Z}_6 exotics" in tree-level UV completions. (The result is valid for operators of all mass dimensions.)

- Distinguishing them requires to discover new particles not invariant under \mathbb{Z}_6 . (In the paper we call them " \mathbb{Z}_6 exotics".) One can use SMEFT if they are heavy and have decoupling limit.
- No " \mathbb{Z}_6 exotics" in tree-level UV completions. (The result is valid for operators of all mass dimensions.)

• Considering loop-level UV completion becomes mandatory!

• Example: adding one heavy complex scalar

 $\mathcal{L}_{\phi} \supset (D_{\mu}\phi^{\dagger})(D^{\mu}\phi) - M^{2}\phi^{\dagger}\phi - \lambda_{\mathbf{3}}(H^{\dagger}\sigma^{I}H)(\phi^{\dagger}T^{I}\phi) - \lambda_{\mathbf{1}}(H^{\dagger}H)(\phi^{\dagger}\phi)$

One-loop matching (covariant derivative expansion) results:

$$\begin{split} c_{3G} &= \frac{g_3^3}{(4\pi)^{2}180M^2} \; \mu(R_3) \; d(R_2) \;, \quad c_{3W} = \frac{g_2^3}{(4\pi)^{2}180M^2} \; \mu(R_2) \; d(R_3) \;, \\ c_{HG} &= \frac{g_3^2 \lambda_1}{(4\pi)^{2}12M^2} \; \mu(R_3) \; d(R_2) \;, \quad c_{HW} = \frac{g_2^2 \lambda_1}{(4\pi)^{2}12M^2} \; \mu(R_2) \; d(R_3) \;, \\ c_{HB} &= \frac{g_1^2 Y_{\phi}^2 \lambda_1}{(4\pi)^{2}12M^2} \; d(R_2) \; d(R_3) \;, \quad c_{HWB} = \frac{g_{192} Y_{\phi} \lambda_3}{(4\pi)^{2}6M^2} \; \mu(R_2) \; d(R_3) \;, \\ c_{H\Box} &= -\frac{1}{(4\pi)^{2}12M^2} \left[d(R_2)d(R_3) \left(\lambda_1^2 + \frac{g_1^4 Y_{\phi}^2}{20} \right) + \mu(R_2)d(R_3) \left(\frac{3g_2^2}{80} - \lambda_3^2 \right) \right] , \\ c_{HD} &= -\frac{1}{(4\pi)^{2}3M^2} \lambda_3^2 \mu(R_2)d(R_3) - \frac{g_1^4}{(4\pi)^{2}60M^2} Y_{\phi}^2 d(R_3)d(R_2) , \\ c_{ee} &\equiv c_{ee}^{pppp} = -\frac{g_1^4 Y_{\phi}^2}{(4\pi)^{2}60M^2} d(R_2)d(R_3) , \\ c_{ll} &\equiv c_{ll}^{pppp} = -\frac{1}{(4\pi)^{2}240M^2} \left[g_2^4 \mu(R_2)d(R_3) + g_1^4 Y_{\phi}^2 d(R_3)d(R_2) \right] , \end{split}$$

Representation	Solution
$\phi~(\cdot,\cdot,Y_\phi)$	$Y_{\phi}^2 = rac{4c_{HB}^2}{5(4c_{H\Box} - c_{HD})c_{HD}}$
$\phi(R_3,\cdot,0)$	$\frac{\mu(R_3)}{d(R_3)} = -\frac{c_{HG}^2}{15g_3c_{H\square}c_{3G}}$
$\phi(\cdot,R_2,0)$	$\frac{\mu(R_2)}{d(R_2)} = \frac{80c_{HW}^2 c_{ll}}{225c_{3W}^2 \left[g_2^2 (4c_{H\Box} + c_{HD}) - 3c_{ll}\right]}$
$\phi (R_3, \cdot, Y_\phi)$	$Y_{\phi}^{2} = \frac{4g_{3}^{2}c_{HG}^{2}c_{HD}}{45g_{1}^{4}c_{3G}^{2}(4c_{H\Box} - c_{HD})} \frac{\mu(R_{3})}{d(R_{3})} = \frac{4c_{HG}^{3}c_{HD}}{45g_{1}^{2}c_{3G}^{2}c_{HB}(4c_{H\Box} - c_{HD})}$
$\phi~(\cdot,R_2,Y_\phi)$	$Y_{\phi}^{2} = \frac{g_{2}c_{HWB}^{2}}{15g_{1}^{2}c_{3W}(c_{ee} - c_{HD})} \frac{\mu(R_{2})}{d(R_{2})} = -\frac{g_{1}^{2}c_{HWB}^{2}}{5g_{2}^{2}c_{ee}(c_{ee} - c_{HD})}$
$\phi\left(R_{3},R_{2},0 ight)$	$\frac{\mu(R_3)}{d(R_3)} = -\frac{c_{HG}^2}{15g_3c_{3G}(c_{H\Box} - 3c_{ll}/(4g_2^2) + c_{HD}/4)}$ $/ \frac{\mu(R_2)}{d(R_2)} = -\frac{c_{HW}^2}{15g_2c_{3W}(c_{H\Box} - 3c_{ll}/(4g_2^2) + c_{HD}/4)}$
group theoret	ical data measurable

