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• Generalized symmetries: a mini revolution happened in the last 
10 years in hep-th and condensed matter community. 

• Global symmetries in QFT are defined as topological operators/
defects. In this view, people found many generalizations. 

Renaissance of global symmetries



• Can generalized symmetries be used to solve open problems in 
particle physics? 

• Are there implications of generalized symmetries in particle 
physics?

Renaissance of global symmetries
— a particle physicist’s view



heavy 
particles

SMEFT
line 
operators

SM gauge 
group

Particle physicists’ 
viewpoint: 

SM as an EFT and 
reductionism

Viewpoint of 
generalized 
symmetry: 

Given the Lie algebra, 
there can be different 
Lie groups.  

Gauge theories based 
on those Lie groups 
are considered as 
different theories, 
since they are 
distinguished by one-
form symmetries 
acting on line 
operators.

Two perspectives

heavy particles (with infinite mass) = line operators



Toy Model



• They are sometimes use interchangeably 

• But we have to keep in mind they are not exactly the same, namely 

, where  is the center 

• The consequence of the  quotient:                                                               

 only has integer spin representations,                                                  

 can have both half-integer and integer spin representations 

• In general, one can define , where  is a subgroup of the center 

and all the allowed reps. are invariant under the  group

SO(3) ∼
SU(2)

ℤ2
ℤ2 = (eiπ, e2πi = 1)

ℤ2

SO(3)

SU(2)

G ∼
G̃
H

H

H

Example: SU(2) versus SO(3) groups

[Aharony, Seiberg, Tachikawa, 13]
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• Consider a low-energy theory with all the matter fields (including gauge bosons and 
Dirac fermions) in the adjoint representation of . Suppose this is what has been 
discovered experimentally.  

• The gauge group appears to be . But this is not quite true. 

• Instead, the gauge group can be either  or  

• In fancier language, the gauge group , where                                   

(The difference of the two theories can be rephrased in one-form symmetry.) 

• When it’s , since  acts trivially in the full theory, this implies all the heavy 
particles have to be in the integer spin representations. 

• Distinguishing  vs.  requires to discover at least one heavy particle in the 
half-integer spin representation.  

• Coming back to low-energy EFT, heavy particle can be described by high dim. 
operators

SU(2)

SU(2)

SU(2) SO(3)

G =
SU(2)

Γ
Γ = 1, ℤ2

SO(3) Γ = ℤ2

SU(2) SO(3)

Example: SU(2) versus SO(3) gauge theories
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The Standard Model



• The matter content (+ gauge fields in the adjoints)

The Standard Model

• The  appears to be the gauge group, naivelyG̃ = SU(3)c × SU(2)L × U(1)Y

• Nonetheless, much like the  in the toy model, we are not sure this is the genuine 
gauge group. To find the genuine gauge group, we need to take a quotient to remove the 
trivial group elements.

SU(2)

[M. Schwartz QFT & SM textbook]



• The ambiguity comes from the following  group acting trivially on 
all SM fields. (This is analogous to the  center in the toy model.)

ℤ6
ℤ2

Which Standard Model?

[… O’Raifeartaigh, 86; … Tong, 17; …]

ℤ6 = {α, α2, α3, α4, α5, α6 = 1}

• The generator  act on a rep.  asα (R3, R2, QY)

Uα(R3, R2, QY) = e
2πi
3 𝒩(R3)+iπ𝒩(R2)+ 2πi

6 (6QY) = e2πi( 𝒩(R3)
3 + 𝒩(R2)

2 + QY)

• Hence the condition for the  group acting trivially isℤ6

𝒩(R3) = 6QY mod 3 and 𝒩(R2) = 6QY mod 2

• All SM fields are invariant under the  group (check it!)ℤ6
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• There are four SM models, they differ by the global form of the gauge 
group (or one-form sym):

Which Standard Model?

G =
G̃
Γ

=
SU(3)c × SU(2)L × U(1)Y

Γ Γ = ℤ6, ℤ3, ℤ2, 1

• Here  and  are the two nontrivial subgroup of , which are 
generated by  and , respectively. It’s easy to see that they acts 
trivially when

ℤ2 ℤ3 ℤ6
α3 α2

𝒩(R3) = 6QY mod 3ℤ3 :

ℤ2 : 𝒩(R2) = 6QY mod 2 and
and

 unconstrainedR3

 unconstrainedR2
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• Different realizations of  have different constraints on the rep. 
of heavy particles! (This is in analogous to integer spin rep. vs. 
half-interger spin rep. in the toy model.)

Γ



Heavy Particles & SMEFT
• Distinguishing them requires to discover new particles not invariant under 

 . (In the paper we call them “  exotics”.) One can use SMEFT if they 
are heavy and have decoupling limit. 
ℤ6 ℤ6

• No “  exotics” in tree-level UV completions, seen by cutting the following 
exemplifying graph. (The result is valid for operators of all mass dimensions.)

ℤ6

• Considering loop-level UV completion becomes mandatory!
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• Example: adding one heavy complex scalar

Heavy Particles & SMEFT

One-loop matching (covariant derivative expansion) results:



Heavy Particles & SMEFT

group theoretical data measurable Wilson coeff.

• Step 1: find nonzero Wilson coefficients.  

