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• Neutrinos and SMEFT 


• Constraints from coherent neutrino scattering  


• Constraints from reactor neutrino oscillations

Plan

Focus: constraints on SMEFT from processes where neutrinos are detected



SMEFT 

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT has many higher-dimensional operators:  

Neutrinos enter into a non-negligible fraction of these 
 
Constraints from neutrino physics are essential to sharpen the phenomenological 
constraints on SMEFT Wilson coefficients 



ℒD=5 = (LH)C5(LH) + h . c . →
1
2 ∑

J,K=e,μ,τ

v2[C5]JK(νJνK) + h . c .

SMEFT at dimension-5

H → (
0

v/ 2)

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …
Weinberg (1979) 

 Phys. Rev. Lett. 43, 1566 

Dimension 5 operators in SMEFT lead to neutrino masses. The corresponding  Wilson 
coefficients are probed (only) by neutrino oscillations experiments

−v2C5 = UPMNSmdiagU†
PMNS

UPMNS =
c12c13 s12c13 e−iδCPs13

−s12c23 − eiδCPc12s13s23 c12c23 − eiδCPs12s13s23 c13s23

s12s23 − eiδCPc12s13c23 −c12s23 − eiδCPs12s13c23 c13c23

mdiag =
m1 0 0
0 m2 0
0 0 m3

All these parameters known with  
good accuracy (up to ordering ambiguity),  

except for  and m1 δCP



SMEFT at dimension-6

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

At dimension-6 all hell breaks loose
Grządkowski et al 

arXiv:1008.4884 

ℒD=6 = CH(H†H )3 + CH□(H†H ) □ (H†H ) + CHD |H†DμH |2

+CHWBH†σkH Wk
μνBμν + CHGH†H Ga

μνGa
μν + CHWH†H Wk

μνWk
μν + CHBH†H BμνBμν

++CWϵklmWk
μνWl

νρWm
ρμ + CG f abcGa

μνGb
νρGc

ρμ

+CH G̃ H†H G̃ a
μνGa

μν + CHW̃ H†H W̃k
μνWk

μν + CH B̃ H†H B̃ μνBμν + CHW̃BH†σkH W̃k
μνBμν

+CW̃ ϵklmW̃k
μνWl

νρWm
ρμ + CG̃ f abc G̃ a

μνGb
νρGc

ρμ

+H†H(L̄HCeHĒc) + H†H(Q̄H̃CuHŪc) + H†H(Q̄HCdHD̄c)

+iH†DμH(L̄C(1)
Hl σ̄μL) + iH†σkDμH(L̄C(3)

Hl σ̄μσkL) + iH†DμH(EcCHeσμĒc)

+iH†DμH(Q̄C(1)
Hqσ̄μQ) + iH†σkDμH(Q̄C(3)

Hqσ̄μσkQ) + iH†DμH(UcCHuσμŪc)

+iH†DμH(DcCHdσμD̄c) + {iH̃†DμH(UcCHudσμD̄c)

+(Q̄σkH̃CuWσ̄μνŪc)Wk
μν + (Q̄H̃CuBσ̄μνŪc)Bμν + (Q̄H̃CuGTaσ̄μνŪc)Ga

μν

+(Q̄σkHCdWσ̄μνD̄c)Wk
μν + (Q̄HCdBσ̄μνD̄c)Bμν + (Q̄HCdGTaσ̄μνD̄c)Ga

μν

+(L̄σkHCeWσ̄μνĒc)Wk
μν + (L̄HCeBσ̄μνĒc)Bμν + h . c . }+ ℒ4−fermion

D=6



SMEFT at dimension-6

ℒ4−fermion
D=6 = (L̄σ̄μL)Cll(L̄σ̄μL) + (EcσμĒc)Cee(EcσμĒc) + (L̄σ̄μL)Cle(EcσμĒc)

+(L̄σ̄μL)C(1)
lq (Q̄σ̄μQ) + (L̄σ̄μσkL)C(3)

lq (Q̄σ̄μσkQ)

+(EcσμĒc)Ceu(UcσμŪc) + (EcσμĒc)Ced(DcσμD̄c)

+(L̄σ̄μL)Clu(UcσμŪc) + (L̄σ̄μL)Cld(DcσμD̄c) + (EcσμĒc)Ceq(Qσ̄μQ)

+{(L̄Ēc)Cledq(DcQ) + ϵkl(L̄kĒc)C(1)
lequ(Q̄

lŪc) + ϵkl(L̄kσ̄μνĒc)C(3)
lequ(Q̄

lσ̄μνŪc) + h . c . }
+(Q̄σ̄μQ)C(1)

qq (Q̄σ̄μQ) + (Q̄σ̄μσkQ)C(3)
qq (Q̄σ̄μσkQ)

+(UcσμŪc)Cuu(UcσμŪc) + (DcσμD̄c)Cdd(DcσμD̄c)

+(UcσμŪc)C(1)
ud (DcσμD̄c) + (UcσμTaŪc)C(8)

ud (DcσμTaD̄c)

+(QcσμQ̄c)C(1)
qu (UcσμŪc) + (QcσμTaQ̄c)C(8)

qu (UcσμTaŪc)]

+(QcσμQ̄c)C(1)
qd (DcσμD̄c) + (QcσμTaQ̄c)C(8)

qd (DcσμTaD̄c)

+{ϵkl(Q̄kŪc)C(1)
quqd(Q̄lD̄c) + ϵkl(Q̄kTaŪc)C(1)

quqd(Q̄lTaD̄c) + h . c . }
+{(DcUc)Cduq(Q̄L̄) + (QQ)Cqqu(ŪcĒc) + (QQ)Cqqq(QL) + (DcUc)Cduu(UcEc) + h . c . }.

