Anomalous Dimensions via On-Shell Methods

Operator Mixing and Leading Mass Effects Higgs and Effective Field Theory – HEFT 2024

Luigi Carlo Bresciani

Based on [arXiv:2312.05206] with G. Levati, P. Mastrolia and P. Paradisi

June 13, 2024

Bologna, Italy

EFT & Running

1 Introduction

ullet EFT Approach: Standard Model as the low-energy description of a more fundamental theory emerging at a large energy scale Λ

$$\mathcal{L}_{\mathsf{EFT}} = \sum_i rac{c_i}{\Lambda^{[\mathcal{O}_i]-4}}\,\mathcal{O}_i\,.$$

- Running: The high-scale Wilson coefficients c_i to be evolved from the scale Λ down to the experimental scale.
- EFT anomalous dimensions: crucial for interpreting experimental results.

- Only (products of) operators with the same quantum numbers can mix.
- By focusing on the physical degrees of freedom, on-shell methods have been exploited to prove several nonrenormalization theorems (i.e. selection rules) based on:
 - HELICITY; [Cheung, Shen (15)]
 - LENGTH; [Bern, Parra-Martinez, Sawyer (20)]
 - ANGULAR MOMENTUM. [Jiang, Shu, Xiao, Zheng (21)]

S-Matrix & Dilatation Operator

2 The Method of Form Factors

• Form factor associated with a local, gauge-invariant operator \mathcal{O}_i :

$$F_i(\vec{n};q) = \frac{1}{\Lambda^{[\mathcal{O}_i]-4}} \langle \vec{n} | \mathcal{O}_i(q) | 0 \rangle$$
.

Exploiting the fundamental relations [Miró, Ingoldby, Riembau (20)]

it is possible to show that [Caron-Huot, Wilhelm (16)]

$$e^{-i\pi D}F_i^*(\vec{n}) = (SF_i^*)(\vec{n}) \left(= \sum_{\vec{m}} \int d\Pi_m \langle \vec{n} | S | \vec{m} \rangle F_i^*(\vec{m}) \right)$$

where $S = \mathbb{1} + i\mathcal{M}$ is the S-matrix and $D = \sum_i p_i \cdot \partial/\partial p_i$ is the dilatation operator.

Nonperturbative Relations 2 The Method of Form Factors

S&D Relation

$$(e^{-i\pi D} - 1)F_i^* = i(\mathcal{M}F_i^*)$$

Nonperturbative Relations

2 The Method of Form Factors

S&D Relation

$$(e^{-i\pi D} - 1)F_i^* = i(\mathcal{M}F_i^*)$$

• In dimensional regularization and in absence of masses, $D \simeq -\mu \, \partial/\partial \mu$, which implies

Callan-Symanzik Equation

$$DF_{j} = \left(\frac{\partial \beta_{i}}{\partial c_{j}} - \delta_{ij}\gamma_{i,IR} + \delta_{ij}\beta_{g}\frac{\partial}{\partial g}\right)F_{i}$$

Nonperturbative Relations

2 The Method of Form Factors

S&D Relation

$$(e^{-i\pi D} - 1)F_i^* = i(\mathcal{M}F_i^*)$$

• In dimensional regularization and in absence of masses, $D \simeq -\mu \, \partial/\partial \mu$, which implies

Callan-Symanzik Equation

$$DF_{j} = \left(\frac{\partial \beta_{i}}{\partial c_{j}} - \delta_{ij}\gamma_{i,IR} + \delta_{ij}\beta_{g}\frac{\partial}{\partial g}\right)F_{i}$$

• Can be combined and expanded, e.g. at one-loop

$$\left(\frac{\partial \beta_i^{(1)}}{\partial c_j} - \delta_{ij} \gamma_{i,\text{IR}}^{(1)} + \delta_{ij} \beta_g^{(1)} \frac{\partial}{\partial g}\right) F_i^{(0)} = -\frac{1}{\pi} (\mathcal{M} F_j)^{(1)}$$

Anomalous Dimensions

3 General Operator Mixing

• Near the Gaussian fixed point (*), where $c_i = 0 \ \forall i$, the RGEs for the Wilson coefficients c_i can be Taylor expanded as

$$\mu \frac{\mathrm{d}c_i}{\mathrm{d}\mu} = \sum_{n>0} \frac{1}{n!} \gamma_{i \leftarrow j_1, \dots, j_n} c_{j_1} \cdots c_{j_n} = \gamma_{i \leftarrow j} c_j + \frac{1}{2} \gamma_{i \leftarrow j, k} c_j c_k + \cdots,$$

where

Anomalous Dimensions

$$\gamma_{i \leftarrow j_1, \dots, j_n} = \left. \frac{\partial^n \beta_i}{\partial c_{j_1} \cdots \partial c_{j_n}} \right|_*$$

