PRECISION CALCULATIONS IN SMEFT

Ben Pecjak

IPPP Durham

HEFT 2024, Bologna

• SMEFT Lagrangian

$$\mathcal{L}^{ ext{SMEFT}} = \mathcal{L}^{ ext{SM}} + \sum_{i=1}^{59} C_i(\mu) Q_i(\mu) + (\mathsf{dim-8} ext{ and higher})$$

• Observables O calculated as expansion in operator dimension and loops

$$O^{\text{SMEFT}} = O^{\text{SM}} + \frac{v^2}{\Lambda^2} O^{(6,0)} + \underbrace{\frac{v^2}{\Lambda^2} O^{(6,1)} + \frac{v^4}{\Lambda^4} O^{(8,0)}}_{\text{"Precision"}} + \dots$$

THIS TALK: focus on $O^{(6,1)} = \text{NLO dim-6}$

SMEFT PERSPECTIVES (AT NLO)

$$\mathcal{L}^{\mathrm{SMEFT}} = \mathcal{L}^{\mathrm{SM}} + \sum_{i=1}^{59} C_i(\mu)Q_i(\mu) + \dots$$

Two perspectives:

- bottom up (the present): determine C_i through global fits
- top down (the future): if NP is known, SMEFT is tool for calculating RG-improved cross sections at scales $\mu_{\rm EW} \ll \Lambda_{\rm NP}$

NLO calculations:

- better agreement with data (top-down), more robust fits (bottom up)
- reduce dependence on renormalization scheme (for instance μ-dependence in MS, but more generally on different EW input schemes)

A rapidly expanding field:

- Current calculations done on case-by-case basis: [Giardino, Dawson, Maltoni, Zhang, Trott, Petriello, Duhr, Schulze, Passarino, Signer, Pruna, Shepherd, Hartmann, Baglio, Lewis, Zhang, Boughezal, Degrande, BP, Vryonidou, Mimasu, Deutschmann, Scott, Dedes, Suxho, Trifyllis, Gomez-Ambrosio, Durieux, Cullen, Gauld, Haisch, Zanderighi, Corbett ...]
- Future is automated NLO as in SM (already available for QCD corrections [Degrande et al. arXiv:2008.11743])

Motivation for NLO SMEFT same as in SM, but there are important differences, which are the basis of this talk.

- Technical subtleties in NLO SMEFT calculations
- Scale uncertainties and proliferation of Wilson coefficients
- EW input schemes absolute and relative convergence

 $h
ightarrow b ar{b}$ at NLO illustrates many subtleties in "simple" ¹ setting [Cullen, BP, Scott: '19]

- structure of tadpole contributions
- decoupling relations and hybrid renormalisation schemes (mix of MS and on-shell)
- EW Ward identities and electric charge renormalisation
- fermionic wave-function renormalisation and Higgs-Z mixing

Following few slides give a feel for how NLO calculations work...

 ^1UV renormalisation procedure cancels poles in ${\sim}50$ Wilson coefficients

The LO $h \rightarrow b\bar{b}$ amplitude in SMEFT

$$\begin{split} &Q_{bH} = H^{\dagger} H(\bar{q}_L H b_R + \text{h.c.}) \,, \\ &Q_{H\Box} = (H^{\dagger} H) \Box (H^{\dagger} H) \,, \quad Q_{HD} = \left(H^{\dagger} D_{\mu} H \right)^* \left(H^{\dagger} D_{\mu} H \right) \,, \quad Q_{HWB} = H^{\dagger} \sigma^I H W_{\mu\nu}^I B^{\mu\nu} \end{split}$$

LO decay amplitude

$$i\mathcal{M}^{(0)}(h \rightarrow b\bar{b}) = -i\bar{u}(p_b)\left(\mathcal{M}_L^{(0)}P_L + \mathcal{M}_L^{(0)*}P_R\right)v(p_{\bar{b}})$$