The highlighted operators can be probed by processes where  neutrinos are produced, 
detected,  or exchanged. 
Very often, constraints from non-neutrino processes leave important degeneracies in 
the space of corresponding Wilson coefficients.   



Neutrino master formula

Observable 
rate

Geometric 
factor

Oscillation 
phase

Production 
phase space 

Detection 
phase space

L ≫ σx,y

Eν ≫ |m2
k − m2

l |σi

Eν ≫ mk

7

S T

σx σy

L
S’

T’

Xα
Yβ

ν ν

Masses of 
source and 

target atoms

AA, Gonzalez-Alonso, Tabrizi 
[arXiv:1910.02971] 

dRαβ =
NSNT

32πL2mSmT

3

∑
k,l=1

exp (−i
L(m2

k − m2
l )

2Eν )[dΠPℳP
αkℳ

P*
αl ][dΠDℳD

βkℳ
D*
βl ]

dR =
dN
dt ℳP

αk ≡ ℳ[S → S′ Xανk] ℳD
βk ≡ ℳ[νkT → T′ Yβ]



Constraints from  
coherent neutrino scattering  

Part 2



• Coherent neutrino scattering occurs when neutrino 
scattering on a nucleus has low enough energy such that it 
does not resolve its internal structure. Then  
enhancement of the cross section occurs. 


• Experimentally measured recently by the COHERENT 
collaboration with neutrino produced by stopped pion 
decays and with Argon and CsI targets. 


• Time and nuclear recoil distributions are available. Neutrinos 
from the pion decay and from the subsequent muon decay 
can be disentangled thanks to timing. Neutrinos and anti-
neutrinos from muon decay can also be to some extent 
disentangled thanks to different recoil distributions. 

∼ (A − Z)2

Coherent neutrino scattering
D. Freedman,  
Phys. Rev. D 9 (1974) 1389–1392

COHERENT, Science 357  
[arXiv:1708.01294]
COHERENT, Phys. Rev. Lett. 126 
[arXiv:2003.10630]
COHERENT, Phys. Rev. Lett. 129 
[arXiv:2110.07730]. 



10

π+ 𝒩
L ≈ 0S’ 𝒩

μ+

ν

νν

dRprompt
μ =

NSNT

32πL2mπm𝒩

3

∑
k,l=1

e−i L(m2
k − m2

l )
2Eν [dΠPℳP

μkℳ
P*
μl ]∑

β
[dΠDℳD

βkℳ
D*
βl ]

ℳP
αk ≡ ℳ[π+ → μ+νk]

ℳD
βk ≡ ℳ[νk𝒩 → νβ𝒩]

Coherent neutrino scattering

Negligible in  
COHERENT  

setup
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μ+ 𝒩
L ≈ 0e+ 𝒩

ν̄
ν

νν

dRdelayed
μ =

NSNT

32πL2mμm𝒩

3

∑
k,l=1

e−i L(m2
k − m2

l )
2Eν [dΠPℳP

μkℳ
P*
μl ]∑

β
[dΠDℳD

βkℳ
D*
βl ]

ℳP
αk ≡ ℳ[μ+ → e+νkν̄]

ℳD
βk ≡ ℳ[νk𝒩 → νβ𝒩]

Coherent neutrino scattering

Negligible in  
COHERENT  

setup
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μ+ 𝒩
L ≈ 0e+ 𝒩

ν
ν̄

ν̄ν̄

dR̄delayed
μ =

NSNT

32πL2mμm𝒩

3

∑
k,l=1

e−i L(m2
k − m2

l )
2Eν [dΠPℳP

μkℳ
P*
μl ]∑

β
[dΠDℳD

βkℳ
D*
βl ]

ℳP
αk ≡ ℳ[μ+ → e+ν̄kν]

ℳD
βk ≡ ℳ[ν̄k𝒩 → ν̄β𝒩]

Coherent neutrino scattering

Negligible in  
COHERENT  

setup



Coherent neutrino scattering

After integrating over phase space, one can rewrite the rate in the form

dRprompt

dT
= NT ∫ dEν

dΦνμ

dEν

dσ̃νμ

dT

dRdelayed

dT
= NT ∫ dEν (

dΦνe

dEν

dσ̃νe

dT
+

dΦν̄μ

dEν

dσ̃ν̄μ

dT )

dϕνμ

dEν
=

NS

4πL2
δ(Eν − Eν,π)

dϕνe

dEν
=

NS

4πL2

192E2
ν

m3
μ ( 1

2
−

Eν

mμ )
dϕν̄μ

dEν
=

NS

4πL2

64E2
ν

m3
μ ( 3

4
−

Eν

mμ )
The effective cross sections are 

dσ̃νf

dT
= (m𝒩 + T )

(ℱ(T ))2

8v4 π (1 −
(m𝒩 + 2Eν) T

2E2
ν )Q̃2

f .

recoil kinetic energy  
of nucleus

Nuclear form factor

The effective weak charges encode full information about new physics corrections,  
both in production and in detection

Q̃2
f = Q2

SM + Δf(Ci)

∼ (Z − A)2



Coherent neutrino scattering

Results of our analysis for effective weak charges

along with the nine nuisance parameters that we do not display. We have normalized the
results using the SM value, Q