• They can be perturbatively expanded as functions of the couplings of the renormalizable Lagrangian

$$\gamma_{i \leftarrow j_1, \dots, j_n} = \sum_{\ell > 0} \gamma_{i \leftarrow j_1, \dots, j_n}^{(\ell)}.$$

Master formulae 3 General Operator Mixing

• In the case of a double operator insertion with $j, k \neq i$, we can neglect $\gamma_{i,IR}$ and obtain the master formulae at the desired order:

One-loop order

$$\gamma_{i \leftarrow j,k}^{(1)} F_i|_*^{(0)} = -\frac{1}{\pi} \left. \frac{\partial}{\partial c_k} \right|_* (\mathcal{M} F_j)^{(1)}$$

Two-loop order

$$\gamma_{i \leftarrow j,k}^{(2)} F_i|_*^{(0)} = -\frac{1}{\pi} \left. \frac{\partial}{\partial c_k} \right|_* (\operatorname{Re} \mathcal{M} \operatorname{Re} F_j)^{(2)} - \gamma_{i \leftarrow j}^{(1)} \left. \frac{\partial}{\partial c_k} \right|_* \operatorname{Re} F_i^{(1)} - \gamma_{i \leftarrow j,k}^{(1)} \operatorname{Re} F_i|_*^{(1)}$$

• The extension of these formulae for multiple operator insertions $\gamma_{i \leftarrow j_1,...,j_n}$ is straightforward.

Higgs Low-Energy Theorem

4 Leading Mass Effects

- Dimensions of the renormalizing operators and the renormalized one do not match anomalous dimension must scale as a power of dimensionful couplings (e.g. fermion masses).
- $m_f \neq 0 \implies$ chirality-violating and preserving operators can mix.

Higgs Low-Energy Theorem

4 Leading Mass Effects

- Dimensions of the renormalizing operators and the renormalized one do not match \implies anomalous dimension must scale as a power of dimensionful couplings (e.g. fermion masses).
- $m_f \neq 0 \implies$ chirality-violating and preserving operators can mix.
- Fermionic Higgs interaction in the SM

$$\mathcal{L}_h^{\text{int}} = -\left(1 + \frac{h}{v}\right) \sum_f m_f \bar{f} f$$

implies [Ellis, Gaillard, Nanopoulos (76); Shifman et al. (79)]

Higgs Low-Energy Theorem

$$\lim_{\{p_h\}\to 0} \mathcal{M}(A\to B+Nh) = \sum_f \left(\frac{m_f}{v}\frac{\partial}{\partial m_f}\right)^N \mathcal{M}(A\to B)$$

Flowchart 4 Leading Mass Effects

The amplitude requires N fermion mass insertions not to vanish

Consider an equivalent amplitude entailing N extra massless Higgs fields

Example: Running of $\theta_{\sf QCD}$ in LEFT

5 Phenomenological Applications

LEFT

Low-energy EFT of the SM below the electroweak scale [Jenkins, Manohar, Stoffer (18); Jenkins, Manohar, Stoffer (18)]. The dimension-5 Lagrangian consists of dipole operators

$$\mathcal{L}_{\mathrm{LEFT}}^{(5)} \supset \frac{a_f}{\Lambda} \mathcal{O}_{\mathrm{CM}} + \frac{d_f}{\Lambda} \mathcal{O}_{\mathrm{CE}}, \quad \mathcal{O}_{\mathrm{CM}} = \bar{f} \sigma^{\mu\nu} T^a f G^a_{\mu\nu}, \quad \mathcal{O}_{\mathrm{CE}} = i \bar{f} \sigma^{\mu\nu} \gamma_5 T^a f G^a_{\mu\nu}.$$

• Consider the renormalization of $\mathcal{O}_{\vartheta} = G^a_{\mu\nu} \widetilde{G}^{a\,\mu\nu}$ as induced by $\mathcal{O}_{\mathrm{CM}}$ and $\mathcal{O}_{\mathrm{CE}}$.

