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Observing a slice of the light-cone

n̂

CMB extremely successful. Better polarization in the next ~10 yrs

Many open questions that 
CMB alone cannot answer! 



Observing the entire light-cone

(n̂, z)

Image billions and take spectra of ~100 million of objects up to z~5
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Spectroscopic galaxy surveys



Full-shape analysis
Similar to CMB, directly measures “shape” parameters

all cosmological parameters

no CMB input needed

galaxy map

How do we formulate a theory of density fluctuations in the late universe?

Spectroscopic galaxy surveys



EFT of large-scale structure

Large distance dof: δg
EoM are fluid-like, including gravity
Symmetries, Equivalence Principle
Expansion parameters: , δg ∂/kNL
All “UV” dependence is in a handful of free parameters

On scales larger than  this is the universal description of galaxy clustering1/kNL

Carrasco, Hertzberg, Senatore (2012)
Baumann, Nicolis, Senatore, Zaldarriaga (2010)

Senatore, Zaldarriaga (2014)
Senatore (2014)

Mirbabayi, Schmidt, Zaldarriaga (2014)
Baldauf, Mirbabay, MS, Zaldarriaga (2015)

…



EFT of large-scale structure

Just DM particles in an expanding universe

UV description: collisionless Boltzmann eq.   
d
dt

f(x, p, t) = 0

gravity ∇2Φ ∝ ∫ d3p f(x, p, t)

What is the IR description in terms of     ?δ =
ρ − ρ̄

ρ̄

From far away we only see fluctuations in number density of particles



Naively fluid, but collisionless and gravity is unscreened long-range force… 

Mean free path effectively set by the age of the universe (DM particles are slow)

Gravity helps by “gluing” DM particles which form DM halos

EFT of large-scale structure
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This allows to consistently truncate the Boltzmann hierarchy

new nonlinear 

terms with free

coefficients

Carrasco, Hertzberg, Senatore (2012)
Baumann, Nicolis, Senatore, Zaldarriaga (2010)

These eom can be derived bottom-up too, using symmetries



Expansion parameters: , δ ∂/kNL kNL ∼ 1/Rhalo

Small-scale nonlinear DM physics encoded in c2
s

EFT of large-scale structure
�(x) ⌘

⇢(x)� ⇢̄

⇢̄
(9)

�(x) =

Z
d3k

(2⇡)3
�ke

ik·x (10)

h�k�k0i = (2⇡)3�D(k + k0)P (k) (11)

@i@j� (12)

�2R ⇠
1

2⇡2

Z 1/R

0
k2dk Plin(k) ⇠ 1 (13)

2

for        at low redshiftsR ∼ few Mpc

The horizon scale    H−1
0 ∼ 104 Mpc

number of pixels in LSS:    Npix. ≈ (H0Rnl.)−3 ∼ 109
NLSS

pix. ≫ NCMB
pix.

Classical EFT with the usual features

Is this useful in practice? 
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Figure 18: Function B` as defined in Eq. (B.3) as a function of k for the monopole and
quadrupole. We note an enhancement on small scales when reducing the velocity dispersion
(e.g. by suppressing the matter power spectrum).

indicates possible anisotropic effects of the structure suppression of axions and constitutes a
completely new signature beyond the well-known structure suppression. To investigate this,
we make use of a very simple redshift space model for the galaxy power spectrum where we
approximate the galaxy power spectrum as

Pg(k, µ) ⇡ e
�(kµf�v)2

�
1 + fµ

2
�2

b
2
gPlin(k), (B.1)

where bg is the galaxy bias and where �v is the galaxy velocity dispersion. This model is
based on the Kaiser approximation [99] with a Gaussian kernel for the finger-of-God effects.
The velocity dispersion can be roughly approximated at linear order with (see Ref. [100] and
references therein)

�
2
v,lin =

1

6⇡2

Z
dqPlin(q). (B.2)

Using Eq. (3.2), we have that the multipoles of the power spectrum are
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From this simple model, we find that the increase in the quadrupole moment is at-
tributable to a decrease in the velocity divergence which arises when the linear matter power
spectrum is suppressed and the value of the integral in Eq. (B.2) decreases. This decrease in
�v leads to a higher value of the B`, especially for the ` = 2 as shown in Fig. 18.

C Axion Transfer Function Interpolation

The axion transfer function defined in Eq. 3.3 captures the deviation from ⇤CDM due to
axions in the matter power spectrum. It is most often obtained through semi-analytic approx-
imations [27] or numerically with adapted Boltzmann codes. In the present study however,
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Correlation functions computed using perturbation theory

Carrasco, Hertzberg, Senatore (2012)

EFT of large-scale structure

Renormalization

IR resummation
…



counterterm is combined with the higher derivative bias since they are perfectly
degenerate for the galaxy power spectrum. Third, the contributions from operators
�
3
, �G2, G3 disappeared after renormalization. This is the reason why b3, b�G2 , bG3 are

absent in Eq. (2.10).