2

SM,Ar
= 461, with an associated small error that can be

neglected for the purpose of this work. The results in Eq. (5.1) are in perfect agreement
with the SM prediction Q̃2

f
/Q2

SM
= 1. We can disentangle the first charge, Q̃2

µ, from the
other two thanks to its different time dependence: the former enters the rate via (prompt)
pion decay, while the latter do it via (delayed) muon decay. On the other hand the recoil
energy distribution only allows for a mild separation of Q̃2

e and Q̃2
µ̄. To get rid of the large

correlations, which obscure the strength of the results, let us rewrite them as the following
uncorrelated bounds

0

B@
�0.14 �3.48 4.62

�0.69 0.98 0.71

0.55 0.25 0.20

1

CA

0

B@
Q̃2

µ

Q̃2
µ̄

Q̃2
e

1

CA

Ar

1

Q2

SM,Ar

=

0

B@
6± 59

1.0± 1.2

1.03± 0.48

1

CA , (5.2)

where we have highlighted the most stringent constraints (note that the SM prediction is one
by construction). A particularly interesting case is the SM supplemented by the following
contributions: Q̃2

µ = Q̃2
µ̄ =

⇥
Q

2
⇤
µµ

and Q̃2
e =

⇥
Q

2
⇤
ee

, which is the most general setup that
we can have when considering NP only at detection or in a linear analysis (see Section 3.4).
In this case we find:

 ⇥
Q

2
⇤
µµ⇥

Q
2
⇤
ee

!

Ar

1

Q2

SM,Ar

=

 
1.02± 0.81

1.1± 1.9

!
⇢ =

 
1 �0.68

�0.68 1

!
, (5.3)

which can be rewritten as the following uncorrelated bounds:

�0.48
⇣⇥

Q
2
⇤
µµ

/Q2

SM

⌘

Ar

+ 1.48
�⇥
Q

2
⇤
ee
/Q2

SM

�
Ar

=1.1± 3.0 ,

0.75
⇣⇥

Q
2
⇤
µµ

/Q2

SM

⌘

Ar

+ 0.25
�⇥
Q

2
⇤
ee
/Q2

SM

�
Ar

=1.03± 0.45. (5.4)

The results of this 2D fit are shown in the left panel of Fig. 1, where we also present the
allowed regions if one only uses the total number of events, the energy distribution or the
time distribution.

Finally in the SM scenario there is only one weak charge (Q̃2
µ = Q̃2

µ̄ = Q̃2
e ⌘ Q2), and

we find
�
Q2/Q2

SM

�
Ar

= 1.03± 0.45.

5.1.2. CsI charges

We have carried out a fit to the 2D distributions (nuclear recoil energy and time) provided
in the CsI analysis. This fit has 624 experimental inputs (with their associated uncertain-
ties and backgrounds), 4 nuisance parameters (with their uncertainties) and the three CsI
generalized weak charges. Once again we find that the distribution of the Q̃2

f
charges is

approximately Gaussian, with the following results:
0

B@
Q̃2

µ

Q̃2
µ̄

Q̃2
e

1

CA

CsI

1

Q2

SM,CsI

=

0

B@
1.33± 0.35

�1.4± 1.5

4.4± 2.3

1

CA ⇢ =

0

B@
1 0.12 �0.09

0.12 1 �0.98

�0.09 �0.98 1

1

CA , (5.5)

– 20 –

where we have indicated explicitly the dependence of the expected number of CE⌫NS events
on the generalized squared weak charges for the nucleus N , denoted by ~Q2

N ⌘ {Q̃2
µ, Q̃

2
µ̄, Q̃

2
e}.

The expected number of background events of type a, denoted by Nbkg,a
ij

, is obtained
following COHERENT prescriptions, as described in detail in Appendix B. The typical
background sources are the steady state (SS) background, the neutrino-induced neutron
(NIN) background and the beam-related neutron (BRN) background, although the way each
of them is characterized differs slightly in every measurement. Finally, the hsignal/bkg,a

ij
(~x)

functions are linear in the nuisance parameters ~x and vanish at their central values ~x = ~0.
The specific form of these functions for each experimental analysis is given in Appendix B
following once again the COHERENT prescription.

In our numerical analysis we use the 2D distributions (in time and recoil) measured in
the CsI and Ar works [28, 29]. For each of these two datasets we work with a Poissonian
chi-squared function with the following generic form

�2 =
X

i,j

2

0

@�N exp

ij
+N th

ij

⇣
~Q2

N ; ~x
⌘
+N exp

ij
ln

0

@ N exp

ij

N th

ij

⇣
~Q2

N ; ~x
⌘

1

A

1

A+
X

n

✓
xn
�n

◆2

, (4.6)

where �n is the uncertainty of the xn nuisance parameter. All in all we have 52x12 bins in
CsI and 4x10 bins in LAr, cf. Appendix B for further details.

5. Numerical analysis

5.1. Generalized nuclear weak charges

In this section we present the results of the analysis of LAr and CsI data in terms of the
generalized nucleus-dependent weak charges Q̃f . Since the event rate depends quadratically
on these charges, it is convenient to work with their squared values Q̃2

f
.