- Step 1: find nonzero Wilson coefficients.
- Step 2: one needs loop-level dictionary to identify the rep. of heavy particles from Wilson coefficients.

- Q: What is the SM gauge group?
- A: We need to discover new heavy particles. There are four scenarios as follows:
 - All particles are invariant under \mathbb{Z}_6 , Γ remains undetermined as in the SM. However, if this is the case it might be better to write $G_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y/\mathbb{Z}_6$.
 - At least one heavy particle is not invariant under \mathbb{Z}_3 but invariant under \mathbb{Z}_2 (hence not invariant under \mathbb{Z}_6), Γ can be either \mathbb{Z}_2 or 1.
 - At least one heavy particle is not invariant under \mathbb{Z}_2 but invariant under \mathbb{Z}_3 (hence not invariant under \mathbb{Z}_6), Γ can be either \mathbb{Z}_3 or 1.
 - At least one heavy particle is invariant under neither \mathbb{Z}_2 nor \mathbb{Z}_3 (hence not invariant under \mathbb{Z}_6), Γ is uniquely determined to be 1.

[See in the backup slides for examples]

Conclusion & outlook

- The global form of the SM gauge group is unknown, but we can potentially determine it by discovering heavy particles not invariant under \mathbb{Z}_6 .
- If these particles are heavy enough, SMEFT is the ideal tool.
- In SMEFT, \mathbb{Z}_6 exotics cannot appear in tree-level UV completions, hence it becomes mandatory to study loop-level matching to identify these particles! Our result gives a strong motivation to carry on loop analysis in SMEFT.
- Scalars that can trigger EWSB cannot be \mathbb{Z}_6 exotics. Easy to prove in general, see in our paper or in the backup.
- Cosmological, astro-particle, and future collider studies are warranted. (We have a chance to bound the reheating temperature from above if any \mathbb{Z}_6 exotic particle is discovered.)

Backup slides

Examples of heavy particles & SM gauge group

- $(R_3, R_2, Q_Y) = ($ fundamental, fundamental, 0) is allowed when $\Gamma = 1$ but forbidden when $\Gamma = \mathbb{Z}_{2,3,6}$
- $(R_3, R_2, Q_Y) = ($ fundamental, fundamental, 2/3) is allowed when $\Gamma = 1$ or \mathbb{Z}_3 , but forbidden when $\Gamma = \mathbb{Z}_2$ or \mathbb{Z}_6
- $(R_3, R_2, Q_Y) = ($ fundamental, fundamental, 1/2) is allowed when $\Gamma = 1$ or \mathbb{Z}_2 , but forbidden when $\Gamma = \mathbb{Z}_3$ or \mathbb{Z}_6
- Some well-known realistic examples include the original KSVZ fermions in axions models, fractionally-charged and milli-charged particles.