• Explicit results for $\mathcal{M}_L^{(0)} = \mathcal{M}_L^{(4,0)} + \mathcal{M}_L^{(6,0)}$:

$$\begin{split} \mathcal{M}_{L}^{(4,0)} &= \frac{m_{b}}{\hat{v}_{T}} \,, \\ \mathcal{M}_{L}^{(6,0)} &= m_{b} \hat{v}_{T} \left[-\frac{\hat{v}_{T}}{m_{b}} \frac{C_{bH}^{*}}{\sqrt{2}} + C_{H\Box} - \frac{C_{HD}}{4} - \frac{1}{2} \Delta v^{(6,0,\alpha)} \right] \end{split}$$

• result is particular to $\{\alpha, M_W, M_Z\}$ input scheme, where $v_T^2 \equiv \langle H^{\dagger}H \rangle/2$ replaced by

$$\begin{aligned} \frac{1}{v_{T,0}^2} &= \frac{1}{\hat{v}_T^2} \left[1 - \hat{v}_T^2 \Delta v^{(6,0,\alpha)} + \dots \right] ; \quad \Delta v^{(6,0,\alpha)} = -\frac{\hat{c}_w^2}{2\hat{s}_w^2} C_{HD} + 2\frac{\hat{c}_w}{\hat{s}_w} C_{HWB} \\ \hat{v}_T &= \frac{2M_W \hat{s}_w}{\sqrt{4\pi\alpha}}, \quad \hat{c}_w = \frac{M_W}{M_Z} \end{aligned}$$

NLO EW REQUIRES MANY DIAGRAMS...

Example in unitary gauge: SM and $Q_{bH} \sim H^{\dagger} H \bar{b}_L b_R H + h.c.$

• diagrams can be evaluated using automated (mathematica) tools

• subtleties mainly related to renormalisation procedure

BEN PECJAK (IPPP DURHAM)

PRECISION CALCULATIONS IN SMEFT

UV COUNTERTERMS IN SMEFT

dimension-4 counterterm is

$$\delta \mathcal{M}_{L}^{(4)} = \frac{m_{b}}{\hat{v}_{T}} \left(\frac{\delta m_{b}^{(4)}}{m_{b}} - \frac{\delta \hat{v}_{T}^{(4)}}{\hat{v}_{T}} + \frac{1}{2} \delta Z_{b}^{(4)} + \frac{1}{2} \delta Z_{b}^{(4),L} + \frac{1}{2} \delta Z_{b}^{(4),R*} \right)$$

dimension-6 counterterm is

$$\begin{split} \delta\mathcal{M}_{L}^{(6)} &= \frac{m_{b}}{\hat{v}_{T}} \left(\frac{\delta m_{b}^{(6)}}{m_{b}} - \frac{\delta \hat{v}_{T}^{(6)}}{\hat{v}_{T}} + \frac{1}{2} \delta Z_{h}^{(6)} + \frac{1}{2} \delta Z_{b}^{(6),L} + \frac{1}{2} \delta Z_{b}^{(6),R*} \right) \\ &+ \mathcal{M}_{L}^{(6,0)} \left(\frac{\delta m_{b}^{(4)}}{m_{b}} + \frac{\delta \hat{v}_{T}^{(4)}}{\hat{v}_{T}} + \frac{1}{2} \delta Z_{h}^{(4)} + \frac{1}{2} \delta Z_{b}^{(4),L} + \frac{1}{2} \delta Z_{b}^{(4),R*} \right) \\ &- \frac{\hat{v}_{T}^{2}}{\sqrt{2}} C_{bH}^{*} \left(\frac{\delta \hat{v}_{T}^{(4)}}{\hat{v}_{T}} - \frac{\delta m_{b}^{(4)}}{m_{b}} \right) + m_{b} \hat{v}_{T} \left[C_{HWB} + \frac{\hat{c}_{w}}{2\hat{s}_{w}} C_{HD} \right] \delta \left(\frac{\hat{c}_{w}}{\hat{s}_{w}} \right)^{(4)} \\ &+ m_{b} \hat{v}_{T} \left(\delta C_{H\Box} - \frac{\delta C_{HD}}{4} \left(1 - \frac{\hat{c}_{w}^{2}}{\hat{s}_{w}^{2}} \right) + \frac{\hat{c}_{w}}{\hat{s}_{w}} \delta C_{HWB} - \frac{\hat{v}_{T}}{m_{b}} \frac{\delta C_{bH}^{*}}{\sqrt{2}} \right) \end{split}$$