5.1.1. Argon charges

We carry out a 2D fit to the nuclear recoil energy and time distributions, as described in the
previous section. This fit has 40 experimental inputs(with their associated uncertainties and
backgrounds), 9 nuisance parameters (with their uncertainties) and the three Q̃2

f
charges

that contain the UV information. We find that the distribution of these three charges is
approximately Gaussian, with the following results:12

0

B@
Q̃2

µ

Q̃2
µ̄

Q̃2
e

1

CA

Ar

1

Q2

SM,Ar

=

0

B@
1.00± 0.82

0.4± 6.2

1.9± 8.2

1

CA ⇢ =

0

B@
1 0.29 �0.31

0.29 1 �0.99

�0.31 �0.99 1

1

CA , (5.1)

12The squared charges have to be positive. Our results are approximately Gaussian (before imposing this
prior) so we will present them in the usual form, i.e., central values, diagonal errors, and correlation matrix.
It is straightforward to impose the Q̃2

f � 0 constraint a posteriori. This will induce a large non-Gaussianity
if and only if the (Gaussian) errors are large.
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V. Breso-Pla et al  
[arXiv:2301.07036]

A more intuitive form 

approximately Gaussian, with the following results:13

0

B@
Q̃2

µ

Q̃2
µ̄

Q̃2
e

1

CA

Ar

1

Q2

SM,Ar

=

0

B@
1.00± 0.82

0.4± 6.2

1.9± 8.2

1

CA ⇢ =

0

B@
1 0.29 �0.31

0.29 1 �0.99

�0.31 �0.99 1

1

CA , (5.1)

along with the nine nuisance parameters that we do not display. We have normalized the
results using the SM value, Q

2

SM,Ar
= 461, with an associated small error that can be

neglected for the purpose of this work. The results in Eq. (5.1) are in perfect agreement
with the SM prediction Q̃2

f
/Q2

SM
= 1. We can disentangle the first charge, Q̃2

µ, from the
other two thanks to its different time dependence: the former enters the rate via (prompt)
pion decay, while the latter do it via (delayed) muon decay. On the other hand the recoil
energy distribution only allows for a mild separation of Q̃2

e and Q̃2
µ̄. To get rid of the large

correlations, which obscure the strength of the results, let us rewrite them as the following
uncorrelated bounds

0

B@
�0.14 �3.48 4.62

�0.69 0.98 0.71

0.55 0.25 0.20

1

CA

0

B@
Q̃2

µ

Q̃2
µ̄

Q̃2
e

1

CA

Ar

1

Q2

SM,Ar

=

0

B@
6± 59

1.0± 1.2

1.03± 0.48

1

CA , (5.2)

where we have highlighted the most stringent constraints (note that the SM prediction is one
by construction). A particularly interesting case is the SM supplemented by the following
contributions: Q̃2

µ = Q̃2
µ̄ =

⇥
Q

2
⇤
µµ

and Q̃2
e =

⇥
Q

2
⇤
ee

, which is the most general setup that
we can have when considering NP only at detection or in a linear analysis (see Section 3.4).
In this case we find:

 ⇥
Q

2
⇤
µµ⇥

Q
2
⇤
ee

!

Ar

1

Q2

SM,Ar

=

 
1.02± 0.81

1.1± 1.9

!
⇢ =

 
1 �0.68

�0.68 1

!
, (5.3)

which can be rewritten as the following uncorrelated bounds:

�0.48
⇣⇥

Q
2
⇤
µµ

/Q2

SM

⌘

Ar

+ 1.48
�⇥
Q

2
⇤
ee
/Q2

SM

�
Ar

=1.1± 3.0 ,

0.75
⇣⇥

Q
2
⇤
µµ

/Q2

SM

⌘

Ar

+ 0.25
�⇥
Q

2
⇤
ee
/Q2

SM

�
Ar

=1.03± 0.45. (5.4)

The results of this 2D fit are shown in the left panel of Fig. 1, where we also present the
allowed regions if one only uses the total number of events, the energy distribution or the
time distribution.

Finally in the SM scenario there is only one weak charge (Q̃2
µ = Q̃2

µ̄ = Q̃2
e ⌘ Q2), and

we find
�
Q2/Q2

SM

�
Ar

= 1.03± 0.45.

13The squared charges have to be positive. Our results are approximately Gaussian (before imposing this
prior) so we will present them in the usual form, i.e., central values, diagonal errors, and correlation matrix.
It is straightforward to impose the Q̃2

f � 0 constraint a posteriori. This will induce a large non-Gaussianity
if and only if the (Gaussian) errors are large.
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5.1.2. CsI charges

We have carried out a fit to the 2D distributions (nuclear recoil energy and time) provided
in the CsI analysis. This fit has 624 experimental inputs (with their associated uncertain-
ties and backgrounds), 4 nuisance parameters (with their uncertainties) and the three CsI
generalized weak charges. Once again we find that the distribution of the Q̃2

f
charges is

approximately Gaussian, with the following results:
0

B@
Q̃2

µ

Q̃2
µ̄

Q̃2
e

1

CA

CsI

1

Q2

SM,CsI

=

0

B@
1.33± 0.35

�1.4± 1.5

4.4± 2.3

1

CA ⇢ =

0

B@
1 0.12 �0.09

0.12 1 �0.98

�0.09 �0.98 1

1

CA , (5.5)

along with the nuisance parameters. Here, Q2

SM,CsI
= 5572. As in the LAr case, we

can separate much better Q̃2
µ from the other two charges thanks to the use of the time

information. The results can be rewritten as the following uncorrelated bounds:
0

B@
�0.04 �1.80 2.85

0.80 0.12 0.09

�0.15 0.71 0.45

1

CA

0

B@
Q̃2
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Q̃2
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Q̃2
e

1

CA

CsI

1

Q2

SM,CsI

=

0

B@
15.1± 9.1

1.28± 0.28

0.81± 0.19

1

CA , (5.6)

where we find again good agreement with the SM predictions (one).