Using the same bias model we can also calculate the galaxy-matter cross-spectrum
which is of relevance, for instance, for lensing surveys. It has the following form [54]:

Pgm(z, k) = b1(z)(Plin(z, k) + P1-loop, SPT(z, k)) +
1

2
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2
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(2.12)

Note that the matter counterterm and the higher-derivative bias enter the cross-
spectrum and the the auto-spectrum in different combinations. In principle, This
allows one to break the degeneracy between them using the galaxy-lensing observa-
tions.

2.4 Power Spectrum of Biased Tracers in Redshift Space

The radial positions of galaxies in a survey are assigned using their redshifts, which
are contaminated by the peculiar velocity field. This gives rise to the so-called
redshift-space distortions RSD, which allow one to probe the velocity field along the
line-of-sight direction ẑ. We will work within the flat-sky plane-parallel approxima-
tion, where the redshift-space mapping can be fully characterized by the cosine of
the angle between the line-of-sight ẑ and the wavevector of a given Fourier mode k,
µ ⌘ (ẑ · k)/k. In this setup, the expression for the one-loop redshift-space power
spectrum reads (see Refs. [59, 60]):
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2
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(2.13)
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where the redshift-space kernels are given by
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, (2.14a)
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where k = k1 + k2 + k3 and Gn are the velocity divergence kernels [30]. Note that
Z3(k1,k2,k3) contains only bias parameters that give nontrivial contributions to the
redshift-space one-loop power spectrum and that it must be symmetrized over its
momentum arguments when used in Eq. (2.13). Furthermore, we have omitted the
time dependence of f ⌘ d logD/d log a and biases for clarity.

Let us discuss the structure of the last two terms in Eq. (2.13) in some detail.
The leading counterterm contributions in redshift space can be seen as a simple
generalization of the dark matter sound speed [59, 72],

Pctr,RSD,r2�(z, k, µ) =� 2c̃0(z)k
2
Plin(z, k)

� 2c̃2(z)f(z)µ
2
k
2
Plin(z, k)� 2c̃4(z)f

2(z)µ4
k
2
Plin(z, k) ,

(2.15)

where c̃0(z), c̃2(z) and c̃4(z) are quantities that are generically expected to have sim-
ilar value to the real-space dark matter sound speed in units of [Mpc/h]2. However,
due the presence of fingers-of-God [73] these counterterms can be more significant
for some tracers than naïvely expected. Since the fingers-of-God are induced by
the higher-derivative terms in the non-linear RSD mapping, one may include an ad-
ditional counterterm proportional to k

4
µ
4
Plin(z, k) as a proxy of the higher-order

contributions,

Pctr,RSD,r4
z�(z, k, µ) = �c̃(z)f 4(z)µ4

k
4(b1(z) + f(z)µ2)2Plin(z, k) , (2.16)

where we have inserted the linear Kaiser factor (b1(z)+f(z)µ2)2 [74] for convenience.
Whilst, we leave the systematic derivation of all corrections of this order for future
work, we stress that addition of this term can be important in order to fit the data
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contain galaxy

formation physics

1-loop galaxy power spectrum

Infrared resummation

space cases. Since the large bulk flows affect only the BAO wiggles, the common
starting point is to split the linear power spectrum into the smooth Pnw and wiggly
component Pw;

Plin(k) = Pnw(k) + Pw(k) . (2.24)

The details of the algorithm used to perform this splitting is given in Section 4.
In real space we follow the approach presented in Refs. [49], which was developed

in the context of time-sliced Perturbation Theory (TSPT) [48]. Following the wiggly-
smooth decomposition one computes the damping factor9

⌃2(z) ⌘
1

6⇡2

Z kS

0

dq Pnw(z, q)


1� j0

✓
q

kosc

◆
+ 2j2

✓
q

kosc

◆�
, (2.25)

where kosc is the wavenumber corresponding to the BAO wavelength `BAO ⇠ 110h/Mpc,
jn(x) are spherical Bessel functions of order n, and kS is the scale separating the long
and short modes. We use the value kS = 0.2 h/Mpc as advocated in Ref. [49], even
though any other choice in the physically relevant range (0.05�0.1) h/Mpc produces
a very similar result. When we perform the one-loop calculation, the residual depen-
dence of the final result on kS is comparable to the two-loop wiggly contribution and
hence should be treated as a small theoretical error. Once the damping factor ⌃2(z)

is obtained, one computes the tree-level IR-resummed dark matter power spectrum
as

Pmm,LO(z, k) = Pnw(z, k) + e�k2⌃2
(z)
Pw(z, k) . (2.26)