where

$$\frac{\delta \hat{v}_{T}}{\hat{v}_{T}} \equiv \frac{\delta M_{W}}{M_{W}} + \frac{\delta \hat{s}_{w}}{\hat{s}_{w}} - \frac{\delta e}{e}$$

and

$$\frac{\delta \hat{s}_{w}}{\hat{s}_{w}} = -\frac{\hat{c}_{w}^{2}}{\hat{s}_{w}^{2}} \left(\frac{\delta M_{W}}{M_{W}} - \frac{\delta M_{Z}}{M_{Z}} \right) , \quad \delta \left(\frac{\hat{c}_{w}}{\hat{s}_{w}} \right)^{(4)} = -\frac{1}{\hat{c}_{w} \hat{s}_{w}} \left(\frac{\delta \hat{s}_{w}^{(4)}}{\hat{s}_{w}} \right)$$

Complex C_i and renormalisation

Complex couplings beyond SM leads to subtleties in counterterms. Examples:

• Fermion w.f. renormalisation

$$\delta Z_b^L = \left[\left. -\widetilde{\operatorname{Re}} \, \Sigma_b^L(m_f^2) - m_f^2 \frac{\partial}{\partial \rho^2} \, \widetilde{\operatorname{Re}} \left[\Sigma_b^L(\rho^2) + \Sigma_b^R(\rho^2) + \Sigma_b^S(\rho^2) + \Sigma_b^{S*}(\rho^2) \right] \right|_{\rho^2 = m_b^2} \right] + \Sigma_b^S(m_b^2) - \Sigma_b^{S*}(m_f^2)$$

• $\sum_{b}^{S}(m_{b}^{2}) - \sum_{f}^{S*}(m_{b}^{2})$ vanishes in SM, but is proportional Im (C_{i}) in SMEFT.

• appears in many places in renormalisation of amplitude - example:

$$\underbrace{t}_{b} \qquad Z_{b}^{L} = \frac{1}{\epsilon} \left[-\frac{m_{t}^{3}}{m_{b}} \left((2N_{c}+1) \left(C_{qtqb}^{(1)} - C_{qtqb}^{(1)*} \right) + c_{F,3} \left(C_{qtqb}^{(8)} - C_{qtqb}^{(8)*} \right) \right) \right] + \text{finite}$$

• Higgs-Goldstone mixing $\propto \eta_5 = \frac{\sqrt{2}}{\hat{v}_T} \operatorname{Im} [N_c m_b C_{bH} - N_c m_t C_{tH} + m_\tau C_{\tau H} + \dots]$

- Technical subtleties in NLO calculations in SMEFT
- Scale uncertainties and proliferation of Wilson coefficients
- EW input schemes relative and absolute convergence

Scale uncertainties in SMEFT

$$\Gamma = \Gamma_{SM} + v^2 \sum_i C_i(\mu) \Gamma_i(\mu)$$

- all-orders perturbative result for Γ is independent of μ
- μ dependence estimates missing higher orders in a fixed order calculation
- in SM, use i.e. $\alpha_s(\mu = M_Z) = 0.1$ and RG equation to get $\alpha_s(2M_Z)$ as a number
- in SMEFT, we don't know the $C_i(\mu)$. Therefore
 - pick a fixed reference scale: canonical choice is m_H
 - as long as $\mu \sim m_H$, solution to RG equation is approximately

$$C_i(\mu) = C_i(m_H) + \ln\left(\frac{\mu}{m_H}\right) \dot{C}_i(m_H), \quad \dot{C}_i(m_H) = \frac{dC}{d\ln\mu}\bigg|_{\mu=m_H} = \sum_j \gamma_{ij} C_j(m_H)$$