Considering only NP at detection we find
 ⇥

Q
2
⇤
µµ⇥

Q
2
⇤
ee

!

CsI

1

Q2

SM,CsI

=

 
1.32± 0.34

0.44± 0.61

!
⇢ =

 
1 �0.73

�0.73 1

!
, (5.7)

which can be re-written as the following uncorrelated bounds:

�0.84
⇣⇥

Q
2
⇤
µµ

/Q2

SM

⌘

CsI

+ 1.84
�⇥
Q

2
⇤
ee
/Q2

SM

�
CsI

= (�0.3± 1.4) ,

0.69
⇣⇥

Q
2
⇤
µµ

/Q2

SM

⌘

CsI

+ 0.31
�⇥
Q

2
⇤
ee
/Q2

SM

�
CsI

= (1.04± 0.16) . (5.8)

The results of this 2D fit are shown in the right panel of Fig. 1. We present as well the
allowed regions if one uses only the total number of events, the energy distribution or the
time distribution. Finally, we also show the result obtained using the full 2D distribution of
the first CsI dataset [3], which is in good agreement with Fig. 6 in Ref. [29]. One observes
a clear improvement when the entire CsI dataset is used.

Finally in the SM scenario there is only one weak charge (Q̃2
µ = Q̃2

µ̄ = Q̃2
e ⌘ Q2), and

we find
�
Q2/Q2

SM

�
CsI

= 1.04± 0.16.

5.2. WEFT coefficients

In this section we move to consider the constraints on the nucleon- and quark-level
EFT Wilson coefficients, stemming from our analysis of LAr and CsI CE⌫NS data.
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Q2
SM,Ar ≈ 461

Q2
SM,CsI ≈ 5572



Coherent neutrino scattering
Translation into SMEFT constraints

Eq. (5.10) are translated into constraints on the SMEFT Wilson coefficients using the map

✏uu↵↵ = �gZu

L + �gZu

R +

✓
1�

8s2
✓

3

◆
�gZ⌫↵

L
�

1

2
[c(1)
lq

+ c(3)
lq

+ clu]↵↵11 ,

✏dd↵↵ = �gZd

L + �gZd

R �

✓
1�

4s2
✓

3

◆
�gZ⌫↵

L
�

1

2
[c(1)
lq

� c(3)
lq

+ cld]↵↵11 . (C.9)

C.3. Fit results

As discussed at length in Ref. [40], not all linear combinations of the Wilson coefficients
in Eqs. (C.2) to (C.4) can be constrained by the observables we consider. Some of the
Wilson coefficients are not constrained at all by these observables (at least in the tree-level
approximation we use), while others display flat directions (only certain linear combinations
of Wilson coefficients are constrained, but not all of them independently). One can show
that adding the COHERENT results, while improving some constraints, does not lift any
flat directions in the fit of Ref. [40]. On the other hand, the new observables we add
(hadronic tau decays, Michel parameters) lead to new Wilson coefficients being constrained,
but again do not lift any existing flat directions. In order to isolate the flat directions we
define the hatted variables

[ĉeq]ee11 =[ceq]ee11 + [c(1)
lq

]ee11,

[ĉlu]ee11 =[clu]ee11 + [c(1)
lq

]ee11 � [ĉeq]ee11,

[ĉld]ee11 =[cld]ee11 + [c(1)
lq

]ee11 � [ĉeq]ee11,

[ĉeu]ee11 =[ceu]ee11 � [c(1)
lq

]ee11,

[ĉed]ee11 =[ced]ee11 � [c(1)
lq

]ee11,

[ĉ(3)
lq

]ee22 =[c(3)
lq

]ee22 � [c(1)
lq

]ee22,

[ĉld]ee22 =[cld]ee22 +

✓
5�

3g2
L

g2
Y

◆
[c(1)
lq

]ee22 � [ĉeq]ee11,

[ĉed]ee22 =[ced]ee22 �

✓
3�

3g2
L

g2
Y

◆
[c(1)
lq

]ee22 � [ĉeq]ee11,

[ĉ(3)
lq

]ee33 =[c(3)
lq

]ee33 + [c(1)
lq

]ee33,

[ĉeq]µµ11 =[ceq]µµ11 + [ced]µµ11 � 2[ceu]µµ11,

✏d`P (2 GeV) =0.86[cledq]``11 � 0.86[c(1)
lequ

]``11 + 0.012[c(3)
��ledq lequ

]``11,

[ĉll]µµµµ =[cll]µµµµ +
2g2

Y

g2
L
+ 3g2

Y

[cle]µµµµ. (C.10)

Using these variables, the global likelihood depends on the Wilson coefficients on the right-
hand sides of Eqs. (C.10) only via the ĉ and ✏d`

P
(2 GeV) combinations. Let us stress that

the Wilson coefficients in the r.h.s. of ✏d`
P
(2 GeV) in Eq. (C.10) are defined at µ = mZ .
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Fig. 1: 90% CL allowed regions (��2 = 4.61) for the squared weak charges (normalized to their SM
values) using Ar (left) and CsI (right) data and assuming only NP at detection. For each dataset
we include information from the total number of events (N), from the recoil energy distribution
(E), from the timing distribution (t) and from the 2D distribution (E+t). In the right panel we
also show the contour obtained using only the first CsI dataset [3]. The shaded area indicates the
unphysical region (negative squared charges).