Example: Running of $\theta_{\sf QCD}$ in LEFT

5 Phenomenological Applications

LEFT

Low-energy EFT of the SM below the electroweak scale [Jenkins, Manohar, Stoffer (18); Jenkins, Manohar, Stoffer (18)]. The dimension-5 Lagrangian consists of dipole operators

$$\mathcal{L}_{\text{LEFT}}^{(5)} \supset \frac{a_f}{\Lambda} \, \mathcal{O}_{\text{CM}} + \frac{d_f}{\Lambda} \, \mathcal{O}_{\text{CE}} \,, \qquad \mathcal{O}_{\text{CM}} = \bar{f} \sigma^{\mu\nu} T^a f G^a_{\mu\nu} \,, \qquad \mathcal{O}_{\text{CE}} = i \bar{f} \sigma^{\mu\nu} \gamma_5 T^a f G^a_{\mu\nu} \,.$$

- Consider the renormalization of $\mathcal{O}_{\vartheta} = G^a_{\mu\nu} \widetilde{G}^{a\,\mu\nu}$ as induced by $\mathcal{O}_{\mathrm{CM}}$ and $\mathcal{O}_{\mathrm{CE}}$.
- In the limit of massless fermions, $\gamma_{\vartheta\leftarrow\mathrm{CM},\mathrm{CE}}=0$, and possible mass effects must be of order $(m_f/\Lambda)^2$. Indeed $N=(4-[\mathcal{O}_{\vartheta}])+([\mathcal{O}_{\mathrm{CM}}]-4)+([\mathcal{O}_{\mathrm{CE}}]-4)=2$.
- Thus, the required double Higgs insertion can be accounted for by introducing the operator $\mathcal{O}_{\vartheta}^{2h}=(h^2/2v^2)G_{\mu\nu}^a\tilde{G}^{a\,\mu\nu}$.

Example: Running of $\theta_{\sf QCD}$ in LEFT

5 Phenomenological Applications

 $\bullet \;$ Then, $\gamma_{\vartheta \leftarrow {\rm CM,CE}}^{(1)}$ can be extracted from

$$\gamma_{\vartheta \leftarrow \text{CM,CE}}^{(1)} F_{\vartheta}^{2h} |_{*}^{(0)} = -\frac{1}{\pi} \left. \frac{\partial}{\partial d_f} \right|_{*} (\mathcal{M} F_{\text{CM}})^{(1)}.$$

• From the calculation of tree-level form factors and amplitudes, we obtain

$$F_{\vartheta}^{2h}|_{*}^{(0)}(1_{g^{a}}^{-}, 2_{g^{b}}^{-}, 3_{h}, 4_{h}) = -\frac{2i}{v^{2}}\delta^{ab}\langle 1 2 \rangle^{2},$$

$$(\mathcal{M}F_{\text{CM}})|_{*,d_{f} \neq 0}^{(1)}(1_{g^{a}}^{-}, 2_{g^{b}}^{-}, 3_{h}, 4_{h}) = \frac{id_{f}}{\pi\Lambda^{2}} \frac{m_{f}^{2}}{v^{2}}\delta^{ab}\langle 1 2 \rangle^{2},$$

implying $\gamma_{\vartheta\leftarrow \text{CM.CE}}^{(1)}=m_f^2/(2\pi^2\Lambda^2)$.

Summary 6 Conclusions

- We derived a master formula accounting for the general operator mixings of operators at one- and two-loop orders.
- Leading mass effects can be included within this framework, still working in the massless limit and relying on the Higgs low-energy theorem.
- These findings have been validated by reproducing well-established results of the literature, relative to popular EFTs.

Future Prospects

- Future experimental advances will improve the limits on low-energy observables (e.g. flavor violating processes, electric and magnetic dipole moments) by orders of magnitude.
- The computation of higher-order contributions will be crucial for the precise assessment of new physics effects.
- While this is a very challenging task when approached with standard techniques, on-shell and unitarity-based methods offer a simpler, more efficient and elegant way to reach this goal.

Thank you for your attention! Q&A

Selection Rules: Dimension-6 Operators

7 Backup Slides

	F^3	$\phi^2 F^2$	$F\phi\psi^2$	$D^2\phi^4$	$D\phi^2\psi^2$	ψ^4	$\phi^3 \psi^2$	ϕ^6
F^3		\times_1	(2)	\times_2	\times_2	\times_2	\times_3	\times_3
$\phi^2 F^2$							(2)	\times_2
$F\phi\psi^2$							\times_1	\times_3
$D^2\phi^4$							\times_1	\times_2
$D\phi^2\psi^2$							\times_1	(3)
$\frac{D^2\phi^4}{D\phi^2\psi^2}$ $\frac{\psi^4}{\psi^4}$							(2)	(4)
$\phi^3 \psi^2$								(2)
ϕ^6								

Table: From [Bern, Parra-Martinez, Sawyer (20)]. Dimension-6 operator mixing pattern. Operators labeling the rows are renormalized by the operators labeling the columns.