- can use to calculate scale uncertainties in Γ in terms of $C_i(m_H)$
- LO scale uncertainties involve all Wilson coefficients in γ_{ij}

Scale uncertainties in $h \to b \bar{b}$

• result from varying μ_C , μ_R independently by factor of 2 around m_H and adding in quadrature:

$$\begin{split} \frac{\Gamma^{\rm LO}}{\Gamma^{\rm LO,SM}} &= (1\pm0.08) + \frac{(\bar{\nu})^2}{\Lambda_{\rm NP}^2} \left\{ \\ &(3.74\pm0.36)\tilde{\mathcal{C}}_{HWB} + (2.00\pm0.21)\tilde{\mathcal{C}}_{H\Box} - (1.41\pm0.07)\frac{\bar{\nu}}{\bar{m}_b}\tilde{\mathcal{C}}_{bH} + (1.24\pm0.14)\tilde{\mathcal{C}}_{HD} \\ &\pm 0.35\tilde{\mathcal{C}}_{HG} \pm 0.19\tilde{\mathcal{C}}_{Hq}^{(1)} \pm 0.18\tilde{\mathcal{C}}_{Ht} \pm 0.11\tilde{\mathcal{C}}_{Hq}^{(3)} + [\text{roughly 30 more } \mathcal{C}_i] \right\} \end{split}$$

$$\begin{split} \frac{\Gamma^{\rm NLO}}{\Gamma^{\rm LO,SM}} &= 1.13^{+0.01}_{-0.04} + \frac{\left(\bar{\nu}\right)^2}{\Lambda_{\rm NP}^2} \Big\{ \left(4.16^{+0.05}_{-0.14} \right) \ \tilde{\mathcal{C}}_{HWB} + \left(2.40^{+0.04}_{-0.09} \right) \ \tilde{\mathcal{C}}_{H\Box} \\ &+ \left(-1.73^{+0.04}_{-0.03} \right) \ \frac{\bar{\nu}}{\bar{m}_b} \ \tilde{\mathcal{C}}_{bH} + \left(1.33^{+0.01}_{-0.04} \right) \ \tilde{\mathcal{C}}_{HD} + \left(2.75^{+0.49}_{-0.48} \right) \ \tilde{\mathcal{C}}_{HG} \\ &+ \left(-0.12^{+0.04}_{-0.01} \right) \ \tilde{\mathcal{C}}^{(3)}_{Hq} + \left(-0.08^{+0.05}_{-0.01} \right) \ \tilde{\mathcal{C}}_{Ht} + \left(0.06^{+0.06}_{-0.05} \right) \ \tilde{\mathcal{C}}^{(1)}_{Hq} + \left(0.00^{+0.07}_{-0.04} \right) \ \frac{\tilde{\mathcal{C}}_{tG}}{g_s} \\ &+ \left[\text{ roughly 50 more } C_i \right] \Big\} \end{split}$$

- in general, uncertainty band in LO result overlaps with NLO one, and decreases between LO and NLO
- exception is C_{HG} , which gives large corrections unrelated to RG eqns.
- large number of Wilson coefficients generated from scale variations already at LO

Relative convergence – corrections to LO results in $h \rightarrow b\bar{b}$

	SM	C _{HWB}	$C_{H\square}$	Сьн	C_{HD}
NLO QCD-QED	18.2%	17.9%	18.2%	18.2%	18.2%
NLO EW	-5.3%	-6.5%	2.0%	4.1%	-11.0%
NLO correction	12.9%	11.4%	20.2%	22.3%	7.2%

TABLE: Size of NLO corrections to different terms in LO decay rate, split into QCD-QED and EW components.