The various one-loop IR-resummed power spectra for matter (XY=mm), galaxy
(XY=gg), and the matter-galaxy cross spectrum (XY=gm) can be obtained from
the usual one-loop integrals evaluated using Pmm,LO(z, k) as an input instead of the
linear power spectrum. Schematically, we can write

PXY = Ptree,XY[Pmm,LO] + P1�loop,XY[Pmm,LO] , (2.27)

where the various spectra Ptree,XY are given by

Ptree,mm = Pnw(z, k) + e�k2⌃2
(z)
Pw(z, k)(1 + k

2⌃2(z)) ,

Ptree, gm = b1Ptree,mm , Ptree, gg = b
2

1
Ptree,mm .

(2.28)

Note that the additional term k
2⌃2(z)e�k2⌃2

(z)
Pw(z, k) prevents double-counting of

the bulk flow contributions that are contained in the one-loop expression.
Let us now focus on the redshift-space power spectrum of galaxies. IR resumma-

tion becomes more complicated in this case, since the tree-level IR resummed matter

9Note the additional factors of 2⇡ compared to Refs. [49, 51]; these are a result of using a
different Fourier transform convention.
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power spectrum picks up non-trivial angular dependence from the anisotropic damp-
ing factor [51],

Pmm, LO(z, k, µ) ⌘ (b1(z) + f(z)µ2)2
⇣
Pnw(z, k) + e�k2⌃2

tot(z,µ)Pw(z, k)
⌘
, (2.29)

where we have introduced the new damping function, which depends on the loga-
rithmic growth factor, f(z);

⌃2

tot
(z, µ) = (1 + f(z)µ2(2 + f(z)))⌃2(z) + f

2(z)µ2(µ2
� 1)�⌃2(z) . (2.30)

This is a function of the real-space damping (2.25) and on a new contribution,

�⌃2(z) ⌘
1

2⇡2

Z kS

0

dq Pnw(z, q)j2

✓
q

kosc

◆
. (2.31)

Due to the anisotropy of the BAO damping, the one-loop calculation strictly requires
computation of anisotropic loop integrals, which in contrast to the real space case,
cannot be reduced to one-dimension. However, these can be simplified by splitting
the one-loop contribution itself into a smooth and wiggly part. More precisely, one
first computes the usual redshift-space one-loop integrals with a smooth part only.
Second, one evaluates the same integrals with one insertion of the unsuppressed
wiggly power spectrum and applies the direction-dependent damping factor (2.30)
to the output, giving [46]

Pgg(z, k, µ) = (b1(z) + f(z)µ2)2
⇣
Pnw(z, k) + e�k2⌃2

tot(z,µ)Pw(z, k)(1 + k
2⌃2

tot
(z, µ))

⌘

+ Pgg, nw, RSD, 1-loop(z, k, µ) + e�k2⌃2
tot(z,µ)Pgg, w, RSD, 1-loop(z, k, µ) .

(2.32)

Here P...1-loop[Plin] are treated as functionals of the input linear power spectrum;

Pgg, nw, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw] ,

Pgg, w, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw + Pw]� Pgg, RSD, 1-loop[Pnw] .
(2.33)

For simplicity we have neglected the one-loop contributions obtained from two in-
sertions of the wiggly power spectrum (since these scale as P

2

w
). Once the two

contributions Pgg,w and Pgg,nw are summed, the eventual IR-resummed anisotropic
power spectrum can be used to compute the multipoles in Eq. (2.20).

It is important to stress that our implementation of IR resummation at one loop
order contains four potential sources of error:

• Imperfectness of the wiggly-non-wiggly decomposition;

• Dependence of the damping factor on the separation cutoff;

• Inaccuracy of the factorization prescription;
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Parameters: (ωb, ωcdm, h, A1/2, ns, mν) × (b1A1/2, b2A1/2, b𝒢2
A1/2, Pshot, c2

0 , c2
2 , c̃)
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Beyond CDM - ultralight axionsΛ
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Figure 14: Joint posterior distributions for an axion with a mass of 10�32 eV for three
experimental setups. We note an improvement on the constraint on the axion fraction when
breaking the degeneracy with H0 present with the CMB data. The gray shaded area represent
the confidence interval for h from the SH0ES measurement [81].

Figure 15: 68% (dark-colored) and 95% (light-colored) confidence level bounds on the axion
density from the CMB data, galaxy clustering and the combined measurements.

prior favours a higher value of As which is slightly degenerate with the axion fraction at
that mass as shown in Fig. 16. Another contributing factor is that the CMB prior does not
constrain the axion fraction as well as for the axion masses below 10�25 eV. Performing a
joint likelihood analysis rather than imposing a prior on the cosmological parameters may
allow for stronger constraints for this mass bin and is left for future work. We note however
that galaxy clustering measurements alone improve existing constraints on the axion fraction
at that mass by over a factor of 4.5 (see Table 3).
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Laguë, Bond, Hložek, Rogers, Marsh, Grin (2021)
Rogers et. al. (2023)

Fuzzy dark matter

LSS constraints will further improve ~ 10x

Hui, Ostriker, Tremaine, Witten (2016)

Ωa

Ωd
∼ 0.01 ( F

1017 GeV )
2

( ma

10−26 eV )
1/2

For the whole of DM to be ULA, ma > 10−19 eV

In the range  ULA can 

be a fraction of DM and LSS probe those scales!