5.2.1. Linear BSM expansion

As shown in Eq. (3.23), at linear order in New Physics there are only 2 free parameters
per target: the flavor diagonal muon and electron weak charges, [Q2]Nµµ,ee. Using Eq. (3.24)
we can express our bounds on the four weak charges (with N = Ar, CsI, see Eqs. (5.3)
and (5.7)) as bounds on the four nucleon-level EFT Wilson coefficients �g⌫pee,µµ and �g⌫nee,µµ.
We find that we can constrain the following orthogonal and uncorrelated linear combinations
of couplings:

0

BBB@

0.55 �0.19 �0.77 0.26

�0.18 �0.56 0.26 0.76

0.74 �0.32 0.53 �0.24

0.32 0.74 0.23 0.54

1

CCCA

0

BBB@

�g⌫pee
�g⌫pµµ
�g⌫nee
�g⌫nµµ

1

CCCA
=

0

BBB@

4± 12

0.5± 3.4

0.22± 0.25

�0.021± 0.079

1

CCCA
. (5.9)

At the quark level, using the map in Eq. (2.9), we can translate these results into con-
straints on the following orthogonal and uncorrelated linear combinations of WEFT Wilson
coefficients:

0

BBB@

0.63 �0.70 �0.22 0.24

0.21 �0.24 0.63 �0.70

�0.68 �0.61 0.30 0.27

0.30 0.27 0.68 0.61

1

CCCA

0

BBB@

✏ddee
✏uuee
✏ddµµ
✏uuµµ

1

CCCA
=

0

BBB@

2.0± 5.7

�0.2± 1.7

�0.037± 0.042

�0.004± 0.013

1

CCCA
. (5.10)

The last two constraints in Eq. (5.10) are not expected to change with the inclusion of
quadratic corrections14 and they represent another central result of our work. Once again,

14This is true in the vicinity of the SM value. For large ✏qqll values one can find new allowed regions, the
so-called dark solutions.
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The study of simultaneous NP effects in neutrino production and detection is partic-
ularly relevant in setups with explicit electroweak symmetry, since neutrinos and charged
leptons form SU(2)L gauge doublets. As a result, non-standard contributions to ⌫↵N !

⌫�N come in general with non-standard effects in leptonic pion decay, ⇡ ! ⌫↵`� . Let
us consider for instance the SMEFT operators [O(3)

lq
]µ⌧11 ⌘ (l̄2

L
�µ�kl3

L
)(q̄1

L
�µ�kq1

L
) and

[O(1)

lq
]µ⌧11 ⌘ (l̄2

L
�µl3L)(q̄

1

L
�µq1

L
) (along with their conjugates so that the Lagrangian is Her-

mitian), and let us abbreviate their associated Wilson coefficients as c3 ⌘ v2[C(3)

lq
]µ⌧11 and

c1 ⌘ v2[C(1)

lq
]µ⌧11. At tree level they generate the following WEFT coefficients relevant for

COHERENT:

[✏udL ]µ⌧ = c3 , ✏uuµ⌧ = c1 � c3 , ✏ddµ⌧ = c1 + c3 . (5.14)

We show in Fig. 5 (right panel) the bounds that we obtained on the coefficients c1 and c3
using COHERENT data.

We can also constrain charged-current NSIs using the measurements of leptonic pion
decay widths. To make things simpler, we work with the ratio R⇡ ⌘ �(⇡ ! e⌫)/�(⇡ ! µ⌫)

that, in the specific cases discussed above, is modified as R⇡ = RSM
⇡ /(1 + (✏udµ⌧ )

2). Fig. 5
shows the interplay between this constraint and the one obtained from COHERENT data.

6. Comparison and combination with other precision observables

In this section we discuss the place of the COHERENT experiment in the larger land-
scape of electroweak precision observables. To this end we will employ the SMEFT frame-
work [16, 17], which will allow us to combine information from COHERENT and other
experiments below the Z-pole, with that obtained by the high-energy colliders at or above
the Z-pole.16 It will also allow us to combine the information from NC and CC processes,
which are related by the SU(2)L gauge symmetry. We consider operators up to dimension
six, using the standard SMEFT power counting where the corresponding Wilson coefficients
are O(⇤�2) in the new physics scale ⇤. Consequently, we expand observables to order 1/⇤2,
ignoring higher order corrections. This implies that we only need the linearized version of
the COHERENT results obtained in the WEFT formalism, cf. Eq. (5.10).

The COHERENT experiment probes contact 4-fermion interactions between the left-
handed lepton doublets lL and quark doublets qL, and singlets uR, dR. The relevant
dimension-6 operators are [17]

LSMEFT �C(1)

lq
(l̄L�µlL)(q̄L�

µqL) + C(3)

lq
(l̄L�µ�

klL)(q̄L�
µ�kqL)

+Clu(l̄L�µlL)(ūR�
µuR) + Cld(l̄L�µlL)(d̄R�

µdR). (6.1)

Here, the capital letter Wilson coefficients are dimensionful, [CX ] = mass�2. For the
numerical analysis it is more convenient to work with dimensionless objects cX = v2CX ,
where v ' 246.22 GeV. The SM fields are 3-component vectors in the generation space,

16See Refs. [60–62] for previous SMEFT analyses that included some COHERENT observables.
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• Only 4 constraints and not 6 because one can show that, at linear order in new physics, 
  there are only two independent charges per nucleus, that is   

• Only two combination of SMEFT parameters are efficiently constrained, at the percent 
level 