- applying SM K-factor to dim.6 coefficients bad approximation for EW corrections
- this is generally the case, also for other decays such as $W \to \ell \nu$ and $Z \to \ell^+ \ell^-$
- possible to decipher patterns across the C_i, EW input schemes, and decays [Biekötter, BP, Scott, Smith arXiv:2305.03763]

- Technical subtleties in NLO calculations in SMEFT
- Scale uncertainties and proliferation of Wilson coefficients
- EW input schemes relative and absolute convergence

EW INPUT SCHEMES AND DERIVED PARAMETERS

In SMEFT, EW input schemes related to

 $\{g_1, g_2, v_T\} \rightarrow \{p_1, p_2, M_Z, C_i\}; \qquad p_1, p_2 \in \{\alpha, G_F, M_W, \sin \theta_{\text{eff}}^\ell\}$

- each set of 3 input parameters defines an EW input scheme
- 5 EW input schemes considered to NLO in [Biekötter, BP, Smith '24]

scheme	inputs	derived parameters
v_{μ}^{eff}	G_F , sin $\theta_{\rm eff}^{\ell}$, M_Z	M_W, α
$v_{lpha}^{ m eff}$	α , sin $\theta_{\text{eff}}^{\ell}$, M_Z	M_W, G_F
α	α , M_W , M_Z	$s_w^{\rm eff}, G_F$
$lpha_{\mu}$	G_F, M_W, M_Z	$s_{w}^{\mathrm{eff}}, \alpha$
LEP	G_F, α, M_Z	$s_w^{\rm eff}, M_W$

• In, e.g., LEP scheme, M_W is a "derived parameter", i.e. has SMEFT expansion

 $M_{W}^{\text{LEP}}\left(\alpha, \textit{G}_{\textit{F}}, \textit{M}_{\textit{Z}}, \textit{C}_{\textit{i}}\right) = M_{W}^{\text{LEP}(4,0)} + M_{W}^{\text{LEP}(4,1)} + M_{W}^{\text{LEP}(6,0)} + M_{W}^{\text{LEP}(6,1)} + \dots$

 derived parameters not only precision observables, but also key quantities for converting between schemes

• in SM, good agreement of "derived parameters" implies that more complicated observables such as $\Gamma^s_{Z\ell\ell}$ converge to a common numerical value at NLO

	$rac{M_W^s}{M_W} - 1$	$\frac{\alpha^s}{\alpha} - 1$	$rac{G_F^s}{G_F}-1$	$\left \frac{(s_w^{\mathrm{eff,s}})^2}{(s_w^{\mathrm{eff}})^2} - 1 \right $	$rac{\Gamma^s_{Z\ell\ell}}{\Gamma_{Z\ell\ell}} - 1$
LO	-0.56%	0.21%	-	-	-0.70%
NLO	0.05%	0.23%	-	-	0.12%
LO	-0.56%	-	-0.21%	-	-0.91%
NLO	0.04%	-	-0.23%	-	-0.11%
LO	-	-2.44%	-	-3.72%	-0.08%
NLO	-	0.51%	-	0.34%	-0.07%
LO	-	-	2.50%	-3.72%	2.41%
NLO	-	-	-0.67%	0.45%	-0.74%
LO	-0.51%	-	-	-0.30%	-0.66%
NLO	0.09%	-	-	-0.32%	0.16%
	LO NLO LO NLO LO NLO LO NLO LO NLO	$\begin{tabular}{ c c c c } \hline M_W^{M} & -1$\\ \hline M_W & -0.56\%$\\ \hline $NL0$ & 0.05\%$\\ \hline $L0$ & -0.56\%$\\ \hline $NL0$ & 0.04\%$\\ \hline $L0$ & -$\\ \hline $NL0$ & -$\\ \hline $NL0$ & -$\\ \hline $NL0$ & -$\\ \hline $L0$ & -0.51\%$\\ \hline $NL0$ & 0.09\%$\\ \hline \end{tabular}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Absolute convergence across schemes in SMEFT