10−32 − 10−25 eV

Hu, Barkana, Gruzinov (2000)



Conclusions

A big amount of new data in this decade

It may be that there is nothing beyond CDM… Λ

Many possible factors-of-10 improvements

Novel approaches to theory and data analyses

… but in cosmology surprises are possible and we should be excited



Chudaykin, Ivanov (2019)

Euclid/DESI-like survey

Beyond CDM - neutrinosΛ

(galaxies only, no Lya 
and quasars)



Beyond CDM - DE and spatial curvatureΛ

The spatial curvature will be constrained better:   σ(ΩK) < 5 × 10−4 − 10−3

Any measurement of  will have large implications for inflation|ΩK | > 10−4

ρ ∼ a−3(1+w)

w = w0 + wa(1 − a)

Imagine a scalar field with the potential V

3(1 + w) = ( V′￼

V )
2

Do we have any interesting target for  ?V′￼/V

Galaxy surveys will constrain V′￼/V ≲ 0.05
(remember inflation where we can reach )V′￼/V ≲ 0.01

DESI Fisher forecast, 

credit: Patrick McDonald

Rough current errors

BAO+CMB+SNIa



Beyond CDM - Hubble tensionΛ

28

FIG. 13. Posterior distributions for the parameters extracted from the joint Planck 2018 TT+TE+EE+low `+lensing + BOSS
FS+BAO data. We show the results obtained using the standard FS+BAO likelihood (in blue) and the EFT-based likelihood
(in red). For reference, we also display the constraints from the Planck 2018 primary CMB data alone (TT+TE+EE), obtained
in [1]. The gray band shows the H0 measurement from SH0ES, for comparison. The dark-shaded and light-shaded contours
mark 68% and 95% confidence intervals, respectively.
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Early dark energy
Ivanov et al. (2020)
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FIG. 7. Posterior distributions for the parameters extracted from the joint Planck 2018 TT+TE+EE+low `+lensing + mock
Euclid/DESI likelihood, compared to those from Planck + BOSS data.

data. Second, they rely on a simplified “compressed”
redshift-space galaxy power spectrum likelihood that ig-
nores the matter power spectrum shape information and
implicitly assumes standard early-universe physics.

The impact of the galaxy clustering and weak lens-
ing data on the EDE constraints was recently studied
in Refs. [1] and [86]. Hill et al. (2020) [1] first showed
that the primary CMB data alone does not reveal signif-
icant evidence for the EDE model. Moreover, the con-
straints on the EDE model strengthen after taking into
account the data from photometric surveys. The “walk-
ing barefoot” analysis of Ref. [1], based on all available
cosmological datasets without SH0ES, yielded an upper
limit fEDE < 0.060 (95%CL), significantly lower than the
value fEDE ⇡ 0.1 needed to resolve the Hubble tension.
Thus, the addition of the LSS data rules out the EDE
model as a resolution to the Hubble tension.

Chudaykin et al. (2020) [86] claimed that the photo-
metric LSS data does not rule out the EDE model if the
` > 1000 region of the Planck power spectra are discarded
and replaced with the SPTPol measurements [87]. This
was motivated by the presence of the so-called “lensing
anomaly” in the Planck high-` data. The significance of
this anomaly is 2.8� [3], which still makes it compatible
with a statistical fluctuation, and no systematic has been
identified as a culprit despite significant dedicated anal-
ysis [88, 89]. Thus, we believe that the presence of this
mild tension does not give a su�ciently strong reason to
discard the Planck high-` data, which has more statistical
power than the SPTPol measurement. It is also worth
noting that ⇤CDM does not provide a very good fit to
the SPTPol power spectra (PTE = 0.017), and there are
mild internal parameter tensions within the SPTPol data
set (see Sec. 8 of [87]).
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Beyond CDM - primordial NGΛ

Cabass, Ivanov, Philcox, MS, Zaldarriaga (2022)

Various types of primordial “features” will be constrain up to 2-10x better

SPHEREX and other surveys can reach the target of σ( f loc.
NL ) < 1

Other types of PNG better than in the CMB,    remains hardσ( f eq.
NL) ∼ 1

Stage V spectroscopic surveyD’Amico, Lewandowski, Senatore, Zhang (2022)