• Step 2: one needs loop-level dictionary to identify the rep. of heavy particles 
from Wilson coefficients. 



• All particles are invariant under ,  remains undetermined as in the SM. However, 
if this is the case it might be better to write . 

ℤ6 Γ
GSM = SU(3)c × SU(2)L × U(1)Y /ℤ6

• At least one heavy particle is not invariant under  but invariant under  
(hence not invariant under ),  can be either  or . 

ℤ3 ℤ2
ℤ6 Γ ℤ2 1

• Q: What is the SM gauge group? 

• A: We need to discover new heavy particles. There are four scenarios 
as follows:

• At least one heavy particle is not invariant under  but invariant under  
(hence not invariant under ),  can be either  or . 

ℤ2 ℤ3
ℤ6 Γ ℤ3 1

• At least one heavy particle is invariant under neither  nor  (hence not 
invariant under ),  is uniquely determined to be . 

ℤ2 ℤ3
ℤ6 Γ 1

[See in the backup slides for examples]



• The global form of the SM gauge group is unknown, but we can potentially 
determine it by discovering heavy particles not invariant under .  

• If these particles are heavy enough, SMEFT is the ideal tool. 

• In SMEFT,  exotics cannot appear in tree-level UV completions, hence it 
becomes mandatory to study loop-level matching to identify these 
particles! Our result gives a strong motivation to carry on loop analysis in 
SMEFT. 

• Scalars that can trigger EWSB cannot be  exotics. Easy to prove in 
general, see in our paper or in the backup.  

• Cosmological, astro-particle, and future collider studies are warranted. 
(We have a chance to bound the reheating temperature from above if any 

 exotic particle is discovered.)

ℤ6

ℤ6

ℤ6

ℤ6

Conclusion & outlook



Backup slides



•  = (fundamental, fundamental, ) is allowed when 
 but forbidden when  

•  = (fundamental, fundamental, ) is allowed when 
 or , but forbidden when  or  

•  = (fundamental, fundamental, ) is allowed when 
 or , but forbidden when  or  

• Some well-known realistic examples include the original KSVZ 
fermions in axions models, fractionally-charged and milli-
charged  particles.

(R3, R2, QY) 0
Γ = 1 Γ = ℤ2,3,6

(R3, R2, QY) 2/3
Γ = 1 ℤ3 Γ = ℤ2 ℤ6

(R3, R2, QY) 1/2
Γ = 1 ℤ2 Γ = ℤ3 ℤ6

Examples of heavy particles & SM gauge group



• Q: What about the scalars that can trigger EWSB? 

• A: They don’t decouple and they are not  exotics. 

• Proof: 1) Since color is unbroken, the scalars must be neutral 
under  (i.e. singlet rep. has N-ality zero). 2) In the notation 
of  the quantum numbers are subject to the following 
constraints to accommodate a electric neutral component:

ℤ6

SU(3)c
( j, QY)

•  is either integer or half-integer since  is, henceQY j

invariant under ℤ3

• Furthermore, let’s compute 2j − 6QY

invariant under ℤ2

• Invariance under both  implies invariance under ℤ2,3 ℤ6

Electroweak symmetry breaking



• Free Maxwell theory with no matter:                                                  
the Gauss law is understood as electric  1-form symmetry 

• Pure  gauge theory with no matter:                                        
the center of the gauge group measures the N-ality of a Wilson 
line, which is understood as electric  1-form symmetry 

• Adding matter fields breaks the electric 1-form symmetry 
explicitly, i.e. Wilson lines can be screened/trivialized by particles.

U(1)

SU(N)

ZN

Higher-form symmetries

• Nevertheless, the notions of electric 1-form symmetry and Wilson lines are 
still valid below the mass scale of the heavy particles that screen the Wilson 
lines. As such, the 1-form symmetry is viewed as accidental at low energy.



• A p-form global symmetry is generated by a dimension  dimensional 
topological operator  acting on a  dimensional charged operator  as 
in the following:

(d − p − 1)
Dd−p−1 p 𝒪p

One-form symmetries and Line Operators
[ ICTP lectures by Schafer-Nameki, 2023 ]

• Higher form symmetries (i.e. ) are abelian.p > 1

• Screening the charge: p-form symmetry can be screened (trivialized) by  
dimensional operators  which live at the end of 

p − 1
𝒪p−1 𝒪p



• One useful perspective is to think in terms of the equivalence relations 
between charged operators  𝒪p

One-form symmetries and Line Operators
[ ICTP lectures by Schafer-Nameki, 2023 ]

• Example: in a pure Yang-Mill theory with simply-connected gauge group , 
Wilson lines of all possible charges under the center  are allowed. Since the 
only local operators are in the adjoint which is not charged under center, all 
these  charged Wilson lines are inequivalent and so the 1-form symmetry is 
the center. Also it’s obvious that adding additional matter can trivialize some of 
the Wilson lines, hence breaking the 1-form symmetry to a subgroup.

G
ℤG

ℤG

• Taking the quotient  restricts the allowed Wilson lines, but it allows for more              
’t Hooft lines. There are different ways of adding the lines (called choices of 
“polarizations”). 

Γ



[ ICTP lectures by Schafer-Nameki, 2023 ]

Centers for simply-connected groups