Selected SMEFT contributions to the $Z \rightarrow \tau \tau$ decay rate with scale variations:

scheme		C _{HD}	C _{HWB}	C _{He} 33	С _{Ни} 33	$C^{(3)}_{Hq}_{33}$
$\left(C_{-}\right)^{\text{eff}}$ M	LO	$-0.500\substack{+0.033\\-0.033}$	$0.000\substack{+0.000\\-0.000}$	$-1.843\substack{+0.048\\-0.048}$	$0.000\substack{+0.052\\-0.052}$	$0.000\substack{+0.000\\-0.000}$
$\{\mathbf{G}_F, \mathbf{S}_w, \mathbf{W}_Z\}$	NLO	$-0.527\substack{+0.005\\-0.000}$	$0.004\substack{+0.000\\-0.000}$	$-1.905\substack{+0.004\\-0.000}$	$0.048\substack{+0.000\\-0.013}$	$0.022\substack{+0.000\\-0.004}$
$\int \alpha e^{\text{eff}} M_{-}$	LO	$0.000\substack{+0.000\\-0.000}$	$2.370^{+0.081}_{-0.081}$	$-1.843\substack{+0.050\\-0.050}$	$0.000\substack{+0.003\\-0.003}$	$0.000\substack{+0.005\\-0.005}$
$\{\alpha, \mathbf{s}_{w}, \mathbf{w}_{Z}\}$	NLO	$-0.001\substack{+0.000\\-0.000}$	$2.439^{+0.000}_{-0.006}$	$-1.903\substack{+0.004\\-0.000}$	$0.005\substack{+0.000\\-0.001}$	$0.002\substack{+0.000\\-0.000}$
	LO	$-0.169\substack{+0.011\\-0.011}$	$0.355\substack{+0.012\\-0.012}$	$-1.764\substack{+0.046\\-0.046}$	$0.000\substack{+0.018\\-0.018}$	$0.000\substack{+0.001\\-0.001}$
{ U _F , W _W , W _Z }	NLO	$-0.289^{+0.009}_{-0.007}$	$0.258\substack{+0.003 \\ -0.004}$	$-1.897\substack{+0.006\\-0.002}$	$0.018\substack{+0.011\\-0.016}$	$0.006\substack{+0.000\\-0.002}$
$\{\alpha, M_W, M_Z\}$	LO	$1.573^{+0.108}_{-0.108}$	$4.088\substack{+0.143\\-0.143}$	$-1.764\substack{+0.050\\-0.050}$	$0.000\substack{+0.162\\-0.162}$	$0.000\substack{+0.008\\-0.008}$
	NLO	$1.408\substack{+0.002\\-0.019}$	$3.869^{+0.002}_{-0.013}$	$-1.898\substack{+0.006\\-0.002}$	$-0.142\substack{+0.030\\-0.000}$	$-0.073\substack{+0.014\\-0.000}$
$\{C_{-} \propto M_{-}\}$	LO	$-0.600^{+0.040}_{-0.040}$	$-0.474\substack{+0.016\\-0.016}$	$-1.837\substack{+0.048\\-0.048}$	$0.000\substack{+0.062\\-0.062}$	$0.000\substack{+0.001\\-0.001}$
[U _F , u , m _Z]	NLO	$-0.631\substack{+0.005\\-0.000}$	$-0.475\substack{+0.001\\-0.000}$	$-1.899\substack{+0.004\\-0.000}$	$0.057\substack{+0.000\\-0.015}$	$0.025\substack{+0.000\\-0.005}$

- in SMEFT, dependence of "derived parameters" on C_i obfuscates absolute convergence of more complicated observables in different schemes
- fits of *C_i* in different schemes sensitive to different sets of dim-8 and loop corrections, can provide sanity checks on fits

BEN PECJAK (IPPP DURHAM)

PRECISION CALCULATIONS IN SMEFT

Relative convergence: 3 decays in 3 input schemes

NLO EW corrections ($\alpha_s = 0$ in $h \rightarrow bb$)