Electroweak symmetry breaking

- Q: What about the scalars that can trigger EWSB?
- A: They don't decouple and they are not \mathbb{Z}_6 exotics.
- Proof: 1) Since color is unbroken, the scalars must be neutral under $SU(3)_c$ (i.e. singlet rep. has N-ality zero). 2) In the notation of (j, Q_Y) the quantum numbers are subject to the following constraints to accommodate a electric neutral component:

$$-j \le Q_Y \le j$$
 and $j + Q_Y \in \mathbb{Z}$

• Q_Y is either integer or half-integer since j is, hence

$$0 = 6Q_Y \mod 3 \quad \longrightarrow \quad \text{invariant under } \mathbb{Z}_3$$

• Furthermore, let's compute $2j - 6Q_Y$

 $2(j - Q_Y) - 4Q_Y = 0 \mod 2 \quad \longrightarrow \quad \text{invariant under } \mathbb{Z}_2$

• Invariance under both $\mathbb{Z}_{2,3}$ implies invariance under \mathbb{Z}_6

Higher-form symmetries

- Free Maxwell theory with no matter: the Gauss law is understood as electric U(1) 1-form symmetry
- Pure SU(N) gauge theory with no matter: the center of the gauge group measures the N-ality of a Wilson line, which is understood as electric Z_N 1-form symmetry
- Adding matter fields breaks the electric 1-form symmetry explicitly, i.e. Wilson lines can be screened/trivialized by particles.

• Nevertheless, the notions of electric 1-form symmetry and Wilson lines are still valid below the mass scale of the heavy particles that screen the Wilson lines. As such, the 1-form symmetry is viewed as accidental at low energy.

One-form symmetries and Line Operators

[ICTP lectures by Schafer-Nameki, 2023]

• A p-form global symmetry is generated by a dimension (d - p - 1) dimensional topological operator D_{d-p-1} acting on a *p* dimensional charged operator \mathcal{O}_p as in the following:

- Higher form symmetries (i.e. p > 1) are abelian.
- Screening the charge: p-form symmetry can be screened (trivialized) by p-1 dimensional operators \mathcal{O}_{p-1} which live at the end of \mathcal{O}_p

$$\mathcal{O}_{p} \longrightarrow \mathcal{O}_{p-1} = \mathcal{O}_{p} \longrightarrow \mathcal{O}_{p} = \mathcal{O}_{p} \longrightarrow \mathcal{O}_{p} = \mathcal{O}_{p} \longrightarrow \mathcal{O}_{p-1} = \mathcal{O}_{p} \longrightarrow \mathcal{O}_{p} \longrightarrow$$

One-form symmetries and Line Operators

[ICTP lectures by Schafer-Nameki, 2023]

• One useful perspective is to think in terms of the equivalence relations between charged operators \mathcal{O}_p

 $\mathcal{O}_p^{(1)} \sim \mathcal{O}_p^{(2)} \quad \Leftrightarrow \quad \exists \ O_{p-1} \ \text{at the junction between } \mathcal{O}_p^{(1)} \text{ and } \mathcal{O}_p^{(2)}.$ (2.28)

- Example: in a pure Yang-Mill theory with simply-connected gauge group G, Wilson lines of all possible charges under the center \mathbb{Z}_G are allowed. Since the only local operators are in the adjoint which is not charged under center, all these \mathbb{Z}_G charged Wilson lines are inequivalent and so the 1-form symmetry is the center. Also it's obvious that adding additional matter can trivialize some of the Wilson lines, hence breaking the 1-form symmetry to a subgroup.
- Taking the quotient Γ restricts the allowed Wilson lines, but it allows for more 't Hooft lines. There are different ways of adding the lines (called choices of "polarizations").

Centers for simply-connected groups

G	Z_G	$q(oldsymbol{F})$
SU(N)	\mathbb{Z}_N	$1 \mod N$
$\operatorname{Spin}(4N)$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$(1,1) \mod (2,2)$
$\operatorname{Spin}(4N+2)$	\mathbb{Z}_4	$2 \mod 4$
$\operatorname{Spin}(2N+1)$	\mathbb{Z}_2	$1 \mod 2$
E_6	\mathbb{Z}_3	$1 \mod 3$
E_7	\mathbb{Z}_2	$1 \mod 2$
E_8	\mathbb{Z}_1	$1 \mod 1$

Table 1: Simply-connected Lie groups G and their centers Z_G , as well as the charge of the fundamental representation F under the generator(s) of the center.

$$Z_G = \operatorname{Center}(G) = \{g \in G : gh = hg \text{ for all } h \in G\}.$$
(2.18)

[ICTP lectures by Schafer-Nameki, 2023]