- \times_L : length selection rules apply at L-loop order
- (L): no diagrams before L loops, but renormalization is possible at that order
- Light-gray: zero at one loop due to helicity selection rules

Spinor-Helicity Formalism

7 Backup Slides

The 4-momentum of an on-shell state is mapped onto a 2×2 matrix

$$p^{\mu} = (p^0, \vec{p}) \qquad \longrightarrow \qquad p^{\dot{\alpha}\alpha} = \bar{\sigma}^{\dot{\alpha}\alpha}_{\mu} p^{\mu} = \begin{pmatrix} p^0 + p^3 & p^1 - ip^2 \\ p^1 + ip^2 & p^0 - p^3 \end{pmatrix},$$

where $\bar{\sigma}^{\mu \dot{\alpha} \alpha} = (\mathbb{1}, -\vec{\sigma})^{\dot{\alpha} \alpha}$. If the particle is massless then

$$p^2 = \det(p^{\dot{\alpha}\alpha}) = m^2 = 0$$
 \Longrightarrow $p^{\dot{\alpha}\alpha} = \tilde{\lambda}^{\dot{\alpha}}\lambda^{\alpha},$

where $\lambda,\tilde{\lambda}$ are commuting Weyl spinors known as helicity spinors.

The angle and square inner products are Lorentz invariant

$$\langle i\,j\rangle \equiv \lambda_i^{\alpha}\lambda_{j\,\alpha} = \epsilon_{\alpha\beta}\lambda_i^{\alpha}\lambda_j^{\beta} = -\langle j\,i\rangle\,, \qquad [i\,j] \equiv \tilde{\lambda}_{i\,\dot{\alpha}}\tilde{\lambda}_j^{\dot{\dot{\alpha}}} = -\epsilon_{\dot{\alpha}\dot{\beta}}\tilde{\lambda}_i^{\dot{\alpha}}\tilde{\lambda}_j^{\dot{\beta}} = -[j\,i]\,.$$

The Mandelstam invariants can thus be written as

$$s_{ij} \equiv (p_i + p_j)^2 = 2p_i \cdot p_j = \langle i j \rangle [j i].$$

\boldsymbol{D} as Generator of Complex Rotations

7 Backup Slides

Dilatation operator

$$D = \sum_{i} p_i \cdot \frac{\partial}{\partial p_i} \,.$$

Transformation of the analytically continued Mandelstam invariants s_{ij} under the action of the D

$$p_i \to e^{i\alpha} p_i$$
, $F_{\mathcal{O}} \to e^{i\alpha D} F_{\mathcal{O}}$.

For $\alpha=\pi$ their infinitesimal imaginary part ϵ changes sign

$$F_{\mathcal{O}}(\{s_{ij} - i\epsilon\}) = e^{i\pi D} F_{\mathcal{O}}(\{s_{ij} + i\epsilon\}).$$

Phase Space Integration

7 Backup Slides

$$(\mathcal{M}F_{\mathcal{O}})^{(1)}(1,2,3) = \sum_{\{x,y\}} \int d\Pi_2 \, F_{\mathcal{O}}^{(0)}(3,x,y) \mathcal{M}^{(0)}(x,y \to 1,2) + \text{permutations}$$

Angular integration

$$\begin{pmatrix} \lambda_x \\ \lambda_y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta e^{i\phi} \\ \sin \theta e^{-i\phi} & \cos \theta \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$
$$\int d\Pi_2 = \frac{1}{8\pi} \int_0^{2\pi} \frac{d\phi}{2\pi} \int_0^{\pi/2} 2\cos \theta \sin \theta \, d\theta$$

Stokes' integration

$$\begin{pmatrix} \lambda_x \\ \lambda_y \end{pmatrix} = \frac{1}{\sqrt{1+z\bar{z}}} \begin{pmatrix} 1 & \bar{z} \\ -z & 1 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$
$$\int d\Pi_2 = -\frac{1}{8\pi} \oint dz \int d\bar{z} \frac{1}{(1+z\bar{z})^2}$$

IR Anomalous Dimensions

7 Backup Slides

- In theories with massless fields, IR singularities originate from configurations where loop momenta become soft or collinear.
- The IR anomalous dimension only depends on the external state $\langle \vec{n} |$

$$\gamma_{\rm IR}^{(1)}(\{s_{ij}\};\mu) = \frac{g^2}{4\pi^2} \sum_{i < j} T_i^a T_j^a \log \frac{\mu^2}{-s_{ij}} + \sum_i \gamma_{i,\text{coll.}}^{(1)}.$$

• Since the stress-energy tensor $T_{\mu\nu}$ is UV protected, it can be computed as

$$\gamma_{\rm IR}^{(1)} F_{T_{\mu\nu}}^{(0)}(\vec{n}) = \frac{1}{\pi} (\mathcal{M} F_{T_{\mu\nu}})^{(1)}(\vec{n}).$$