$h ightarrow bar{b}$	SM	$C_{H\square}$	C _{HD}	C _{dH} 33	C _{HWB}	$C^{(3)}_{\substack{HI\\ jj}}$	C_// 1221
α -scheme: $\{M_W, M_Z, \alpha\}$	-5.2 %	2.1%	-11.0%	4.2%	-6.7%	-	-
α_{μ} -scheme: $\{M_W, M_Z, G_F\}$	-0.8 %	2.1%	2.0%	1.9%	-	0.9%	-0.8%
LEP scheme: $\{\alpha, M_Z, G_F\}$	-0.7 %	2.1%	1.6%	1.9%	-	0.7%	-0.9%

Z ightarrow au au	SM	C _{HD}	C _{HWB}	С _{Не} 33	$C^{(1)}_{\substack{HI\\33}}$	$C^{(3)}_{\substack{HI\\33}}$	$C^{(3)}_{HI}_{jj}$	C_// 1221
α	-4.0%	-10.6%	-5.4%	7.7%	0.3%	-0.5%	—	—
$lpha_{\mu}$	< 0.1%	71.1%	-27.2%	7.6%	0.1%	-0.4%	2.9%	0.6%
LÉP	1.0%	7.8%	17.4%	2.0%	4.7%	4.2%	6.9%	4.5%

W ightarrow au u	SM	C _{HD}	C _{HWB}	$C^{(3)}_{\substack{HI\\ jj}}$	C_// 1221	$C^{(3)}_{\substack{HI\\33}}$
α	-4.2%	-1.7%	-3.0%	—	—	2.2%
α_{μ}	-0.3%	_	—	2.5%	-0.2%	2.2%
LÉP	2.0%	8.1%	3.2%	5.1%	2.5%	4.6%

Is there any rhyme or reason to the pattern across C_i ?

CONNECTING SCHEMES

Start with $\mathcal{L}_{\text{bare}}(M_W, M_Z, v_T, \dots)$, and renormalise v_T as

$$\frac{1}{v_{T,0}^2} = \frac{1}{v_{\sigma}^2} \left[1 - v_{\sigma}^2 \Delta v_{\sigma}^{(6,0,\sigma)} - \frac{1}{v_{\sigma}^2} \Delta v_{\sigma}^{(4,1,\sigma)} - \Delta v_{\sigma}^{(6,1,\sigma)} \right]; \quad \sigma \in \{\alpha,\mu\}$$

$$\mathbf{v}_{lpha} \equiv rac{2M_W s_w}{\sqrt{4\pi lpha}}\,, \qquad \mathbf{v}_{\mu} \equiv \left(\sqrt{2}G_F
ight)^{-rac{1}{2}}$$

- for α scheme $\{M_W, M_Z, \alpha\}$: use $\sigma = \alpha$ and determine Δv_α from charge ren.
- for α_{μ} scheme $\{M_W, M_Z, G_F\}$: use $\sigma = \mu$ and determine Δv_{μ} from muon decay
- for LEP scheme $\{\alpha, M_Z, G_F\}$: start with α_μ scheme, and then eliminate M_W using

$$rac{v_lpha^2}{v_\mu^2} - 1 \equiv \Delta r = v_\mu^2 \Delta r^{(6,0)} + rac{1}{v_\mu^2} \Delta r^{(4,1)} + \Delta r^{(6,1)}$$

where $\Delta r^{(i,j)}$ are finite and related to $\Delta v_{\mu\alpha} = \Delta v_{\mu} - \Delta v_{\alpha}$

$$\Delta r^{(6,0)} = \Delta v^{(6,0)}_{\mu\alpha}, \quad \Delta r^{(4,1)} = \Delta v^{(4,1)}_{\mu\alpha}, \quad \Delta r^{(6,1)} = \Delta v^{(6,1)}_{\mu\alpha} + 2\Delta v^{(4,1,\mu)}_{\mu} \Delta v^{(6,0)}_{\mu\alpha}$$