Q̃μ = Q̃μ̄

Ignoring quadratic corrections in Wilson coefficients one gets the constraints

V. Breso-Pla et al  
[arXiv:2301.07036]



Coherent neutrino scattering
Combination of COHERENT constraints with other  
low- and high-energy electroweak precision tests  

Assuming flavor symmetric  Wilson coefficients 
one see O(1) improvement in some constraints

(U(3)5)

l d

dl

l u

ul
V. Breso-Pla et al  

[arXiv:2301.07036]



Fig. 7: Left panel: Marginalized 1-sigma bounds (��2
' 2.3) on the (combination of) SMEFT

Wilson coefficients [ĉeq]ee11 and [clu]µµ11 from a global fit to EWPO in the flavor-generic SMEFT
without (gray) and with (green) COHERENT data. Right panel: The same for the [ĉeq]ee11-[cld]µµ11
pair of Wilson coefficients.

We restrain ourselves from copying here the 65 ⇥ 65 correlation matrix. This, as well
as the full Gaussian likelihood function in the Higgs or Warsaw basis, is available in the
numerical form on request. We highlighted in red the Wilson coefficients whose bounds
have improved significantly thanks to including the COHERENT results. The improve-
ment is illustrated in Fig. 7. The most spectacular effect is observed for the combination
[ĉeq]ee11 = [ceq]ee11+[c(1)

lq
]ee11. In the fit of Ref. [40] it was constrained only by the CHARM

measurement of electron neutrino scattering on nuclei [93], which is however very impre-
cise. The COHERENT results analyzed in this paper reduce the error bars on [ĉeq]ee11 by
a factor of 5.
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Constraints from  
reactor neutrino oscillations

Part 3EFT in reactor experiments: Detection  
 

Detection Through IBD Process: 
 
 
 
Neutrino energy: 
 
 
 
 
Starting from the non-relativistic effective Lagrangian: 
 
 

depend on neutrino energy        suppressed 
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𝒩 p
L ∼ km n

e−

ν̄ν̄

e+

𝒩

dR̄ee = ∑
𝒩

f𝒩
NSNT

32πL2m𝒩mp

3

∑
k,l=1

e−i L(m2
k − m2

l )
2Eν [dΠPℳP

ekℳ
P*
el ][dΠDℳD
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D*
el ]

ℳP
ek ≡ ℳ[𝒩 → 𝒩′ e−ν̄k]

ℳD
ek ≡ ℳ[ν̄k p → e+n]

Reactor neutrino oscillations

Weighted sum over 
nuclei in reactor

'



dRαβ =
NSNT

32πL2mSmT
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20

The rate above is already an observable in neutrino experiments,  
and this is what is used in practical analyses,  

but to compare to commonly used language we can define oscillation probability

dPαβ

dEν
=

∫
dRαβ

dEν

dΦα

dEν
σβ

Neutrino flux  
at the source

Neutrino cross section 
at the target
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Reactor neutrino oscillations



ℒWEFT ⊃ −
2Vud

v2 [[1+ϵL]αβ
ēαγμPLνβ ⋅ ūLγμdL

+[ϵR]αβ
ēαγμPLνβ ⋅ ūRγμdR

+
1
2

ēαPLνβ ⋅ ū[ϵS − ϵPγ5]αβ
d

+
1
4 [ϵT]αβ

ēασμνPLνβ ⋅ ūRσμνdL] + h . c .

Leading order Ccarged current Lagrangian at low energy can be parametrized as 

21

[ϵL]αβ =
v2

Vud
(Vud[C(3)

Hl ]αβ + Vjd[C(3)
Hq]1jδαβ − Vjd[C(3)

lq ]αβ1j)
[ϵR]αβ =

v2

2Vud
[CHud]11δαβ

[ϵS]αβ = −
v2

2Vud
(Vjd[C(1)

lequ]*βαj1 + [Cledq]*βα11)
[ϵP]αβ = −

v2

2Vud
(Vjd[C(1)

lequ]*βαj1 − [Cledq]*βα11)
[ϵT]αβ = −

2v2

Vud
Vjd[C(3)

lequ]*βαj1

Matching to SMEFT

Reactor neutrino oscillations



[X] ≡ eiδCP (s23[ϵX]eμ + c23[ϵX]eτ)
αD =

gS

3g2
A + 1

Re [S] −
3gAgT

3g2
A + 1

Re [T ]

βD =
gS

3g2
A + 1

Im [S] −
3gAgT

3g2
A + 1

Im [T ],

αP =
gT

gA
Re [T ]

βP =
gT

gA
Im [T ]

θ̃13 = θ13 + Re[L]

Short baseline reactor neutrino oscillations sensitive to  
5 distinct linear combinations of dimension-6 SMEFT operators 

Pν̄e→ν̄e
= 1 − sin2 ( Δm2

31L
4Eν ) sin2 (2θ̃13 − αD

me

Eν − Δ
− αP

me

fT(Eν) )
+sin ( Δm2

31L
2Eν ) sin(2θ̃13)( βD

me

Eν − Δ
− βP

me

fT(Eν) ) + 𝒪(ϵ2
X) + 𝒪(Δm2

21)

In  the limit  the survival probability takes the form
Δm2

21L
Eν

≪ 1,

Effects of SM-like V-A interactions parametrized by  are absorbed into mixing angle,  
thus they are not observable in reactor oscillations alone! 

ϵL

AA, M. Gonzalez-Alonso, Z. Tabrizi 
[arXiv:1901.04553]

Approximately 
 known function

depending on 

distribution of 


radioactive nuclei

in reactor


Reactor neutrino oscillations



[X] ≡ eiδCP (s23[ϵX]eμ + c23[ϵX]eτ)

A possible handle to constrain these effects,  
as neutrino experiments quote results in energy bins 

αD =
gS

3g2
A + 1

Re [S] −
3gAgT

3g2
A + 1

Re [T ]

βD =
gS

3g2
A + 1

Im [S] −
3gAgT

3g2
A + 1

Im [T ],

The real parts of scalar and tensor parameters  
lead to “energy-dependent mixing angle”: 

Pν̄e→ν̄e
= 1 − sin2 ( Δm2

31L
4Eν ) sin2 (2θ̃13 − αD

me

Eν − Δ
− αP

me

fT(Eν) )
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31L
2Eν ) sin(2θ̃13)(βD

me
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21)

The imaginary parts of scalar and tensor parameters  
lead to qualitatively distinct oscillation pattern 

Reactor neutrino oscillations
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Figure 2: Allowed regions in the (sin2 2✓̃13 � Re [S]) (first row) and (sin2 2✓̃13 � Im [S]) plane (second row) for
the combined data of the Daya Bay and RENO experiments. The 1-, 2-, and 3-� regions are shown with orange,
blue, and purple, respectively. In the left panels only Re [S] (or Im [S]) is varied at a time, while in the right panels
both vary simultaneously.
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Somewhat better constraint 
on tensor than scalar

Better constraints 
on real than imaginary parts

Reactor neutrino oscillations
Combined constraints using RENO and Daya Bay data

See also the analysis by Daya Bay 
[arXiv:2401.02901]  



See also

EFT Faser  sensitivity study ν

AA, M. Gonzalez-Alonso,  J. Kopp, Y. Soreq, Z. Tabrizi 
[arXiv:1901.04553]

Discussion of neutrino detection in the quasi-elastic regime 
J. Kopp, N. Rocco,  Z. Tabrizi 

[arXiv::2401.07902] 

Figure 2. Contributions to the CCQE differential cross sections for muon neutrinos scattering on
an oxygen target, as a function of the neutrino energy. Results for ⌫e scattering are very similar.
The different colored curves correspond to operators with different Lorentz structures, with the SM
(LL) case shown in gray. For interactions depending on the axial form factor, we compare different
parameterizations of that form factor: the dipole from eq. (2.19) (dotted), the z-expansion fitted to
neutrino–deuteron scattering data (dashed), and the z-expansion fitted to lattice QCD results (solid).
For comparisons, we also show results for neutrino scattering on free nucleons (thinner dot-dashed
lines). The content of this plot is available in tabulated form from the Our main cross-section results
in tabulated form are available from GitHub [41].
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https://arxiv.org/abs/2401.07902


Fantastic Beasts and Where To Find Them

CMS 
Imaginary  

Λ

Thank  You



Neutrino conventions

ℒWEFT ⊃ i∑
α

ν̄αγμ∂μνα −
1
2 ∑

αβ
(ναMαβνβ + h . c . )

να α = e, μ, τ Neutrinos carry the “flavor index” α 
but these are not “flavor eigenstates” !

Kinetic and mass terms:

Diagonal kinetic terms In general non-diagonal mass terms

We also define the neutrino mass eigenstates νk k = 1,2,3

να =
3

∑
k=1

Uαkνk UαjMαβUβk = δjkmk

3x3 unitary matrix 
called PMNS matrix

U =
c12c13 s12c13 e−iδCPs13

−s12c23 − eiδCPc12s13s23 c12c23 − eiδCPs12s13s23 c13s23

s12s23 − eiδCPc12s13c23 −c12s23 − eiδCPs12s13c23 c13c23



• Beta decays:


• CKM unitarity 


• Pion decays 

• Drell-Yan LHC 

• Muon Conversion


•  τ → e π π 

| [ϵS]eα | ≤ 6.4 × 10−2 , | [ϵT]eα | ≤ 4.4 × 10−2

Constraints from non-oscillation experiments

| [ϵS]eα | ≤ 2.0 × 10−2

| [ϵP]eα |μ=2 GeV ≤ 7.5 × 10−6 .

[ϵT]eα + 3 × 10−4[ϵS]eα
μ=2 GeV

≤ 1.0 × 10−3

(∑
α

| [ϵS]eα |2 )
1/2

≲ 2 × 10−3 , (∑
α

| [ϵT]eα |2 )
1/2

≲ 2 × 10−3

[ϵS]eμ ≲ 3 × 10−6

[ϵS]eτ ≲ 4 × 10−4

(Not completely robust) constraints due to quadratic contributions 
of off-diagonal NSI to several observables



Setting EFT bounds at Daya Bay and RENO

08/10/19 Zahra Tabrizi, UNICAMP 20

Daya Bay:

• 6 reactor cores;

• 8 anti-neutrino detectors;

• 3 near and far experimental halls located at 400 m, 512

m and 1610 m;

• Has observed ~ 4 million anti-neutrino events in 1958

days of data taking;

Daya Bay Collaboration, D. Adey et al., 

arXiv:1809.02261 

RENO:

• 6 reactor cores;

• 2 near and far an[-neutrino detectors located at 367 m

and 1440 m;

• Has observed ~ 1 million an[-neutrino events in 2200

days of data taking

RENO Collabora[on, G. Bak et al.,

arXiv:1806.00248. 