TOP LOOPS AND UNIVERSAL CORRECTIONS

• Δr is physical, Δv_{σ} is not. However, in large- m_t limit in SM:

$$\frac{1}{v_{T,0}^2}\Big|_{m_t\to\infty} = \frac{1}{v_{\sigma}^2} \left[1 + \frac{1}{v_{\sigma}^2} \left(\Delta r_t^{(4,1)} \delta_{\alpha\sigma} - 2\Delta M_{W,t}^{(4,1)} \right) \right]; \quad \sigma \in \{\alpha,\mu\}$$

$$\frac{\Delta r_t^{(4,1)}}{v_\alpha^2} = -\frac{c_w^2}{s_w^2} \frac{\Delta \rho_t^{(4,1)}}{v_\alpha^2} \approx -3.5\%, \qquad \qquad \frac{\Delta \rho_t^{(4,1)}}{v_\alpha^2} \equiv \frac{3}{16\pi^2} \frac{m_t^2}{v_\alpha^2} \approx 1\%$$

- universal correction $\Delta r_t^{(4,1)}$ in α -scheme comes along with LO (can resum!)
- we generalised this to include universal scheme-dependent corrections in SMEFT through a substitution procedure on LO [arXiv:2305.03763], for example

$$\frac{1}{v_T^2} \rightarrow \frac{1}{v_\sigma^2} \left[\underbrace{1 + v_\sigma^2 \mathcal{K}_t^{(6,0,\sigma)} + \frac{\mathcal{K}_t^{(4,1,\sigma)}}{v_\sigma^2} + \mathcal{K}_t^{(6,1,\sigma)}}_{\text{LO}_{\mathcal{K}}} + (\text{divergent and unphysical stuff}) \right]$$

- the K_t are physical top-loop corrections that always come along with LO
- \Rightarrow re-organise pert. theory. to include them already in "LO_K" approximation

3 DECAYS WITH UNIVERSAL CORRECTIONS

NLO corrections to LO_K results

	V	$V \rightarrow V$	τν	SM	l	C _{HD}	C _{HWB}	$C^{(3)}_{HI}_{jj}$	C // 1221	$C^{(3)}_{HI}_{33}$	
		α		-0.9	%	1.1%	0.6%	_		2.2%	
		α_{μ}		-0.3	%	—	_	0.6%	-0.2%	2.2%	
		LÉP		0.0	%	1.9%	0.9 %	0.1%	0.2%	2.5%	
$Z \rightarrow$	• <i>ττ</i>	SI	v	C _F	D	C _{HWB}	С _{Не} 33	$C^{(1)}_{HI}_{33}$) $C_{HI}^{(3)}_{33}$	$C^{(3)}_{\substack{HI\ jj}}$	C // 1221
С	e	-0.	9%	-1.	4%	-0.1%	6 <u>3.3</u> %	6 2.0 ⁹	6 1.3%	—	_
α	μ	0.0	1%	11.2	2%	-3.4%	6 3.2%	۵ 1.8 ⁹	6 1.3%	0.8%	0.0%
LE	P	0.0	1%	2.3	%	-3.0%	۵ 2.5%	۵ 2.5 ⁹	6 2.0%	0.8%	0.0%
	h ightarrow	ьБ		SM	C _{HE}	□ C _F	ID C	_{нн} С _н 33	IWB C	(3) HI C II	// 221
	α		-1.9	9 %	2.1%	6 2.5	% 2.5	% -1.	5%	-	-
	α_{μ}		-0.8	8 %	2.1%	6 2.0	% 1.9	%	- 0.9	% -0.8	%
	LÉP	·	-0.8	8 %	2.1%	6 1.6	% 1.9	%	- 0.7	% -0.9	1%

Corrections smaller and less scheme dependent compared to pure fixed order

BEN PECJAK (IPPP DURHAM)

_

- NLO dim-6 SMEFT calculations involve many subtleties compared to SM
- Precision SMEFT is a game of many Wilson coefficients and requires global fits
- Global fits in different EW input schemes can provide important consistency checks
- Longer-term future is automated NLO SMEFT